Skip to main content

DNA Methylation and the Epigenetic Program in Stem Cells

  • Chapter
Regulatory Networks in Stem Cells

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

  • 1296 Accesses

Abstract

Epigenetic regulation of gene expression, which refers to stable and heritable changes in gene expression potential, is essential for normal embryonic development and cellular differentiation. Epigenetic mechanisms provide a memory of developmental history of a cell, and are also responsive to environmental inputs. These extracellular cues serve to direct programs of gene expression that restrict developmental potency as the organism proceeds from a totipotent single cell to a fully mature state. Mounting experimental evidence suggests that epigenetic modifications, either DNA methylation or post-translational modification of histones, are functionally required for establishing and maintaining heritable states of gene expression. Importantly, these codes also serve to identify states of developmental potency, and as such may be useful diagnostic and prognostic markers for diseases involving abnormal tissue homeostasis. There is an emerging view that epigenetic alterations play an important role in a wide range of multifactorial disorders. The importance of epigenetic control in developmental regulation of stem cells supports the notion that similar mechanisms regulate adult tissue homeostasis at the level of adult stem cells. Altered cellular plasticity may be a general mechanism through which aberrant epigenetic programs exert their effects. Loss of epigenetic control can lead to reduced self-renewal and accelerated aging of stem cells. Conversely, enhanced self-renewal through epimutation in tissue stem cells, or reacquisition of stem cell expression states by faulty reprogramming mechanisms are thought to represent early events in cancer. The inherent reversibility of these epigenetic states provides a potential therapeutic opportunity to reset the balance of tissue homeostasis through these pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Feinberg AP. Phenotypic plasticity and the epigenetics of human disease. Nature. 2007;447(7143):433–40.

    Article  PubMed  CAS  Google Scholar 

  2. Reik W. Stability and flexibility of epigenetic gene regulation in mammalian development. Nature. 2007;447(7143):425–32.

    Article  PubMed  CAS  Google Scholar 

  3. Riggs AD. X inactivation, differentiation, and DNA methylation. Cytogenet Cell Genet. 1975;14(1):9–25.

    Article  PubMed  CAS  Google Scholar 

  4. Holliday R. Molecular aspects of genetic exchange and gene conversion. Genetics. 1974;78(1):273–87.

    PubMed  CAS  Google Scholar 

  5. Leonhardt H, Page AW, Weier HU, Bestor TH. A targeting sequence directs DNA methyltransferase to sites of DNA replication in mammalian nuclei. Cell .1992;71(5):865–73.

    Article  PubMed  CAS  Google Scholar 

  6. Sharif J, Muto M, Takebayashi S, et al. The SRA protein Np95 mediates epigenetic inheritance by recruiting Dnmt1 to methylated DNA. Nature. 2007;450(7171):908–12.

    Article  PubMed  CAS  Google Scholar 

  7. Bostick M, Kim JK, Esteve PO, Clark A, Pradhan S, Jacobsen SE. UHRF1 plays a role in maintaining DNA methylation in mammalian cells. Science. 2007;317(5845):1760–4.

    Article  PubMed  CAS  Google Scholar 

  8. Del Valle L, Enam S, Lassak A, et al. Insulin-like growth factor I receptor activity in human medulloblastomas. Clin Cancer Res. 2002;8(6):1822–30.

    PubMed  CAS  Google Scholar 

  9. Reik W, Dean W. DNA methylation and mammalian epigenetics. Electrophoresis. 2001;22(14):2838–43.

    Article  PubMed  CAS  Google Scholar 

  10. Jones PA. The DNA methylation paradox. Trends Genet. 1999;15(1):34–7.

    Article  PubMed  CAS  Google Scholar 

  11. Okano M, Bell DW, Haber DA, Li E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell. 1999;99(3):247–57.

    Article  PubMed  CAS  Google Scholar 

  12. Linhart HG, Lin H, Yamada Y, et al. Dnmt3b promotes tumorigenesis in vivo by gene-specific de novo methylation and transcriptional silencing. Genes Dev. 2007;21(23):3110–22.

    Article  PubMed  CAS  Google Scholar 

  13. Riggs AD. DNA methylation and cell memory. Cell Biophys. 1989;15(1–2):1–13.

    PubMed  CAS  Google Scholar 

  14. Bruniquel D, Schwartz RH. Selective, stable demethylation of the interleukin-2 gene enhances transcription by an active process. Nat Immunol. 2003;4(3):235–40.

    Article  PubMed  CAS  Google Scholar 

  15. Murayama A, Sakura K, Nakama M, et al. A specific CpG site demethylation in the human interleukin 2 gene promoter is an epigenetic memory. EMBO J. 2006;25(5):1081–92.

    Article  PubMed  CAS  Google Scholar 

  16. Dong E, Guidotti A, Grayson DR, Costa E. Histone hyperacetylation induces demethylation of reelin and 67-kDa glutamic acid decarboxylase promoters. Proc Natl Acad Sci U S A. 2007;104(11):4676–81.

    Article  PubMed  CAS  Google Scholar 

  17. Barreto G, Schafer A, Marhold J, et al. Gadd45a promotes epigenetic gene activation by repair-mediated DNA demethylation. Nature. 2007;445(7128):671–5.

    Article  PubMed  CAS  Google Scholar 

  18. Hattori N, Nishino K, Ko YG, Ohgane J, Tanaka S, Shiota K. Epigenetic control of mouse Oct-4 gene expression in embryonic stem cells and trophoblast stem cells. J Biol Chem. 2004;279(17): 17063–9.

    Article  PubMed  CAS  Google Scholar 

  19. Ben-Shushan E, Pikarsky E, Klar A, Bergman Y. Extinction of Oct-3/4 gene expression in embryonal carcinoma x fibroblast somatic cell hybrids is accompanied by changes in the methylation status, chromatin structure, and transcriptional activity of the Oct-3/4 upstream region. Mol Cell Biol. 1993;13(2):891–901.

    PubMed  CAS  Google Scholar 

  20. Sanford JP, Clark HJ, Chapman VM, Rossant J. Differences in DNA methylation during oogenesis and spermatogenesis and their persistence during early embryogenesis in the mouse. Genes Dev. 1987;1(10):1039–46.

    Article  PubMed  CAS  Google Scholar 

  21. Rideout WM, 3rd, Eggan K, Jaenisch R. Nuclear cloning and epigenetic reprogramming of the genome. Science. 2001;293 (5532):1093–8.

    Article  PubMed  CAS  Google Scholar 

  22. Jeanisch R, Eggan K, Humpherys D, Rideout W, Hochedlinger K. Nuclear cloning, stem cells, and genomic reprogramming. Cloning Stem Cells. 2002;4(4):389–96.

    Article  PubMed  Google Scholar 

  23. Cowan CA, Atienza J, Melton DA, Eggan K. Nuclear reprogramming of somatic cells after fusion with human embryonic stem cells. Science. 2005;309(5739):1369–73.

    Article  PubMed  CAS  Google Scholar 

  24. Wernig M, Meissner A, Foreman R, et al. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature. 2007;448(7151):318–24.

    Article  PubMed  CAS  Google Scholar 

  25. Okita K, Ichisaka T, Yamanaka S. Generation of germline- competent induced pluripotent stem cells. Nature. 2007;448(7151): 313–7.

    Article  PubMed  CAS  Google Scholar 

  26. Kato Y, Kaneda M, Hata K, et al. Role of the Dnmt3 family in de novo methylation of imprinted and repetitive sequences during male germ cell development in the mouse. Hum Mol Genet. 2007;16(19):2272–80.

    Article  PubMed  CAS  Google Scholar 

  27. Attema JL, Papathanasiou P, Forsberg EC, Xu J, Smale ST, Weissman IL. Epigenetic characterization of hematopoietic stem cell differentiation using miniChIP and bisulfite sequencing analysis. Proc Natl Acad Sci U S A. 2007;104(30):12371–6.

    Article  PubMed  CAS  Google Scholar 

  28. Xu J, Pope SD, Jazirehi AR, et al. Pioneer factor interactions and unmethylated CpG dinucleotides mark silent tissue-specific enhancers in embryonic stem cells. Proc Natl Acad Sci U S A. 2007;104(30):12377–82.

    Article  PubMed  CAS  Google Scholar 

  29. Morris KV, Chan SW, Jacobsen SE, Looney DJ. Small interfering RNA-induced transcriptional gene silencing in human cells. Science. 2004;305(5688):1289–92.

    Article  PubMed  CAS  Google Scholar 

  30. Kawasaki H, Taira K. Induction of DNA methylation and gene silencing by short interfering RNAs in human cells. Nature. 2004;431(7005):211–7.

    Article  PubMed  CAS  Google Scholar 

  31. Bartel DP, Chen CZ. Micromanagers of gene expression: the potentially widespread influence of metazoan microRNAs. Nat Rev Genet. 2004;5(5):396–400.

    Article  PubMed  CAS  Google Scholar 

  32. Morris KV. siRNA-mediated transcriptional gene silencing: the potential mechanism and a possible role in the histone code. Cell Mol Life Sci. 2005;62(24):3057–66.

    Article  PubMed  CAS  Google Scholar 

  33. Kawasaki H, Taira K, Morris KV. siRNA induced transcriptional gene silencing in mammalian cells. Cell Cycle. 2005;4(3):442–8.

    Article  PubMed  CAS  Google Scholar 

  34. Sun BK, Deaton AM, Lee JT. A transient heterochromatic state in Xist preempts X inactivation choice without RNA stabilization. Mol Cell. 2006;21(5):617–28.

    Article  PubMed  CAS  Google Scholar 

  35. Jackson-Grusby L, Beard C, Possemato R, et al. Loss of genomic methylation causes p53-dependent apoptosis and epigenetic deregulation. Nat Genet. 2001;27(1):31–9.

    Article  PubMed  CAS  Google Scholar 

  36. Lee PP, Fitzpatrick DR, Beard C, et al. A critical role for Dnmt1 and DNA methylation in T cell development, function, and survival. Immunity. 2001;15(5):763–74.

    Article  PubMed  CAS  Google Scholar 

  37. Li E, Bestor TH, Jaenisch R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell. 1992;69(6):915–26.

    Article  PubMed  CAS  Google Scholar 

  38. Tucker KL, Beard C, Dausmann J, et al. Germ-line passage is required for establishment of methylation and expression patterns of imprinted but not of nonimprinted genes. Genes Dev. 1996;10(8):1008–20.

    Article  PubMed  CAS  Google Scholar 

  39. Tadokoro Y, Ema H, Okano M, Li E, Nakauchi H. De novo DNA methyltransferase is essential for self-renewal, but not for differentiation, in hematopoietic stem cells. J Exp Med. 2007;204(4): 715–22.

    Article  PubMed  CAS  Google Scholar 

  40. Charlier C, Segers K, Karim L, et al. The callipyge mutation enhances the expression of coregulated imprinted genes in cis without affecting their imprinting status. Nat Genet. 2001;27(4):367–9.

    Article  PubMed  CAS  Google Scholar 

  41. Barlow DP. Gametic imprinting in mammals. Science. 1995;270(5242):1610–3.

    Article  PubMed  CAS  Google Scholar 

  42. Li E, Beard C, Jaenisch R. Role for DNA methylation in genomic imprinting. Nature. 1993;366(6453):362–5.

    Article  PubMed  CAS  Google Scholar 

  43. Kaneda M, Okano M, Hata K, et al. Essential role for de novo DNA methyltransferase Dnmt3a in paternal and maternal imprinting. Nature. 2004;429(6994):900–3.

    Article  PubMed  CAS  Google Scholar 

  44. Bourchis D, Xu GL, Lin CS, Bollman B, Bestor TH. Dnmt3L and the establishment of maternal genomic imprints. Science. 2001;294(5551):2536–9.

    Article  CAS  Google Scholar 

  45. Bourchis D, Bestor TH. Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking Dnmt3L. Nature. 2004;431(7004):96–9.

    Article  CAS  Google Scholar 

  46. Okano M, Li E. Genetic analyses of DNA methyltransferase genes in mouse model system. J Nutr. 2002;132(8 Suppl): 2462S–5S.

    PubMed  CAS  Google Scholar 

  47. Oswald J, Engemann S, Lane N, et al. Active demethylation of the paternal genome in the mouse zygote. Curr Biol. 2000;10(8):475–8.

    Article  PubMed  CAS  Google Scholar 

  48. Howell CY, Bestor TH, Ding F, et al. Genomic imprinting disrupted by a maternal effect mutation in the Dnmt1 gene. Cell. 2001;104(6):829–38.

    Article  PubMed  CAS  Google Scholar 

  49. Holm TM, Jackson-Grusby L, Brambrink T, Yamada Y, Rideout WM, 3rd, Jaenisch R. Global loss of imprinting leads to widespread tumorigenesis in adult mice. Cancer Cell. 2005;8(4):275–85.

    Article  PubMed  CAS  Google Scholar 

  50. Cui H, Niemitz EL, Ravenel JD, et al. Loss of imprinting of insulin-like growth factor-II in Wilms tumor commonly involves altered methylation but not mutations of CTCF or its binding site. Cancer Res. 2001;61(13):4947–50.

    PubMed  CAS  Google Scholar 

  51. Rugg-Gunn PJ, Ferguson-Smith AC, Pedersen RA. Status of genomic imprinting in human embryonic stem cells as revealed by a large cohort of independently derived and maintained lines. Hum Mol Genet. 2007;16 Spec No. 2:R243–51.

    Article  PubMed  CAS  Google Scholar 

  52. Feinberg AP, Ohlsson R, Henikoff S. The epigenetic progenitor origin of human cancer. Nat Rev Genet. 2006;7(1):21–33.

    Article  PubMed  CAS  Google Scholar 

  53. Krivtsov AV, Armstrong SA. MLL translocations, histone modifications and leukaemia stem-cell development. Nat Rev Cancer. 2007;7(11):823–33.

    Article  PubMed  CAS  Google Scholar 

  54. Ting AH, McGarvey KM, Baylin SB. The cancer epigenome- components and functional correlates. Genes Dev. 2006;20(23): 3215–31.

    Article  PubMed  CAS  Google Scholar 

  55. Bracken AP, Dietrich N, Pasini D, Hansen KH, Helin K. Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions. Genes Dev. 2006;20(9):1123–36.

    Article  PubMed  CAS  Google Scholar 

  56. Boyer LA, Plath K, Zeitlinger J, et al. Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature. 2006;441(7091):349–53.

    Article  PubMed  CAS  Google Scholar 

  57. Bernstein BE, Mikkelsen TS, Xie X, et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell. 2006;125(2):315–26.

    Article  PubMed  CAS  Google Scholar 

  58. Azuara V, Perry P, Sauer S, et al. Chromatin signatures of pluripotent cell lines. Nat Cell Biol. 2006;8(5):532–8.

    Article  PubMed  CAS  Google Scholar 

  59. Widschwendter M, Fiegl H, Egle D, et al. Epigenetic stem cell signature in cancer. Nat Genet. 2007;39(2):157–8.

    Article  PubMed  CAS  Google Scholar 

  60. Ohm JE, McGarvey KM, Yu X, et al. A stem cell-like chromatin pattern may predispose tumor suppressor genes to DNA hypermethylation and heritable silencing. Nat Genet. 2007;39(2): 237–42.

    Article  PubMed  CAS  Google Scholar 

  61. de Vos D. Epigenetic drugs: a longstanding story. Semin Oncol. 2005;32(5):437–42.

    Article  PubMed  Google Scholar 

  62. Barski A, Cuddapah S, Cui K, et al. High-resolution profiling of histone methylations in the human genome. Cell. 2007;129(4): 823–37.

    Article  PubMed  CAS  Google Scholar 

  63. Mikkelsen TS, Ku M, Jaffe DB, et al. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature. 2007;448(7153):553–60.

    Article  PubMed  CAS  Google Scholar 

  64. Cokus SJ, Feng S, Zhang X, et al. Shotgun bisulphate sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature. 2008;452(7184):215–9.

    Article  PubMed  CAS  Google Scholar 

  65. Wang J, Rao S, Chu J, et al. A protein interaction network for pluripotency of embryonic stem cells. Nature. 2006;444(7117): 364–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurie Jackson-Grusby .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Jackson-Grusby, L. (2009). DNA Methylation and the Epigenetic Program in Stem Cells. In: Rajasekhar, V.K., Vemuri, M.C. (eds) Regulatory Networks in Stem Cells. Stem Cell Biology and Regenerative Medicine. Humana Press. https://doi.org/10.1007/978-1-60327-227-8_23

Download citation

Publish with us

Policies and ethics