Skip to main content

Functional Stability of a Mixed Microbial Consortium Producing PHA From Waste Carbon Sources

  • Chapter
Applied Biochemistry and Biotecnology

Part of the book series: ABAB Symposium ((ABAB))

Abstract

Polyhydroxyalkanoates (PHAs) represent an environmentally effective alternative to synthetic thermoplastics; however, current production practices are not sustainable. In this study, PHA production was accomplished in sequencing batch bioreactors utilizing real wastewaters and mixed microbial consortia from municipal activated sludge as inoculum. Polymer production reached 85, 53, and 10% of the cell dry weight from methanol-enriched pulp and paper mill foul condensate, fermented municipal primary solids, and biodiesel wastewater, respectively. Using denaturing gradient gel electrophoresis of 16S-rDNA from polymerase chain reaction-amplified DNA extracts, distinctly different communities were observed between and within wastewaters following enrichment. Most importantly, functional stability was maintained despite differing and contrasting microbial populations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rittmann, B. E., Hausner, M., Löffler, F., et al. (2006), Environ. Sci. Technol. 40, 1096–1103.

    Article  Google Scholar 

  2. Fuhs, G. W., and Chen, M. (1975), Microbial. Ecol. 2, 119–138.

    Article  CAS  Google Scholar 

  3. Wagner, M. and Loy, A. (2002), Curr. Opin. Biotechnol. 13, 218–227.

    Article  CAS  Google Scholar 

  4. Kaewpipat, K. and Grady, C. P. L., Jr. (2002), Water Sci. Technol. 46, 19–27.

    CAS  Google Scholar 

  5. Stamper, D. M., Walch, M., and Jacobs, R. N. (2003), Appl. Environ. Microbiol. 69, 852–860.

    Article  CAS  Google Scholar 

  6. Peterson, G., Allen, C. R., and Holling, C. S. (1998), Ecosystems 1, 6–18.

    Article  Google Scholar 

  7. Lee, S. Y. (1996), Trends Biotechnol. 14, 431–438.

    Article  CAS  Google Scholar 

  8. Dionisi, D., Majone, M., Papa, V., and Beccari, M. (2004), Biotechnol. Bioeng. 85, 569–579.

    Article  CAS  Google Scholar 

  9. Madison, L. L. and Huisman, G. W. (1999), Microbiol. Mol. Biol. Rev. 63, 21–53.

    CAS  Google Scholar 

  10. Lemoigne, M. (1926), Bull. Soc. Chem. Biol. (Paris). 8, 770–782.

    CAS  Google Scholar 

  11. Braunegg, G., Lefebvre, G., and Genser, K. (2003), J. Biotechnol. 65, 127–161.

    Article  Google Scholar 

  12. Gerngross, T. U. (1999), Nat. Biotechnol. 17, 541–544.

    Article  CAS  Google Scholar 

  13. Scott, G. (2000), Polym. Degrad. Stabil. 68, 1–7.

    Article  CAS  Google Scholar 

  14. Carucci, A., Dionisi, D., Majone, M., Rolle, E., and Smurra, P. (2001), Water Res. 35, 3833–3844.

    Article  CAS  Google Scholar 

  15. Beun, J. J., Dircks, K., Van Loosdrecht, M. C. M., and Heijnen, J. J. (2002), Water Res. 36, 1167–1180.

    Article  CAS  Google Scholar 

  16. Dionisi, D., Renzi, V., Majone, M., Beccari, M., and Ramadori, R. (2004), Water Res. 38, 2196–2206.

    Article  CAS  Google Scholar 

  17. Comeau, Y., Hall, K. J., Hancock, R. E. W., and Oldham, W. K. (1986), Water Res. 20, 1511–1521.

    Article  CAS  Google Scholar 

  18. Mino, T., Arun, V., Tsuzuki, Y., and Matsuo, T. (1987), In: Biological Phosphate Removal From Wastewaters. vol. 4, Ramador, R. (ed.), Pergamon: Oxford, pp. 27–38.

    Google Scholar 

  19. Randall, A. A. and Liu, Y.-H. (2002), Water Res. 36, 3473–3478.

    Article  CAS  Google Scholar 

  20. Eaton, A. D., Clesceri, L. S., Greenberg, A. E. (1995), Standard Methods for the Examination of Water and Wastewater; 19th ed., APHA: Washington, DC.

    Google Scholar 

  21. Braunegg, G., Sonnleitner, B., and Lafferty, R. M. (1978), Eur. J. Appl. Microbiol. 6, 29–37.

    Article  CAS  Google Scholar 

  22. Ishii, K., Fukui, M., and Takii, S. (2000), J. Appl. Microbiol. 89, 768–777.

    Article  CAS  Google Scholar 

  23. Muyzer, G. and Smalla, K. (1998), Antonie van Leeuwenhoek. 73, 127–141.

    Article  CAS  Google Scholar 

  24. Slade, A. H., Nicol, C. M., and Grigsby, J. (1999), Water Sci. Technol. 40, 77–84.

    CAS  Google Scholar 

  25. Yamane, T. (1993), Biotechnol. Bioeng. 41, 165–170.

    Article  CAS  Google Scholar 

  26. Ackermann, J. and Wolfgang, B. (1998), Polym. Degrad. Stabil. 59, 183–186.

    Article  CAS  Google Scholar 

  27. Kim, P., Kim, J.-H., and Oh, D.-K. (2003), World J. Microbiol. Biotechnol. 19, 357–361.

    Article  CAS  Google Scholar 

  28. Yoo, S. K. and Day, D. F. (2002), Process Biochem. 37, 739–745.

    Article  CAS  Google Scholar 

  29. White, D. (2000), The Physiology and Biochemistry of Prokaryotes, 4th ed. Oxford University Press, Inc., New York, NY.

    Google Scholar 

  30. Bourque, D., Pomerleau, Y., and Groleau, D. (1995), Appl. Microbiol. Biotechnol. 44, 367–376.

    Article  CAS  Google Scholar 

  31. Korotkova, N., and Lidstrom, M. E. (2001), J. Bacteriol. 183, 1038–1046.

    Article  CAS  Google Scholar 

  32. Ashby, R. D., Solaiman, D. K. Y., and Foglia, T. A. (2004), J. Polym. Environ. 12, 105–112.

    Article  CAS  Google Scholar 

  33. Anastas, P. T. and Zimmerman, J. B. (2003), Environ. Sci. Technol. 37, 94A–101A.

    Article  Google Scholar 

  34. Watanabe, K., Kodama, Y., and Harayama, S. (2001), J. Microbiol. Methods 44, 253–262.

    Article  CAS  Google Scholar 

  35. Seviour, R. J., Mino, T., and Onuki, M., (2003), FEMS Microbiol. Rev. 27, 99–127.

    Article  CAS  Google Scholar 

  36. Langenheder, S., Lindstrom, E. S., and Tranvik, L. J. (2006), Appl. Environ. Microbiol. 72, 212–220.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank J. Loge .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this chapter

Cite this chapter

Coats, E.R., Loge, F.J., Smith, W.A., Thompson, D.N., Wolcott, M.P. (2007). Functional Stability of a Mixed Microbial Consortium Producing PHA From Waste Carbon Sources. In: Mielenz, J.R., Klasson, K.T., Adney, W.S., McMillan, J.D. (eds) Applied Biochemistry and Biotecnology. ABAB Symposium. Humana Press. https://doi.org/10.1007/978-1-60327-181-3_74

Download citation

Publish with us

Policies and ethics