Skip to main content

Chloride ATPase Pumps in Epithelia

  • Chapter
  • First Online:
Book cover Epithelial Transport Physiology
  • 894 Accesses

Abstract

Five widely documented mechanisms for chloride transport across biological membranes are known: anion-coupled antiport, Na+ and H(+)-coupled symport, Cl channels and an electrochemical coupling process. These transport processes for chloride are either secondarily active or are driven by the electrochemical gradient for chloride. Until recently, the evidence in favour of a primary active transport mechanism for chloride has been inconclusive despite numerous reports of cellular Cl(−)-stimulated ATPases coexisting, in the same tissue, with uphill ATP-dependent chloride transport. Cl(−)-stimulated ATPase activity is a ubiquitous property of practically all cells with the major location being of mitochondrial origin. It also appears that plasma membranes are sites of Cl(−)-stimulated ATPase pump activity. Recent studies of Cl(−)-stimulated ATPase activity and ATP-dependent chloride transport in the same plasma membrane system, including liposomes, strongly suggest a mediation by the ATPase in the net movement of chloride up its electrochemical gradient across the plasma membrane structure. Contemporary evidence points to the existence of Cl(−)-ATPase pumps; however, these primary active transporters exist as either P-, F-, or V-type ATPase pumps depending upon the tissue under study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. DuBois-Reymond, E. Untersuchungen uber tierische Elektrizitat, Berlin. 1848.

    Google Scholar 

  2. Galeotti, G. Concerning the E.M.F. which is generated at the surface of animal membranes on contact with different electrolytes. Zellforsh Phys Chem 1904; 49: 542–562.

    Google Scholar 

  3. Ussing, HH, Zerahn, K. Active transport of sodium as the source of electric current in the short-circuited isolated frog skin. Acta Physiologica Scandinavica 1951; 23:110–127.

    Article  CAS  PubMed  Google Scholar 

  4. Skou, JC. Enzymatic basis for active transport of Na+ and K+ across cell membrane. Physiol Rev 1965; 45:596–617.

    CAS  PubMed  Google Scholar 

  5. Frizzell, RA, Field, M and Schultz, SG. Sodium-coupled chloride transport by epithelial tissues. Am J Physiol 1979; 236: F1–F8.

    CAS  PubMed  Google Scholar 

  6. Gerencser, GA. Invertebrate epithelial transport. Am J Physiol 1983b; 244: R127–R129.

    CAS  PubMed  Google Scholar 

  7. Gerencser, GA, White, JF, Gradmann, D and Bonting SL. Is there a Cl Pump? Am J Physiol 1988; 255:R677–R692.

    CAS  PubMed  Google Scholar 

  8. Hanrahan, JW and Phillips, JE. Cellular mechanisms and control of KCl absorption in insect hindgut. J Exp Biol 1983a; 106: 71–89.

    CAS  PubMed  Google Scholar 

  9. Gradmann, D. Electrogenic Cl pump in the marine alga Acetabularia, in Chloride Transport Coupling in Biological Membranes and Epithelia, Gerencser, GA, Ed., Elsevier, Amsterdam, 1984; 13–62.

    Google Scholar 

  10. Hill, BS, Hanke, DE. Properties of the chloride ATPase from Limonium salt glands: activation by, and binding to, specific sugars. J Membr Biol 1979; 51: 185–194.

    Article  CAS  PubMed  Google Scholar 

  11. Zimanyi, L, Lanyi, J. Halorhodopsin: a light-driven active chloride transport system, in Bicarbonate, Chloride and Proton Transport Systems, Durham, J. and Hardy, M., Eds., Ann NY Acad Sci 1989; 11–19.

    Google Scholar 

  12. Gerencser, GA. Reconstitution of a chloride-translocating ATPase from Aplysia californica gut. Biochimica et Biophysica Acta 1990; 1030: 301–303.

    Article  CAS  PubMed  Google Scholar 

  13. Shiroya, T, Fukunaga, R, Akashi, K, Shimada, N, Takagi, Y, Nashino, T, Hara, M and Inagaki, C. An ATP-driven Cl pump in the brain. J Biol Chem 1989; 264:17416–17421.

    CAS  PubMed  Google Scholar 

  14. Gerencser, GA and Zelezna, B. Reaction sequence and molecular mass of a Cl-translocating P-type ATPase. Proc Natl Acad Sci (USA) 1993; 90: 7970–7974.

    Article  CAS  Google Scholar 

  15. Ikeda, M and Oesterhelt, D. A Cl-translocating adenosinetriphosphatase in Acetabularia acetabulum, 2, Reconstitution of the enzyme into liposomes and effect of net charges of liposomes on chloride permeability and reconstitution. Biochemistry 1990; 29(8): 2065–2070.

    Article  CAS  PubMed  Google Scholar 

  16. Zeng, X-T, Hara, M and Inagaki, C. Electrogenic and phosphatidylinositol-4-monophosphate-stimulated Cl transport by Cl pump in the rat brain. Brain Res 1994; 641:167–170.

    Article  CAS  PubMed  Google Scholar 

  17. Schultz, SG. Chloride transport by gastrointestinal epithelia: An overview, in Mechanisms of Intestinal Secretion Binder, HJ, Eds, New York: Alan R. Liss, Inc., 1979; 93–100.

    Google Scholar 

  18. DePont, JJHHM and Bonting, SL. Anion-sensitive ATPase and (K+ + H+)-ATPase, in Membrane Transport, Bonting, SL and DePont, JJHHM., Eds., Elsevier/North Holland Biomedical Press 1981; 209–222.

    Google Scholar 

  19. Kedem, O and Katchalsky, A. A physiological interpretation of the phenomenological coefficients of membrane permeability. Am J Physiol 1961; 45:143.

    CAS  Google Scholar 

  20. Pedersen, PL and Carafoli, E. Ion motive ATPases. I. Ubiquity, properties, and significance to cell function. Trends Biochem Sci 1987; 12:146–150.

    Article  CAS  Google Scholar 

  21. Amzel, LM and Pedersen, PL. Proton ATPases: structure and mechanism. Ann Rev Biochem 1983; 52: 801–822.

    Article  CAS  PubMed  Google Scholar 

  22. Harvey, WR. Physiology of V-ATPases. J Exp Biol 1992; 172:1–17.

    CAS  PubMed  Google Scholar 

  23. Slayman, CL and Zuckier, GR. Differential functional properties of a P-type ATPase/proton pump, in Bicarbonate, Chloride and Proton Transport Systems, Durham, J. and Hardy, M., Eds., Ann NY Acad Sci 1989; 574:233–245.

    Google Scholar 

  24. Cantley, LC, Jr, Josephson, L, Warner, R, Yanagisawa, M, Lechene, C and Guidotti, G. Vanadate is a potent Na,K-ATPase inhibitor found in ATP derived from muscle. J Biol Chem 1977; 252:7421–7424.

    CAS  PubMed  Google Scholar 

  25. O’Neal, SG, Rhoads, DB and Racker, E. Vanadate inhibition of sarcoplasmic reticulum Ca2+-ATPase and other ATPases. Biochem Biophys Res Commun 1979; 89:845–850.

    Article  PubMed  Google Scholar 

  26. Jorgensen, PL and Anderson, JP. Structural basis for E1–E2 conformational transitions in Na, K-pump and Ca-pump proteins. J Membr Biol 1988; 103: 95–103.

    Article  CAS  PubMed  Google Scholar 

  27. Inesi, G and Kirtley, MR. Structural features of cation transport ATPases. J Bioenerg Biomembr 1992; 24: 271–279.

    CAS  PubMed  Google Scholar 

  28. Toyoshima, C, Nakasako, M, Nomura, H and Ogawa, H. Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 A resolution. Nature (London) 2002; 405:647–655.

    Article  Google Scholar 

  29. Ogawa, H, Strokes, DL, Sasabe, H and Toyoshima, C. Structure of the Ca2+ pump of sarcoplasmic reticulum: a view along the lipid bilayer at 9-A resolution. Biophy J 1998; 75:41–52.

    Article  CAS  Google Scholar 

  30. Zhang, P, Toyoshima, C, Yonekura, K, Green, N M and Strokes, DL. Structure of the calcium pump from sarcoplasmic reticulum at 8-A resolution. Nature (London) 1998; 392:835–839.

    Article  CAS  PubMed  Google Scholar 

  31. Auer, M, Scarborough, GA and Kuhlbrandt, W. Three-dimensional map of the plasma membrane H+ -ATPase in the open conformation. Nature (London) 1998; 392:840–843.

    Article  CAS  PubMed  Google Scholar 

  32. Scarborough, GA. Structure and function of the P-type ATPases. Curr Opin Cell Biol 1999; 11:517–522.

    Article  CAS  PubMed  Google Scholar 

  33. Rice, WJ, Green, NM and MacLennan, DH. Site directed disulfide mapping of hellices M4 and M6 in the Ca2+ binding domain of SERCA1a, the Ca2+ ATPase of fast twitch skeletal muscle sarcoplasmic reticulum. J Biol Chem 1997; 272:31412–31419.

    Article  CAS  PubMed  Google Scholar 

  34. Jorgensen, PL, Nielsen, JM, Rasmussen, JH and Pedersen, PA. Structure-function relationships of E1–E2 transitions and cation binding in Na, K-pump protein. Biochim Biophys Acta 1998; 1365:65–70

    Article  CAS  PubMed  Google Scholar 

  35. Moller, JV, Juul, B and le Maire, M. Structural organization, ion transport, and energy transduction of P-type ATPases. Biochim Biophys Acta 1996; 1286:1–51.

    PubMed  Google Scholar 

  36. Schuurmans, Stekhoven, F and Bonting, SL. Transport adenosine triphosphatases: Properties and functions. Physiol Rev 1981; 61:1–76.

    Google Scholar 

  37. Gerencser, GA and Lee, SH. Cl-stimulated adenosine triphosphatase: existence, location and function. J Exper Biol 1983; 106: 142–161.

    Google Scholar 

  38. Gerencser, GA and Lee, SH. Cl/HCO3 -stimulated ATPase in intestinal mucosa of Aplysia. Am J Physiol 1985b; 248: R241–R248.

    CAS  PubMed  Google Scholar 

  39. Mircheff, AK, Sachs, G, Hanna, SD, Labiner, CS, Rabon, E, Douglas, AP, Walling, M W and Wright, EM. Highly purified basal lateral plasma membranes from rat duodenum: physical criteria for purity. J Membr Biol 1979; 50:343–363.

    Article  CAS  PubMed  Google Scholar 

  40. Bullough, DA, Jackson, CG, Henderson, PJ, Beechey, RB and Linnett, PE. The isolation and purification of the elvapeptins: A family of peptide inhibitors of mitochondrial ATPase activity. FEBS Lett 1982; 145: 258–262.

    Article  CAS  Google Scholar 

  41. Gerencser, GA. Transport across the invertebrate intestine, Transport Processes Iono- and Osmoregulation, Vol. II, Gilles, R and Gilles-Baillien, M G, Eds., Springer, Berlin, 1985; 251–264.

    Google Scholar 

  42. Gerencser, GA. Primary electrogenic chloride transport across the Aplysia gut Bicarbonate, Chloride and Proton Transport Systems, Durham, J and Hardy, M, Eds., Ann NY Acad Sci 1989; 547:1–10.

    Google Scholar 

  43. Gerencser, GA and Zelezna, B. Existence of a chloride pump in molluscs, in Electrogenic Cl transporters in biological membranes, as part of Advances in Comparative and Environmental Physiology 19, Gerencser, GA, Ed., Springer-Verlag, Berlin 1994; 39–58.

    Google Scholar 

  44. DeRenzis, G and Bornancin, M. Cl/HCO3 -ATPase in the gills of Carassius auratus: Its inhibition by thiocyanate. Biochimica et Biophysica Acta 1977; 467:192–207.

    Article  CAS  Google Scholar 

  45. Bornancin, M, DeRenzis, G and Maetz, J. Branchial Cl transport, anion-stimulated ATPase and acid-base balance in Anguilla anguilla adapted to freshwater: Effects of hyperoxia. J Compar Physiol 1977; 117:313–322.

    CAS  Google Scholar 

  46. Bornancin, M, DeRenzis, G and Naon, R. Cl-HCO3 -ATPase in gills of the rainbow trout: Evidence for its microsomal localization. Am J Physiol 1980; 238:R251–R259.

    CAS  PubMed  Google Scholar 

  47. Hanrahan, J and Phillips, JE. Mechanism and control of salt absorption in locust rectum. Am J Physiol 1983b; 244:R131–R142.

    CAS  PubMed  Google Scholar 

  48. Lechleitner, RA and Phillips, JE. Cl/HCO3 -ATPase in locust rectum. Can J Zool 1988; 66(2): 431–438.

    Article  CAS  Google Scholar 

  49. Phillips, JE, Wiens, C, Audsley, N, Jeffs, L, Bilgen, T and Meredith, J Nature and control of chloride transport in insect absorptive epithelia. J Exp Zool 1996; 275:292–299.

    Article  CAS  PubMed  Google Scholar 

  50. Wieczorek, H. The insect V-ATPase, a plasma membrane proton pump energizing secondary active transport: molecular analysis of electrogenic potassium transport in the tobacco hornworm midgut. J Exp Biol 1992; 172:335–343.

    CAS  PubMed  Google Scholar 

  51. Inagaki, C, Tanaka, T, Hara, M and Ishiko, J. Novel microsomal anion-sensitive Mg2+-ATPase activity in rat brain. Biochem Pharmacol 1985; 34:1705–1712.

    Article  CAS  PubMed  Google Scholar 

  52. Inagaki, C, Hara, M and Inoue, M. Transporting Cl-ATPase in rat brain, in Electrogenic Cl transporters in biological membranes, as part of Advances in Comparative and Environmental Physiology 19, Gerencser, G.A., Ed., Springer-Verlag, Berlin, 1994; 59–79.

    Google Scholar 

  53. Graves, JS and Gutknecht, J. Current-voltage relationships and voltage sensitivity of the Cl pump in Halicystis parvula. J Membr Biol 1977; 36:83–99.

    Article  CAS  Google Scholar 

  54. Moritani, C, Ohhashi, T, Satoh, S, Oesterhelt, D and Ikeda, M. Purification and characterization of a membrane-bound ATPase from Acetabularia cliftoni that corresponds to a Cl-translocating ATPase in Acetabularia acetabulum. Biosci Biotech Biochem 1994; 58(11): 2087–2089.

    Article  CAS  Google Scholar 

  55. Gerencser, GA and Purushotham, KR. A novel Cl-pump: intracellular regulation of transport activity. Biochem Biophys Res Commun 1995; 215:994–1000.

    Article  CAS  PubMed  Google Scholar 

  56. Gerencser, GA and Purushotham, KR. Reconstituted Cl Pump Protein: a novel ion (Cl) - motive ATPase. J Bioenerg Biomembr 1996; 28:459–469.

    Article  CAS  PubMed  Google Scholar 

  57. Barry, RJC, Smyth, DH and Wright, EM. Short-circuit current and solute transfer by rat jejunum. J Physiol 1965; 181: 410–431.

    CAS  PubMed  Google Scholar 

  58. Clarkson, TW, Cross, AC and Toole, SR. Electrical potentials across isolated small intestine of the rat. Am J Physiol 1961; 200:1233–1235.

    CAS  PubMed  Google Scholar 

  59. Quay, JF and Armstrong, W McD. Sodium and chloride transport by isolated bullfrog small intestine. Am J Physiol 1969; 217:694–702.

    CAS  PubMed  Google Scholar 

  60. Gerencser, GA. Electrical characteristics of isolated Aplysia californica intestine. Comp Biochem Physiol 1978; 61A: 209–212.

    Article  CAS  Google Scholar 

  61. Gerencser, GA. Effects of amino acids on chloride transport in Aplysia intestine. Am J Physiol 1981; 240: R61–R69.

    CAS  PubMed  Google Scholar 

  62. Gerencser, GA. Electrophysiology of chloride transport in Aplysia (mollusk) intestine. Am J. Physiol 1983a; 244: R143–R149.

    CAS  PubMed  Google Scholar 

  63. Gerencser, GA and Hong, SK. Ion transport in Aplysia juliana intestine: stimulation by exogenous sugars. Comp Biochem Physiol 1977; 58A:275–280.

    Article  Google Scholar 

  64. Gerencser, GA. Thiocyanate inhibition of active chloride absorption in Aplysia intestine Biochimica et Biophysica Acta 1984b; 775: 389–394.

    Article  CAS  PubMed  Google Scholar 

  65. Armstrong, W McD, Wojtkowski, W and Bixenman, WR. A new solid-state microelectrode for measuring intracellular chloride activities. Biochimica et Biophysica Acta 1977; 465:165–170.

    Article  CAS  PubMed  Google Scholar 

  66. Armstrong, W McD, Bixenman, W R, Frey, K R, Garcia-Diaz, J F, O’Regan M G, and Owens, JH. Energetics of coupled Na+ and Cl entry into epithelial cells of bullfrog small intestine. Biochimica et Biophysica Acta 1979; 551:207–212.

    Article  CAS  PubMed  Google Scholar 

  67. Gerencser, GA and White, JF. Membrane potentials and chloride activities in e epithelial cells of Aplysia intestine. Am J Physiol 1980; 239:R445–R449.

    CAS  PubMed  Google Scholar 

  68. Gerencser, GA. Electrogenic ATP-dependent Cl transport by plasma membrane vesicles from Aplysia intestine. Am J Physiol 1988; 254:R127–R133.

    CAS  PubMed  Google Scholar 

  69. Gerencser, GA. Transport energetics of the Cl pump in Aplysia gut. Biochimica et Biophysica Acta 1997; 1330:110–112.

    Article  CAS  PubMed  Google Scholar 

  70. Gerencser, GA. Electrogenic and electrically coupled chloride transport across molluscan intestine, Chloride Transport Coupling in Biological Membranes and epithelia, Gerencser, GA, Ed., Elsevier, Amsterdam, 1984a; 183–203.

    Google Scholar 

  71. Hill, BS. Metabolic coupling of chloride transport in higher plant cells, in Chloride Transport Coupling in Biological Membranes and Epithelia, Gerencser, G. A., Ed., Elsevier, Amsterdam, 1984; p. 1–11.

    Google Scholar 

  72. Akera, T, Temma, K and Takeda, K. Cardiac actions of vanadium. Feder Proc 1983; 42:2984–2988

    CAS  Google Scholar 

  73. Gerencser, GA. Subcellular carbonic anhydrase profile in Aplysia gut. J Exp Biol 1991; 161:515–517.

    CAS  Google Scholar 

  74. Lee, SH. Salinity adaptation of HCO3 -dependent ATPase activity in the gills of blue crab (Callinectes sapidus). Biochimica et Biophysica Acta 1982; 689:143–154 .

    Article  CAS  PubMed  Google Scholar 

  75. Maren, TH. Use of inhibitors in physiological studies of carbonic anhydrase. Am J Phys 1977; 232:F291–F297.

    CAS  Google Scholar 

  76. White, JF. Bicarbonate-dependent chloride absorption in small gut: ion fluxes and intracellular chloride activities. J Membr Biol 1980; 53: 95–107.

    Article  CAS  PubMed  Google Scholar 

  77. Gerencser, GA. Properties and functions of Cl-stimulated ATPase. Trends Life Sci 1986; 1: 1–18.

    CAS  Google Scholar 

  78. Gerencser, GA and Lee, SH. ATP-dependent chloride transport in plasma membrane vesicles from Aplysia intestine Biochimica et Biophysica Acta 1985a; 816:415–417.

    Article  CAS  Google Scholar 

  79. Gerencser, GA and Zhang, J. Inhibition of a Cl-transporting P-type ATPase in Aplysia gut. Zool Sci 2001a; 18:17–19.

    Article  CAS  Google Scholar 

  80. Gerencser, GA and Zhang, J. The Aplysia californica Cl pump is a P-type ATPase: evidence through inhibition studies. Can J Physiol Pharmacol 2001c; 79:367–370.

    Article  CAS  PubMed  Google Scholar 

  81. Bowman, EJ, Siebers, A and Altendorf, K. Bafilomycins: A class of inhibitors of membrane ATPases from microorganisms, animal cells, and plant cells. Proc Natl Acad Sci USA 1986; 85:7972–7976.

    Article  Google Scholar 

  82. Krogh, A. Osmotic regulation in the frog (R. esculenta) by active absorption of chloride ions. Skandinavica Arch Physiol 1937; 76:60–74.

    CAS  Google Scholar 

  83. Zeng, X-T, Higashida, T, Hara, M, Hattori, N, Kitagawa, K, Omori, K and Ingaki, C. Antiserum against Cl pump complex recognized 51 kDa protein, a possible catalytic unit in the rat brain. Neurosci Lett 1998; 258:85–88.

    Article  CAS  PubMed  Google Scholar 

  84. Moritani, C, Ohhashi, T, Kadowaki, H, Tagaya, M, Fukui, T, Lottspeich, F, Oesterhelt, D and Ikeda, M. The primary structure of the Cl-translocating ATPase, b subunit of Acetabularia acetabulm, which belongs to F-type ATPase family. Arch Biochem Biophys 1997; 339:115–124.

    Article  CAS  PubMed  Google Scholar 

  85. Inagaki, C, Hattori, N, Kitagawa, K, Zeng, X-T and Yagyu, K. Cl-ATPase in rat brain and kidney. J Exp Zool 2001; 289:224–231.

    Article  CAS  PubMed  Google Scholar 

  86. Gerencser, GA and Zhang, J. Phosphorylation of chloride -ATPase reconstituted from Aplysia gut. J Exp Zool 2001b; 289:472–475.

    Article  CAS  PubMed  Google Scholar 

  87. Gerencser, GA, Zhang, J. Chloride ATPase: dephosphorylation in Aplysia gut. J Exp Zool 2002; 293:89–93.

    Article  CAS  PubMed  Google Scholar 

  88. Gerencser, GA. Stoichiometry of a Cl-translocating ATPase. Feder Eur Biochem Soc Lett 1993b; 333:133–140.

    Google Scholar 

  89. Gerencser, GA. A novel P-type Cl-stimulated ATPase: phosphorylation and specificity. Biochem Biophys Res Commun 1993a; 196:1188–1194.

    Article  CAS  PubMed  Google Scholar 

  90. Slayman, CL, Long, WS and Lu, CY. The relationship between ATP and an electrogenic pump in the plasma membrane of Neurospora crassa. J Membr Biol 1973; 14:305–338.

    Article  CAS  PubMed  Google Scholar 

  91. Vara, F. and Serrano, R. Phosphorylated intermediate of the ATPase of plant plasma membranes. J Biol Chem 1982; 257:12826–12830.

    CAS  PubMed  Google Scholar 

  92. Fernandez-Belda, F, Kurzmack, M and Inesi ,G. A comparative study of calcium transients by isotopic tracer, metallochromic indicator, and intrinsic fluorescence in sarcoplasmic reticulum ATPase. J Biol Chem 1984; 259: 9687–9698.

    CAS  PubMed  Google Scholar 

  93. Wallmark, B, Stewart, HB, Rabon, E, Saccomani, G and Sachs, G. The catalytic cycle of gastric (H++K+) ATPase. J Biol Chem 1980; 255:5313–5319.

    CAS  PubMed  Google Scholar 

  94. Kitajima, T, Hirayama, J, Ihara, K, Sugiyama, Y, Kamo, N and Mukohata, Y. Novel bacterial rhodopsins from Haloarcula vallismortis. Biochem Biophys Res Commun 1996; 220:341–345.

    Article  CAS  PubMed  Google Scholar 

  95. Gerencser, GA and Zhang, J. CI-ATPases: Novel Primary Active Transporters in Biology. J Exp Zool 2001; 289:215–223.

    Article  CAS  PubMed  Google Scholar 

  96. Gerencser, GA and Zhang, J. The Cl pump in mollusks: a Cl-translocating P-type ATPase. Comp Biochem Physiol 2000; 126A(1): S59.

    Google Scholar 

  97. Perlin, DS, Kasami, K, Brooker, RJ and Slayman, CW. Electrogenic H+ translocation by the plasma membrane ATPase of Neurospora. J Biolo Chem 1984; 259:7884–7892.

    CAS  Google Scholar 

Download references

Acknowledgments

The author wishes to acknowledge his gratitude to his technologists, students, and collaborators for their able contributions to the studies reviewed and performed herein. These studies were supported by D.S.R. Seed Award (No. 229K15), Whitehall Foundation Grant (No. 78–156 ck-1), D.S.R. Award (No. 122101010), and the Eppley Foundation for Research, Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George A. Gerencser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Gerencser, G.A. (2010). Chloride ATPase Pumps in Epithelia. In: Gerencser, G. (eds) Epithelial Transport Physiology. Humana Press. https://doi.org/10.1007/978-1-60327-229-2_1

Download citation

Publish with us

Policies and ethics