Skip to main content

Comprehensive Lipid Profiling Beyond LDL

  • Chapter
  • First Online:
Asymptomatic Atherosclerosis

Part of the book series: Contemporary Cardiology ((CONCARD))

Abstract

Although many trials have documented the benefits of lowering plasma LDL cholesterol levels for the primary and secondary prevention of cardiovascular disease (CVD), about two thirds of CVD cases cannot be prevented. As CVD morbidity and mortality rates continue to increase in developed and developing societies, despite several improvements in CVD management, this observation suggests that other risk factors beyond LDL cholesterol and other traditional CVD risk factors may yield new insights into the assessment and management of CVD risk. It is now well-recognized that abdominally obese and insulin-resistant individuals have a strong tendency to develop a typical dyslipidemia that is independent of LDL cholesterol levels. This typical dyslipidemia has been called “atherogenic” dyslipidemia in the ATP-III guidelines, which is in fact a misnomer because it implies that other dyslipidemias are not atherogenic. This atherogenic dyslipidemia usually accompanies a high intra-abdominal or visceral adipose tissue (VAT) accumulation and is often associated with elevated plasma levels of triglycerides and apolipoprotein B and with decreased HDL cholesterol and apolipoprotein A-I concentrations. It is also associated with an increased preponderance of small, dense LDL particles which have a stronger tendency to undergo oxidation, even among individuals with plasma LDL cholesterol levels in the normal range. Altogether, these observations suggest that currently available algorithms might not necessarily identify these abdominally obese and dyslipidemic individuals at increased CVD risk. The so-called “hypertriglyceridemic waist” phenotype, on the basis of a simple measurement of waist circumference in combination with plasma triglyceride levels, is a simple tool that can be easily used by general practitioners to identify people carrying atherogenic metabolic abnormalities which put them at increased CVD risk.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mauriège P, Galitzky J, Berlan M, et al. Heterogeneous distribution of beta and alpha-2 adrenoceptor binding sites in human fat cells from various fat deposits: functional consequences. Eur J Clin Invest 1987;17:156–65.

    Article  PubMed  Google Scholar 

  2. Després JP, Lemieux I. Abdominal obesity and metabolic syndrome. Nature 2006;444:881–7.

    Article  PubMed  Google Scholar 

  3. Lemieux I, Pascot A, Prud’homme D, et al. Elevated C-reactive protein: another component of the atherothrombotic profile of abdominal obesity. Arterioscler Thromb Vasc Biol 2001;21:961–7.

    Article  PubMed  CAS  Google Scholar 

  4. Goossens GH. The role of adipose tissue dysfunction in the pathogenesis of obesity-related insulin resistance. Physiol Behav 2008;94(2):206–18.

    Article  PubMed  CAS  Google Scholar 

  5. Okamoto Y, Kihara S, Funahashi T, et al. Adiponectin: a key adipocytokine in metabolic syndrome. Clin Sci (Lond) 2006;110:267–78.

    Article  CAS  Google Scholar 

  6. Hammarstedt A, Andersson CX, Rotter Sopasakis V, et al. The effect of PPARgamma ligands on the adipose tissue in insulin resistance. Prostaglandins Leukot Essent Fatty Acids 2005;73:65–75.

    Article  PubMed  CAS  Google Scholar 

  7. Blackburn P, Lamarche B, Couillard C, et al. Postprandial hyperlipidemia: another correlate of the “hypertriglyceridemic waist” phenotype in men. Atherosclerosis 2003;171:327–36.

    Article  PubMed  CAS  Google Scholar 

  8. Cianflone K, Zakarian R, Couillard C, et al. Fasting acylation-stimulating protein is predictive of postprandial triglyceride clearance. J Lipid Res 2004;45:124–31.

    Article  PubMed  CAS  Google Scholar 

  9. Després JP. Is visceral obesity the cause of the metabolic syndrome? Ann Med 2006;38:52–63.

    Article  PubMed  Google Scholar 

  10. Kantartzis K, Rittig K, Balletshofer B, et al. The relationships of plasma adiponectin with a favorable lipid profile, decreased inflammation, and less ectopic fat accumulation depend on adiposity. Clin Chem 2006;52:1934–42.

    Article  PubMed  CAS  Google Scholar 

  11. Kotronen A, Yki-Jarvinen H. Fatty liver: a novel component of the metabolic syndrome. Arterioscler Thromb Vasc Biol 2008;28:27–38.

    Article  PubMed  CAS  Google Scholar 

  12. Fruchart JC, Staels B, Duriez P. PPARS, metabolic disease and atherosclerosis. Pharmacol Res 2001;44:345–52.

    Article  PubMed  CAS  Google Scholar 

  13. Jonk AM, Houben AJ, de Jongh RT, et al. Microvascular dysfunction in obesity: a potential mechanism in the pathogenesis of obesity-associated insulin resistance and hypertension. Physiology (Bethesda) 2007;22:252–60.

    Article  CAS  Google Scholar 

  14. Rizzo M, Berneis K. Low-density lipoprotein size and cardiovascular risk assessment. QJM 2006;99:1–14.

    Article  PubMed  CAS  Google Scholar 

  15. McNamara JR, Jenner JL, Li Z, et al. Change in LDL particle size is associated with change in plasma triglyceride concentration. Arterioscler Thromb 1992;12:1284–90.

    Article  PubMed  CAS  Google Scholar 

  16. Heine RJ, Dekker JM. Beyond postprandial hyperglycaemia: metabolic factors associated with cardiovascular disease. Diabetologia 2002;45:461–75.

    Article  PubMed  CAS  Google Scholar 

  17. Carr MC, Hokanson JE, Zambon A, et al. The contribution of intraabdominal fat to gender differences in hepatic lipase activity and low/high density lipoprotein heterogeneity. J Clin Endocrinol Metab 2001;86:2831–7.

    Article  PubMed  CAS  Google Scholar 

  18. de Grooth GJ, Klerkx AH, Stroes ES, et al. A review of CETP and its relation to atherosclerosis. J Lipid Res 2004;45:1967–74.

    Article  PubMed  Google Scholar 

  19. Bossé Y, Pérusse L, Vohl MC. Genetics of LDL particle heterogeneity: from genetic epidemiology to DNA-based variations. J Lipid Res 2004;45:1008–26.

    Article  PubMed  Google Scholar 

  20. Marcel YL, Hogue M, Weech PK, et al. Expression of apolipoprotein B epitopes in lipoproteins. Relationship to conformation and function. Arteriosclerosis 1988;8:832–44.

    Article  PubMed  CAS  Google Scholar 

  21. Boullier A, Bird DA, Chang MK, et al. Scavenger receptors, oxidized LDL, and atherosclerosis. Ann N Y Acad Sci 2001;947:214–22; discussion 22–3.

    Article  PubMed  CAS  Google Scholar 

  22. Holvoet P, Vanhaecke J, Janssens S, et al. Oxidized LDL and malondialdehyde-modified LDL in patients with acute coronary syndromes and stable coronary artery disease. Circulation 1998;98:1487–94.

    Article  PubMed  CAS  Google Scholar 

  23. Scheffer PG, Teerlink T, Heine RJ. Clinical significance of the physicochemical properties of LDL in type 2 diabetes. Diabetologia 2005;48:808–16.

    Article  PubMed  CAS  Google Scholar 

  24. Lyons TJ. Glycation and oxidation: a role in the pathogenesis of atherosclerosis. Am J Cardiol 1993;71:26B-31B.

    Article  PubMed  CAS  Google Scholar 

  25. Lamarche B, Tchernof A, Moorjani S, et al. Small, dense low-density lipoprotein particles as a predictor of the risk of ischemic heart disease in men. Prospective results from the Québec Cardiovascular Study. Circulation 1997;95:69–75.

    Article  PubMed  CAS  Google Scholar 

  26. St-Pierre AC, Cantin B, Dagenais GR, et al. Low-density lipoprotein subfractions and the long-term risk of ischemic heart disease in men: 13-year follow-up data from the Québec Cardiovascular Study. Arterioscler Thromb Vasc Biol 2005;25:553–9.

    Article  PubMed  CAS  Google Scholar 

  27. Arsenault BJ, Lemieux I, Després JP, et al. Cholesterol levels in small LDL particles predict the risk of coronary heart disease in the EPIC-Norfolk prospective population study. Eur Heart J 2007;28:2770–7.

    Article  PubMed  CAS  Google Scholar 

  28. Kathiresan S, Otvos JD, Sullivan LM, et al. Increased small low-density lipoprotein particle number: a prominent feature of the metabolic syndrome in the Framingham Heart Study. Circulation 2006;113:20–9.

    Article  PubMed  CAS  Google Scholar 

  29. Gordon T, Castelli WP, Hjortland MC, et al. High density lipoprotein as a protective factor against coronary heart disease. The Framingham Study. Am J Med 1977;62:707–14.

    Article  PubMed  CAS  Google Scholar 

  30. Frick MH, Elo O, Haapa K, et al. Helsinki Heart Study: primary-prevention trial with gemfibrozil in middle-aged men with dyslipidemia. Safety of treatment, changes in risk factors, and incidence of coronary heart disease. N Engl J Med 1987;317:1237–45.

    Article  PubMed  CAS  Google Scholar 

  31. Robins SJ, Collins D, Wittes JT, et al. Relation of gemfibrozil treatment and lipid levels with major coronary events: VA-HIT: a randomized controlled trial. JAMA 2001;285:1585–91.

    Article  PubMed  CAS  Google Scholar 

  32. Boekholdt SM, Souverein OW, Tanck MW, et al. Common variants of multiple genes that control reverse cholesterol transport together explain only a minor part of the variation of HDL cholesterol levels. Clin Genet 2006;69:263–70.

    Article  PubMed  CAS  Google Scholar 

  33. Link JJ, Rohatgi A, de Lemos JA. HDL cholesterol: physiology, pathophysiology, and management. Curr Probl Cardiol 2007;32:268–314.

    Article  PubMed  Google Scholar 

  34. Cannon CP. High-density lipoprotein cholesterol and residual cardiometabolic risk in metabolic syndrome. Clin Cornerstone 2007;8 Suppl 6:S14–23.

    Article  PubMed  Google Scholar 

  35. Zhang B, Bai H, Liu R, et al. Serum high-density lipoprotein-cholesterol levels modify the association between plasma levels of oxidatively modified low-density lipoprotein and coronary artery disease in men. Metabolism 2004;53:423–9.

    Article  PubMed  CAS  Google Scholar 

  36. Perségol L, Verges B, Gambert P, et al. Inability of HDL from abdominally obese subjects to counteract the inhibitory effect of oxidized LDL on vasorelaxation. J Lipid Res 2007;48:1396–401.

    Article  PubMed  Google Scholar 

  37. Perségol L, Foissac M, Lagrost L, et al. HDL particles from type 1 diabetic patients are unable to reverse the inhibitory effect of oxidised LDL on endothelium-dependent vasorelaxation. Diabetologia 2007;50:2384–7.

    Article  PubMed  Google Scholar 

  38. Zheng L, Nukuna B, Brennan ML, et al. Apolipoprotein A-I is a selective target for myeloperoxidase-catalyzed oxidation and functional impairment in subjects with cardiovascular disease. J Clin Invest 2004;114:529–41.

    PubMed  CAS  Google Scholar 

  39. Eichinger S, Pecheniuk NM, Hron G, et al. High-density lipoprotein and the risk of recurrent venous thromboembolism. Circulation 2007;115:1609–14.

    Article  PubMed  CAS  Google Scholar 

  40. Pascot A, Lemieux I, Prud’homme D, et al. Reduced HDL particle size as an additional feature of the atherogenic dyslipidemia of abdominal obesity. J Lipid Res 2001;42:2007–14.

    PubMed  CAS  Google Scholar 

  41. Zeller M, Masson D, Farnier M, et al. High serum cholesteryl ester transfer rates and small high-density lipoproteins are associated with young age in patients with acute myocardial infarction. J Am Coll Cardiol 2007;50:1948–55.

    Article  PubMed  CAS  Google Scholar 

  42. Otvos JD, Collins D, Freedman DS, et al. Low-density lipoprotein and high-density lipoprotein particle subclasses predict coronary events and are favorably changed by gemfibrozil therapy in the Veterans Affairs High-Density Lipoprotein Intervention Trial. Circulation 2006;113:1556–63.

    Article  PubMed  CAS  Google Scholar 

  43. Yusuf S, Hawken S, Ounpuu S, et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet 2004;364:937–52.

    Article  PubMed  Google Scholar 

  44. Walldius G, Jungner I, Aastveit AH, et al. The apoB/apoA-I ratio is better than the cholesterol ratios to estimate the balance between plasma proatherogenic and antiatherogenic lipoproteins and to predict coronary risk. Clin Chem Lab Med 2004;42:1355–63.

    Article  PubMed  CAS  Google Scholar 

  45. Kastelein JJP, van der Steeg, WA, Holme, I, Gaffney, M, Cater, NB, Barter, P, Deedwania, P, Olsson, AG, Boekholdt, SM, Demicco, DA, Szarek, M, LaRosa, JC, Pedersen, TR, Grundy, SM, for the TNT and IDEAL study groups. Lipids, apolipoproteins and their ratios in relation to cardiovascular events on statin treatment. Pooled analyses of the TNT and IDEAL Trials. Circulation 2008;117(23):3002–9.

    Article  PubMed  CAS  Google Scholar 

  46. Marcovina SM, Albers JJ, Kennedy H, et al. International Federation of Clinical Chemistry standardization project for measurements of apolipoproteins A-I and B. IV. Comparability of apolipoprotein B values by use of International Reference Material. Clin Chem 1994;40:586–92.

    PubMed  CAS  Google Scholar 

  47. Pouliot MC, Després JP, Lemieux S, et al. Waist circumference and abdominal sagittal diameter: best simple anthropometric indexes of abdominal visceral adipose tissue accumulation and related cardiovascular risk in men and women. Am J Cardiol 1994;73:460–8.

    Article  PubMed  CAS  Google Scholar 

  48. Lemieux I, Drapeau V, Richard D, et al. Waist girth does not predict metabolic complications in severely obese men. Diabetes Care 2006;29:1417–9.

    Article  PubMed  Google Scholar 

  49. Canoy D, Boekholdt SM, Wareham N, et al. Body fat distribution and risk of coronary heart disease in men and women in the European Prospective Investigation Into Cancer and Nutrition in Norfolk cohort: a population-based prospective study. Circulation 2007;116:2933–43.

    Article  PubMed  Google Scholar 

  50. Lemieux I, Pascot A, Couillard C, et al. Hypertriglyceridemic waist: a marker of the atherogenic metabolic triad (hyperinsulinemia; hyperapolipoprotein B; small, dense LDL) in men? Circulation 2000;102:179–84.

    Article  PubMed  CAS  Google Scholar 

  51. Lamarche B, Tchernof A, Mauriège P, et al. Fasting insulin and apolipoprotein B levels and low-density lipoprotein particle size as risk factors for ischemic heart disease. JAMA 1998;279:1955–61.

    Article  PubMed  CAS  Google Scholar 

  52. Kahn HS, Valdez R. Metabolic risks identified by the combination of enlarged waist and elevated triacylglycerol concentration. Am J Clin Nutr 2003;78:928–34.

    PubMed  CAS  Google Scholar 

  53. Tanko LB, Bagger YZ, Qin G, et al. Enlarged waist combined with –elevated triglycerides is a strong predictor of accelerated atherogenesis and related cardiovascular mortality in postmenopausal women. Circulation 2005;111:1883–90.

    Article  PubMed  CAS  Google Scholar 

  54. Czernichow S, Bruckert E, Bertrais S, et al. Hypertriglyceridemic waist and 7.5-year prospective risk of cardiovascular disease in asymptomatic middle-aged men. Int J Obes (Lond) 2007;31(5):791–6.

    CAS  Google Scholar 

Download references

Acknowledgments

Benoit J. Arsenault is recipient of a training scholarship from Hôpital Laval Research Centre. Jean-Pierre Després is the Scientific Director of the International Chair on Cardiometabolic Risk which is supported by an unrestricted grant awarded to Université Laval by Sanofi Aventis.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Arsenault, B.J., Boekholdt, S.M., Kastelein, J.J.P., Després, JP. (2011). Comprehensive Lipid Profiling Beyond LDL. In: Naghavi, M. (eds) Asymptomatic Atherosclerosis. Contemporary Cardiology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-179-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-179-0_8

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-178-3

  • Online ISBN: 978-1-60327-179-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics