Skip to main content

A Proposed Mechanism for Detergent-Assisted Foam Fractionation of Lysozyme and Cellulase Restored With β-Cyclodextrin

  • Chapter
Applied Biochemistry and Biotecnology

Part of the book series: ABAB Symposium ((ABAB))

  • 4140 Accesses

Abstract

Foam fractionation by itself cannot effectively concentrate hydrophilic proteins such as lysozyme and cellulase. However, the addition of a detergent to a protein solution can increase the foam volume, and thus, the performance of the foam fractionation process. In this article, we propose a possible protein concentration mechanism of this detergent-assisted foam fractionation: A detergent binds to an oppositely charged protein, followed by the detergent—protein complex being adsorbed onto a bubble during aeration. The formation of this complex is inferred by a decrease in surface tension of the detergent—protein solution. The surface tension of a solution with the complex is lower than the surface tension of a protein or a detergent solution alone. The detergent can then be stripped from the adsorbed protein, such as cellulase, by an artificial chaperone such as β-cyclodextrin. Stripping the detergent from the protein allows the protein to return to its original conformation and to potentially retain all of its original activity following the foam fractionation process. Low-cost alternatives to β-cyclodextrin such as corn dextrin were tested experimentally to restore the protein activity through detergent stripping, but without success.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. London, M., Cohen, M., and Hudson, P. B. (1954), Biochim. Biophys. Acta 13, 111–120.

    Article  CAS  Google Scholar 

  2. Schnepf, R. W. and Gaden, E. L. (1959), J. Biochem. Microbiol. Technol. Eng. 1(1), 1–8.

    Article  CAS  Google Scholar 

  3. Lemlich, R. (1968), Ind. Eng. Chem. 60(10), 16–19.

    Article  CAS  Google Scholar 

  4. Uraizee, F. and Narsimhan, G. (1990), Enzyme Microb. Technol. 12(4), 315–316.

    Article  CAS  Google Scholar 

  5. Uraizee, F. and Narsimhan, G. (1990), Enzyme Microb. Technol. 12(3), 232–233.

    Article  CAS  Google Scholar 

  6. Bacjleh, M., Ekici, P., Leupold, G., Coelhan, M., and Parlar, H. (2004), J. Sep. Sci. 27(12), 1042–1044.

    Article  Google Scholar 

  7. Kurganov, B. I. and Topchieva, I. N. (1998), Biochemistry (Moscow, Russ Fed) 63(4), 413–419.

    CAS  Google Scholar 

  8. Gerken, N. M., Nicolai, A., Linke, D., Zorn, H., Berger, R. G., and Parlar, H. (2006), Sep. Pur. Technol. 49(3), 291–294.

    Article  CAS  Google Scholar 

  9. Gerken, B. M., Wattenbach, C., Linke, D., Zorn, H., Berger, R. G., and Parlar, H. (2005), Anal. Chem. 77(19), 6113–6117.

    Article  CAS  Google Scholar 

  10. Varley, J. and Ball, S. K. (1994), Sep. Biotechnol. 3, 525–531.

    Google Scholar 

  11. Burapatana, V., Booth, E. A., Prokop, A., and Tanner, R. D. (2005), Ind. Eng. Chem. Res. 44(14), 4968–4972.

    Article  CAS  Google Scholar 

  12. Burapatana, V., Prokop, A., and Tanner, R. D. (2005), Appl. Biochem. Biotechnol. 121, 541–552.

    Article  Google Scholar 

  13. Luminita, A. B. (2005), PhD Thesis, Rechnical University of Munich, Munich, Germany.

    Google Scholar 

  14. Brown, A. K., Kaul, A., and Varley, J. (1999), Biotechnol. Bioeng. 62(3), 291–300.

    Article  CAS  Google Scholar 

  15. Noble, M., Brown, A., Jauregi, P., Kaul, A., and Varley, J. (1999), J. Chromatogr. B 711(1–2), 31–43.

    Google Scholar 

  16. Burapatana, V., Prokop, A., and Tanner, R. D. (2004), Appl. Biochem. Biotechnol. 113–116, 619–625.

    Article  Google Scholar 

  17. Mandels, M., Anderotti, R., and Roche, C. (1976), Biotechnol. Bioeng. Symp. 21–33.

    Google Scholar 

  18. Loha, V., Prokop, A., Du, L. P., and Tanner, R. D. (1999), Appl. Biochem. Biotechnol. 77–79, 701–712.

    Article  Google Scholar 

  19. Smith, P. K., Krohn, R. I., Hermanson, G. T., et al. (1985), Anal. Biochem. 150(1), 76–85.

    Article  CAS  Google Scholar 

  20. (1993), Worthington Enzyme Manual, 5th ed. Worthington Biochemical Corporation: Lakewood, NJ.

    Google Scholar 

  21. Lu, R. C., Cao, A. N., Lai, L. H., Zhu, B. Y., Zhao, G. X., and Xiao J. X. (2005), Colloids Surf. B 41(2–3), 139–143.

    Article  CAS  Google Scholar 

  22. Lindman, B. (1993), In: Interactions of Surfactants with Polymers and Proteins, Ananthapadmamabhan, K. P. (ed.), CRC Press, Boca Raton, 203p.

    Google Scholar 

  23. Ananthapadmanabhan, K. P. (1993), In: Interaction of Surfactants with Polymer and Proteins, Ananthapadmamabhan, K. P. (ed.), CRC Press, Boca Raton, 319p.

