Skip to main content

Inflammatory Pathogenesis and Pathophysiology of Abdominal Aortic Aneurysms

  • Chapter
  • 1818 Accesses

Part of the book series: Contemporary Cardiology ((CONCARD))

Abstract

The aorta is a high-pressure conduit that also conserves the energy output of the heart (elastic recoil). The main structural proteins of the aorta — collagen and elastin — serve these functions. The aortic architecture is not uniform and varies from the thoracic aorta to the infrarenal aorta. With these basic understandings of the aortic structure and function in mind, it is clear that inflammation, genetics, and mechanical forces play important roles in the pathogenesis of abdominal aortic aneurysms. Additional research is needed to further understand the relationship between these factors.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Neptune ER, Frischmeyer PA, Arking DE, Myers L, Bunton TE, Gayraud B, et al.Dysregulation of TGF-β activation contributes to pathogenesis in Marfan syndrome.Nat Genet 2003;33:407–411.

    Article  CAS  PubMed  Google Scholar 

  2. Pannu H, Fadulu VT, Chang J, Lafont A, Hasham SN, Sparks E, et al. Mutationsin transforming growth factor- β receptor type II cause familial thoracic aorticaneurysms and dissections. Circulation 2005;112:513–520.

    Article  CAS  PubMed  Google Scholar 

  3. Glagov S. Hemodynamic risk factors: Mechanical stress, mural architecture,medial nutrition and the vulnerability of arteries to atherosclerosis. In: Wissler RW,Geer JC, eds. Pathogenesis of Atherosclerosis. Baltimore: Williams & Wilkins,chap 6, 1972.

    Google Scholar 

  4. Taylor CA, Hughes TJ, Zarins CK. Effect of exercise on hemodynamic conditionsin the abdominal aorta. J Vasc Surg 1999;29:1077–1089.

    Article  CAS  PubMed  Google Scholar 

  5. Dubost C, Allary M, Oeconomos N. Resection of an aneurysm of the abdominalaorta. Reestablishment of the continuity by a preserved human arterial graft, witha result after five months. Arch Surg 1952;65:405–408.

    Google Scholar 

  6. Rizzo RJ, McCarthy WJ, Dixit SN, Lilly MP, Shively VP, Flinn WR, et al..Collagen types and matrix protein content in human abdominal aortic aneurysms.J Vasc Surg 1989;10:365–373.

    Article  CAS  PubMed  Google Scholar 

  7. Koch AE, Haines GK, Rizzo RJ, Radosevich JA, Pope RM, Robinson PG, Pearce WH. Human abdominal aortic aneurysms: Immunophenotypic analysis suggesting an immune-mediated response. Am J Pathol 1990;137:1199–1213.

    CAS  PubMed  Google Scholar 

  8. Brophy CM, Reilly JM, Smith GJ, Tilson MD. The role of inflammation in non specific abdominal aortic aneurysm disease. Ann Vasc Surg 1991;5:229–233.

    Article  CAS  PubMed  Google Scholar 

  9. Tilson MD III, Kuivaniemi H, Upchurch GR Jr., eds. 2006;The abdominal aortic aneu-rysm: Genetics, pathophysiology, and molecular biology. Ann NY Acad Sci 1085.

    Google Scholar 

  10. Platsoucas CD, Lu S, Nwaneshiudu I, Solomides C, Agelan A, Ntaoula N, et al.Abdominal aortic aneurysm is a specific antigen-driven T cell disease. Ann NY Acad Sci 2006;1085:224–235.

    Article  CAS  PubMed  Google Scholar 

  11. Halpern VJ, Nackman GB, Gandhi RH, Irizarri E, Scholes JV, Ramey WG, Tilson MD. The elastase infusion model of experimental aortic aneurysms: Synchrony of induction of endogenous proteinases with matrix destruction and inflammatory cell response. J Vasc Surg 1994;20:51–60.

    CAS  PubMed  Google Scholar 

  12. Thompson RW, Curci JA, Ennis TL, Mao D, Pagano MB, Pham CTNPathophysiology of abdominal aortic aneurysms: Insights from the elastase-induced model in mice with different genetic backgrounds. Ann NY Acad Sci 2006;1085:59–73.

    Article  CAS  PubMed  Google Scholar 

  13. Daugherty A, Rateri DL, Cassis LA. Role of the rennin-angiotensin system inthe development of abdominal aortic aneurysms in animals and humans. Ann NY Acad Sci 2006;1085:82–91.

    Article  CAS  PubMed  Google Scholar 

  14. Busuttil RW, Abou-Zamzam AM, Machleder HI. Collagenase activity of thehuman aorta. A comparison of patients with and without abdominal aortic aneu-rysms. Arch Surg 1980;115:1373–1378.

