Skip to main content

Statistical Foundations and Data Integration for Microbial Forensics

  • Chapter
  • First Online:
  • 944 Accesses

Part of the book series: Infectious Disease ((ID))

Abstract

The anthrax mailings of 2001 dramatically heightened concerns about the possibility of terrorist incidents involving microbiological agents. In the wake of the attacks, microbial forensics has emerged as a new focus area for research. Researchers in this nascent field have been working to develop new analytical methods that provide information useful in an investigation and ultimately a courtroom. This chapter summarizes the important role statistics has to play in the development of this new scientific discipline.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Budowle B, Schutzer SE, Ascher MS, Atlas RM, Burans JP, Chakraborty R, Dunn JJ, Fraser CM, Franz DR, Leighton TR, Morse SA, Murch RS, Ravel J, Rock DL, Slezak TR, Velsko SP, Walsh AC, Walters RA (2005) Toward a system of microbial forensics: from sample collection to interpretation of evidence. Appl Evniron Microb 71:2209–2213

    Article  CAS  Google Scholar 

  2. Budowle BM, Johnson MD, Fraser CM, Leighton TJ, Murch RS, Chakraborty R (2005) Genetic analysis and attribution of microbial forensics evidence. Crit Rev Microbiol 31:233–254

    Article  PubMed  CAS  Google Scholar 

  3. Daubert V (1993) Merrell Dow pharmaceuticals. United States 509

    Google Scholar 

  4. Matson JV (1999) Effective expert witnessing, 3rd edn. CRC Press, Boca Raton

    Google Scholar 

  5. Forensics MotSWGoMG (2003) Quality assurance guidelines for laboratories performing microbial forensics work. Forensic Sci Commun 5(4). http://www.fbi.gov/about-us/lab/forensic-science-communications/fsc/oct2003/2003_10_guide01.htm.

  6. Breeze RG, Budowle B, Schutzer SE (2005) Microbial forensics. Elsevier, London

    Google Scholar 

  7. Cliff JB, Jarman KH, Valentine NB, Golledge SL, Gaspar DL, Wunschel DS, Wahl KL (2005) Differentiation of spores of Bacillus subtilis grown in different media by elemental characterization using time-of-flight secondary ion mass spectrometry. Appl Environ Microbiol 71:6524–6530

    Article  PubMed  CAS  Google Scholar 

  8. Valentine N, Wunschel S, Wunschel D, Petersen C, Wahl K (2005) The effect of culture conditions on microorganism identification by MALDI mass spectrometry. Appl Environ Microbiol 71:58–64

    Article  PubMed  CAS  Google Scholar 

  9. Wahl KL, Valentine NB, Wunschel SC, Wunschel DS, Jarman KH, Petersen CE (2003) Microorganism analysis and identification by MALDI-TOF-MS. Abstr Pap Am Chem S 226:U121

    Google Scholar 

  10. Wunschel DS, Hill EA, McLean JS, Jarman K, Gorby YA, Valentine N, Wahl K (2005) Effects of varied pH, growth rate and temperature using controlled fermentation and batch culture on matrix assisted laser ­desorption/ionization whole cell protein fingerprints. J Microbiol Methods 62:259–271

    Article  PubMed  CAS  Google Scholar 

  11. Wunschel SC, Jarman KH, Petersen CE, Valentine NB, Wahl KL, Schauki D, Jackman J, Nelson CP, White E (2005) Bacterial analysis by MALDI-TOF mass spectrometry: an inter-laboratory comparison. J Am Soc Mass Spectrom 16:456–462

    Article  PubMed  CAS  Google Scholar 

  12. Kreuzer-Martin H, Jarman KH (2007) Stable isotope ratios and forensic analysis of microorganisms. Appl Environ Microbiol 73:3896–3908

    Article  PubMed  CAS  Google Scholar 

  13. Box E, Hunter W, Hunter J (1978) Statistics for experimenters. Wiley, New York

    Google Scholar 

  14. Beebe KR, Pell RJ, Seasholtz MB (1998) Chemometrics: a practical guide. Wiley, New York

    Google Scholar 

  15. Martens H, Naes T (1989) Multivariate calibration. Wiley, New York

    Google Scholar 

  16. Jarman KH, Kreuzer-Martin HW, Wunschel DS et al (2008) Bayesian integrated microbial forensics. Appl Environ Microbiol 74(11):3573–3582

    Article  PubMed  CAS  Google Scholar 

  17. Jarman KH, Daly DS, Petersen CE, Saenz AJ, Valentine NB, Wahl KL (1999) Extracting and visualizing matrix-assisted laser desorption/ionization time-of-flight mass spectral fingerprints. Rapid Commun Mass Spectrom 13:1586–1594

    Article  PubMed  CAS  Google Scholar 

  18. Jarman KH, Cebula ST, Saenz AJ, Saentz AJ, Peterson CE, Valentine NB, Kingsley MT, Wahl KL (2000) An algorithm for automated bacterial identification using matrix-assisted laser desorption/ionization mass spectrometry. Anal Chem 72(6):1217–1223

    Article  PubMed  CAS  Google Scholar 

  19. Edberg HC, Petersen CE, Valentine NB, Wunschel DS, Wahl KL (2006) Detection of trace agar on Bacillus spores by Agarase Digestion ESI-MS. In: 54th ASMS Conference on mass spectrometry and allied topics, Seattle, WA

    Google Scholar 

  20. Beglov D, Karlov V, Soosar K, Padilla CE, Leopold P, Smote SC (2000) Automated peak detection algorithms for mass spectrometry based on pattern recognition techniques. In: American Society for Mass Spectrometry, Los Angeles, CA, June 2000

    Google Scholar 

  21. Eckschlager K, Danzer K (1994) Information theory in analytical chemistry, 1st edn. Wiley, New York

    Google Scholar 

  22. Guo Q (2001) Feature selection in sequential projection pursuit. Anal Chem 446:85–96

    CAS  Google Scholar 

  23. Hyvarinen A, Karhunen J, Oja E (eds) (2001) Independent component analysis. Wiley, New York

    Google Scholar 

  24. Jarman KH, Daly DS, Anderson KK, Wahl KL (2004) A new approach to automated peak detection. Chemometr Intell Lab 69(1–2):61–76

    Google Scholar 

  25. Leardi R, Gonzalez AL (1998) Genetic algorithms applied to feature selection in PLS regression: how and when to use them. Chemometr Intell Lab 41: 195–207

    Article  CAS  Google Scholar 

  26. Johnson RA, Wichern DW (1992) Applied multivariate statistical analysis, 3rd edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  27. Centner V, Massart D-L, Noord OEd, Jong Sd, Vandeginste BM, Sterna C (1996) Elimination of uninformative variables for multivariate calibration. Anal Chem 68:3851–3858

    Article  PubMed  CAS  Google Scholar 

  28. Lindgren BW (1976) Statistical theory. Macmillan, New York

    Google Scholar 

  29. Duda RO, Hart PE, Stork DG (2001) Pattern classification, 2nd edn. Wiley, New York

    Google Scholar 

  30. Edberg HC, Petersen CE, Valentine NB, Wunschel DS, Wahl KL (2008) Detection of trace agar on Bacillus spores by agarase digestion ESI-MS, abstr. 403, Proc. 54th Am. Soc. Mass. Spectrom. Conf. Mass Spectrom. Allied Topics, Seattle, WA, 28 May to 1 June 2006

    Google Scholar 

  31. Whiteaker J, Fenselau C, Fetteroff D, Steele D, Wilson D (2004) Quantitative determination of heme for forensic characterization of Bacillus spores using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal Chem 76:2836–2841

    Article  PubMed  CAS  Google Scholar 

  32. Bosse E, Valin P, Boury-Brisset A, Grenier D (2006) Exploitation of a priori knowledge for information fusion. Inform Fusion 7:161–175

    Article  Google Scholar 

  33. Iyengar S, Jones B (2001) Information fusion techniques for pattern analysis in large sensor data networks. J Frankl Ins 338:571–582

    Article  Google Scholar 

  34. Ross A, Jain A (2003) Information fusion in biometrics. Pattern Recogn Lett 24:2115–2125

    Article  Google Scholar 

  35. Sasiadek J (2002) Sensor fusion. Annu Rev Control 26:203–228

    Article  Google Scholar 

  36. Cremer F, Schutte K, Schavemaker J, den Breejan E (2001) A comparison of decision-level sensor fusion methods for anti-personnel landmine detection. Inform Fusion 2:187–208

    Article  Google Scholar 

  37. Kronhamn T (2000) Sensor fusion revisited. In: MILINF conference, Stockholm, Sweden

    Google Scholar 

  38. Bernardo JM, Smith AF (2000) Bayesian theory. Wiley, West Sussex

    Google Scholar 

  39. Gelman A, Carlin JB, Stern HS, Rubin DB (2000) Bayesian data analysis. Chapman Hall/CRC, Boca Raton

    Google Scholar 

  40. Jensen FV (2001) Bayesian networks and decision graphs. Springer, New York

    Google Scholar 

  41. Pearl J (2000) Causality: models, reasoning, and inference. Cambridge University Press, Cambridge

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristin H. Jarman Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Jarman, K.H. (2012). Statistical Foundations and Data Integration for Microbial Forensics. In: Cliff, J., Kreuzer, H., Ehrhardt, C., Wunschel, D. (eds) Chemical and Physical Signatures for Microbial Forensics. Infectious Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-60327-219-3_1

Download citation

Publish with us

Policies and ethics