    Google Scholar 

  24. Green, R. J., Su, T. J., Joy, H., and Lu, J. R. (2000), Langmuir 16(13), 5797–5805.

    Article  CAS  Google Scholar 

  25. Green, R. J., Su, T. J., Lu, J. R., and Penfold, J. (2001), J. Phys. Chem. B 105(8), 1594–1602.

    Article  CAS  Google Scholar 

  26. Postel, C., Abillon, O., and Desbat, B. (2003), J. Colloid Interface Sci. 266(1), 74–81.

    Article  CAS  Google Scholar 

  27. Lu, J. R., Su, T. J., Thomas, R. K., Penfold, J., and Webster, J. (1998), J. Chem. Soc. Faraday Trans. 94(21), 3279–3287.

    Article  CAS  Google Scholar 

  28. Goldberg, M. E., Rudolph, R., and Jaenicke, R. (1991), Biochemistry 30(11), 2790–2797.

    Article  CAS  Google Scholar 

  29. Vinzant, T. B., Adney, W. S., Decker, S. R., et al. (2001), Appl. Biochem. Biotechnol. 91–93, 99–107.

    Article  Google Scholar 

  30. Clarkson, J. R., Cui, Z. F., and Darton, R. C. (1999), J. Colloid Interface Sci. 215(2), 323–332.

    Article  CAS  Google Scholar 

  31. Clarkson, J. R., Cui, Z. F., and Darton, R. C. (1999), J. Colloid Interface Sci. 215(2), 333–338.

    Article  CAS  Google Scholar 

  32. Machida, S., Ogawa, S., Shi, X. H., Takaha, T., Fujii, K., and Hayashi, K. (2000), FEBS Lett. 486(2), 131–135.

    Article  CAS  Google Scholar 

  33. Rozema, D. and Gellman, S. H. (1996), Biochemistry 35(49), 15,760–15,771.

    Article  CAS  Google Scholar 

  34. Rozema, D. and Gellman, S. H. (1995), J. Am. Chem. Soc. 117(8), 2373–2374.

    Article  CAS  Google Scholar 

  35. Philip, J., Prakash, G. G., Jaykumar, T., Kalyanasundaram, P., and Raj, B. (2002), Phys. Rev. Lett. 89(26).

    Google Scholar 

  36. Wesley, R. D., Cosgrove, T., and Thompson, L. (1999), Langmuir 15(24), 8376–8382.

    Article  CAS  Google Scholar 

  37. Phillips, L. G., Hawks, S. E., and German, J. B. (1995), J. Agric. Food Chem. 43(3), 613–619.

    Article  CAS  Google Scholar 

  38. Phillips, M. C. (1981), Food Technol. 35(1), 50.

    CAS  Google Scholar 

  39. Chatterjee, A., Moulik, S. P., Majhi, R., and Sanyal, S. K. (2002), Biophys. Chem. 98(3), 313–327.

    Article  CAS  Google Scholar 

  40. Liveri, V. T., Cavallaro, G., Giammona, G., Pitarresi, G., Puglisi, G., and Ventura, C. (1992), Thermochim. Acta 199, 125–132.

    Article  Google Scholar 

  41. Takahashi, S., Suzuki, E., and Nagashima, N. (1986), Bull. Chem. Soc. Jpn. 59(4), 1129–1132.

    Article  CAS  Google Scholar 

  42. Palepu, R. and Reinsborough, V. C. (1988), Can. J. Chem. 66(2), 325–328.

    Article  CAS  Google Scholar 

  43. Inoue, Y., Yamamoto, Y., and Chujo, R. (1983), Carbohydr. Res. 118, 37–45.

    Article  CAS  Google Scholar 

  44. Henriksson, H., Stahlberg, J., Isaksson, R., and Pettersson, G. (1996), FEBS Lett. 390(3), 339–344.

    Article  CAS  Google Scholar 

  45. Schulein, M. (1988), Methods Enzymol. 160, 234–242.

    Article  Google Scholar 

  46. Burapatana, V., Prokop, A., and Tanner, R. D. (2005), Sep. Sci. Technol. 40(12), 2445–2461.

    Article  CAS  Google Scholar 

  47. Linke, D., Zorn, H., Gerken, B., Parlar, H., and Berger, R. G. (2005), Lipids 40(3), 323–327.

    Article  CAS  Google Scholar 

  48. Linke, D., Zorn, H., Gerken, B., Parlar, H., and Berger, R. G. (2005), Lebensmittelchemie 59(129).

    Google Scholar 

  49. Linke, D., Zorn, H., Gerken, B., Parlar, H., and Berger, R. G. (2005), Lebensmittelchemie 59(16).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert D. Tanner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this chapter

Cite this chapter

Burapatana, V., Booth, E.A., Snyder, I.M., Prokop, A., Tanner, R.D. (2007). A Proposed Mechanism for Detergent-Assisted Foam Fractionation of Lysozyme and Cellulase Restored With β-Cyclodextrin. In: Mielenz, J.R., Klasson, K.T., Adney, W.S., McMillan, J.D. (eds) Applied Biochemistry and Biotecnology. ABAB Symposium. Humana Press. https://doi.org/10.1007/978-1-60327-181-3_64

Download citation

Publish with us

Policies and ethics