    CAS  PubMed  Google Scholar 

  15. Lee MH, Murphy G. Matrix metalloproteinases at a glance. J Cell Sci 2004;117:4015–4016.

    Article  CAS  PubMed  Google Scholar 

  16. Pearce WH, Shively VP. Abdominal aortic aneurysm as a complex multifactorialdisease: Interactions of polymorphisms of inflammatory genes, features of autoim- munity, and current status of MMPs. Ann NY Acad Sci 2006;1085:117–132.

    Article  CAS  PubMed  Google Scholar 

  17. Somerville RP, Oblander SA, Apte SS. Matrix metalloproteinases: old dogs withnew tricks. Genome Biol 2003;4:216.1–216.11.

    Article  Google Scholar 

  18. Parks WC, Wilson CL, Lopez-Boado YS. Matrix metalloproteinases as modulators of inflammation and innate immunity. Nat Rev Immunol 2004;4:617–629.

    Article  CAS  PubMed  Google Scholar 

  19. Mott JD, Werb Z. Regulation of matrix biology by matrix metalloproteinases. CurOpin Cell Biol 2004;16:558–564.

    Article  CAS  Google Scholar 

  20. Senior RM, Griffin GL, Mecham RP. Chemotactic activity of elastin-derived peptides. J Clin Invest 1980;66:859–862.

    Article  CAS  PubMed  Google Scholar 

  21. Lenk GM, Tromp G, Weinsheimer S, Gatalica Z, Bergeur R, Kuivaniemi H. Whole genome expression profiling reveals a significant role for immune function in human abdominal aortic aneurysms. BMC Genomics 2007;8:237.

    Article  PubMed  Google Scholar 

  22. Blanchard JF, Armenian HK, Friesen PP. Risk factors for abdominal aortic aneu- rysm: Results of a case-control study. Am J Epidemiol 2000;151:575–583.

    CAS  PubMed  Google Scholar 

  23. Sandford RM, Bown MJ, London NJ, Sayers RD. The genetic basis of abdominal aortic aneurysms: A review. Eur J Vasc Endovasc Surg 2007;33:381–390.

    Article  CAS  PubMed  Google Scholar 

  24. Bown MJ, Burton PR, Horsburgh T, Nicholson ML, Bell PRF, Sayers RD. Therole of cytokine gene polymorphisms in the pathogenesis of abdominal aortic aneurysms: A case-control study. J Vasc Surg 2003;37:999–1005.

    Article  CAS  PubMed  Google Scholar 

  25. Ghilardi G, Biondi ML, Battaglioli L, Zambon A, Guagnellini E, Scorza R. Genetic risk factor characterizes abdominal aortic aneurysm from arterial occlusive disease in human beings: CCR5 Delta 32 deletion. J Vasc Surg 2004;40:995–1000.

    Article  PubMed  Google Scholar 

  26. Rohde LEP, Arroyo LH, Rifai N, Creager MA, Libby P, Ridker RM, Lee RT. Plasma concentrations of interleukin-6 and abdominal aortic diameter among subjects without aortic dilatation. Arterioscler Thromb Vasc Biol 1999;19:1695–1699.

    CAS  PubMed  Google Scholar 

  27. Dawson J, Cockerill GW, Choke E, Belli AM, Loftus I, Thompson MM. Aorticaneurysms secrete interleukin-6 into the circulation. J Vasc Surg 2007;45:350–356.

    Article  PubMed  Google Scholar 

  28. Duftner C, Seiler R, Dejaco C, Fraidrich G, Schirmer M. Increasing evidence for immune-mediated processes and new therapeutic approaches in abdominal aortic aneurysms-A review. Ann NY Acad Sci 2006;1085:331–338.

    Article  CAS  PubMed  Google Scholar 

  29. Domanovits H, Schillinger M, Mullner M, Holzenbein K, Janata K, Bayegan K, Laggner AN. Acute phase reactants in patients with abdominal aortic aneurysm. Atherosclerosis 2002;163:297–302.

    Article  CAS  PubMed  Google Scholar 

  30. Vainas T, Lubbers T, Stassen FRM, Herngreen S, van Dieijen-Visser MP, Bruggeman CA, et al.. Serum C-reactive protein level is associated with abdominal aortic aneurysm size and may be produced by aneurysmal tissue. Circulation 2003;107:1103–1105.

    Article  PubMed  Google Scholar 

  31. Sakthivel P, Shively V, Kakoulidou M, Pearce W, Leffert AK. The soluble forms of CD28, CD86 and CTLA-4 constitute possible immunological markers in patients with abdominal aortic aneurysm. J Intern Med 2007;261:399–407.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Pearce, W.H., Shively, V.P. (2009). Inflammatory Pathogenesis and Pathophysiology of Abdominal Aortic Aneurysms. In: Upchurch, G.R., Criado, E. (eds) Aortic Aneurysms. Contemporary Cardiology. Humana Press. https://doi.org/10.1007/978-1-60327-204-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-204-9_2

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-203-2

  • Online ISBN: 978-1-60327-204-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics