Skip to main content

History of the Evolution of Cardiovascular Risk Factors and the Predictive Value of Traditional Risk-Factor-Based Risk Assessment

  • Chapter
  • First Online:
Asymptomatic Atherosclerosis

Part of the book series: Contemporary Cardiology ((CONCARD))

  • 1344 Accesses

Abstract

The near epidemic rise in cardiovascular disease deaths in the early and middle twentieth century necessitated a more complete understanding of the risk factors for these illnesses. Through histologic examinations, animal studies, clinical and geographical observations and, ultimately, through large, prospective epidemiologic studies, the major traditional risk factors for cardiovascular disease were discovered, which paved the way for successful public health programs and interventions over the past few decades. However, cardiovascular disease remains a formidable global health challenge, especially in developing countries, and the utility of traditional risk factors as targets of therapy does not equate to accuracy for disease prediction. As up to 20% of those affected by coronary heart disease have no traditional risk factors, and since risk factor levels between those with and without cardiovascular disease overlap significantly, individual risk factors are poor predictors of cardiovascular events. Global risk assessment in the form of multivariable equations, such as the Framingham Risk Score that incorporate multiple traditional risk factors, have improved accuracy and are well suited for population screening through office-based practices. Recently, many limitations of current risk assessment with modified Framingham algorithms have emerged, including poor calibration in various ethnic groups, misclassification of risk in young people and women, and potential missed opportunities for preventive efforts by focusing solely on short-term risk. While traditional risk factors will certainly form the cornerstone of future cardiovascular risk assessment strategies, their utility will be enhanced by newly developed algorithms or paradigms for their use, or by incorporating novel risk factors and emerging risk assessment technologies into risk assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cooper R, Cutler J, Desvigne-Nickens P, et al. Trends and disparities in coronary heart disease, stroke, and other cardiovascular diseases in the United States: findings of the national conference on cardiovascular disease prevention. Circulation 2000;102(25):3137–47.

    Article  PubMed  CAS  Google Scholar 

  2. Gaziano JM. Global burden of cardiovascular disease. In: Zipes D, Libby P, Bonow R, Brauwnwald E, eds. Braunwald’s Heart Disease. 7th ed. Philadelphia, PA: Elsevier; 2005:1–19.

    Google Scholar 

  3. Dawber TR, Meadors GF, Moore FE, Jr. Epidemiological approaches to heart disease: the Framingham Study. Am J Public Health 1951;41(3):279–81.

    Article  CAS  Google Scholar 

  4. Keyes A, Aravanis C, Blackburn H, et al. Seven Countries. A Multivariate Analysis of Death and Coronary Heart Disease. Cambridge, MA: Harvard University Press; 1980.

    Google Scholar 

  5. Anitschkow N. Experimental arteriosclerosis in animals. In: Cowdry EV, ed. Arteriosclerosis. New York: Macmillan; 1933:271–322.

    Google Scholar 

  6. Stamler J. Established major coronary risk factors. In: Marmot M, Elliot P, eds. Coronary Heart Disease Epidemiology. Oxford: Oxford University Press; 1992:35–66.

    Google Scholar 

  7. Evaluation of serum lipoprotein and cholesterol measurements as predictors of clinical complications of atherosclerosis; report of a cooperative study of lipoproteins and atherosclerosis. Circulation 1956;14(4 Part 2):691–742.

    Google Scholar 

  8. Dawber TR, Moore FE, Mann GV. Coronary heart disease in the Framingham study. Am J Public Health 1957;47(4 Part 2):4–24.

    CAS  Google Scholar 

  9. The Lipid Research Clinics Coronary Primary Prevention Trial results. I. Reduction in incidence of coronary heart disease. JAMA 1984;251(3):351–64.

    Article  Google Scholar 

  10. Basile JN, Ventura H. A historical look at hypertension: celebrating 100 years with the Southern Medical Association. South Med J 2006;99(12):1412–3.

    Article  PubMed  Google Scholar 

  11. White P. In: Heart disease. 2nd ed. New York: Mcmillan; 1937:326.

    Google Scholar 

  12. Messerli FH. This day 50 years ago. N Engl J Med 1995;332(15):1038–9.

    Article  PubMed  CAS  Google Scholar 

  13. Effects of treatment on morbidity in hypertension. Results in patients with diastolic blood pressures averaging 115 through 129 mm Hg. JAMA 1967;202(11):1028–34.

    Article  Google Scholar 

  14. Kannel WB, Dawber TR, Kagan A, Revotskie N, Stokes J, 3rd. Factors of risk in the development of coronary heart disease – six year follow-up experience. The Framingham Study. Ann Intern Med 1961;55:33–50.

    Article  PubMed  CAS  Google Scholar 

  15. Hammond EC, Horn D. The relationship between human smoking habits and death rates: a follow-up study of 187,766 men. J Am Med Assoc 1954;155(15):1316–28.

    Article  PubMed  CAS  Google Scholar 

  16. White P, Sprague H, Stamler J, et al. A Statement on Arteriosclerosis, Main Cause of Heart Attacks and Strokes. New York: National Health Education Council; 1959.

    Google Scholar 

  17. Neaton JD, Kuller LH, Wentworth D, Borhani NO. Total and cardiovascular mortality in relation to cigarette smoking, serum cholesterol concentration, and diastolic blood pressure among black and white males followed up for five years. Am Heart J 1984;108(3 Pt 2):759–69.

    Article  PubMed  CAS  Google Scholar 

  18. Hopkins PN, Williams RR. A survey of 246 suggested coronary risk factors. Atherosclerosis 1981;40(1):1–52.

    Article  PubMed  CAS  Google Scholar 

  19. US Department of Health Education and Welfare PHSP. Smoking and Health: Report of the Advisory Committee to the Surgeon General of the Public Health Service. Washington, DC: US Government Printing Office; 1964.

    Google Scholar 

  20. American Heart Association, Central Committee for Medical and Community Programs. Dietary Fat and its Relation to Heart Attacks and Stroke. New York: American Heart Association; 1961.

    Google Scholar 

  21. National Conference on High Blood Pressure Education, National Heart and Lung Institute. DHEW Publication (NIH) 73–486. Washington, DC: US Government Printing Office; 1973.

    Google Scholar 

  22. National Cholesterol Education Program. High blood cholesterol in adults: report of the expert panel on detection, evaluation, and treatment. NIH Pub. No. 88–2925. Bethesda, MD: National Heart, Lung, and Blood Institute; 1988.

    Google Scholar 

  23. Rose G. Sick individuals and sick populations. Int J Epidemiol 1985;14(1):32–8.

    Article  PubMed  CAS  Google Scholar 

  24. Daviglus ML, Stamler J, Pirzada A, et al. Favorable cardiovascular risk profile in young women and long-term risk of cardiovascular and all-cause mortality. JAMA 2004;292(13):1588–92.

    Article  PubMed  CAS  Google Scholar 

  25. Stamler J, Stamler R, Neaton JD, et al. Low risk-factor profile and long-term cardiovascular and noncardiovascular mortality and life expectancy: findings for 5 large cohorts of young adult and middle-aged men and women. JAMA 1999;282(21):2012–8.

    Article  PubMed  CAS  Google Scholar 

  26. Stampfer MJ, Hu FB, Manson JE, Rimm EB, Willett WC. Primary prevention of coronary heart disease in women through diet and lifestyle. N Engl J Med 2000;343(1):16–22.

    Article  PubMed  CAS  Google Scholar 

  27. Prosser LA, Stinnett AA, Goldman PA, et al. Cost-effectiveness of cholesterol-lowering therapies according to selected patient characteristics. Ann Intern Med 2000;132(10):769–79.

    Article  PubMed  CAS  Google Scholar 

  28. Kalia NK, Miller LG, Nasir K, Blumenthal RS, Agrawal N, Budoff MJ. Visualizing coronary calcium is associated with improvements in adherence to statin therapy. Atherosclerosis 2006;185(2):394–9.

    Article  PubMed  CAS  Google Scholar 

  29. Executive summary of the third report of The National Cholesterol Education Program (NCEP) Expert panel on detection, evaluation, and treatment of high blood cholesterol in Adults (Adult Treatment Panel III). JAMA 2001;285(19):2486–97.

    Google Scholar 

  30. Castelli WP. Lipids, risk factors and ischaemic heart disease. Atherosclerosis 1996;124 Suppl:S1–9.

    Article  PubMed  CAS  Google Scholar 

  31. Ridker PM, Rifai N, Rose L, Buring JE, Cook NR. Comparison of C-reactive protein and low-density lipoprotein cholesterol levels in the prediction of first cardiovascular events. N Engl J Med 2002;347(20):1557–65.

    Article  PubMed  CAS  Google Scholar 

  32. Stamler J, Stamler R, Neaton JD. Blood pressure, systolic and diastolic, and cardiovascular risks. US population data. Arch Intern Med 1993;153(5):598–615.

    Article  PubMed  CAS  Google Scholar 

  33. Hanley JA, McNeil BJ. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 1982;143(1):29–36.

    PubMed  CAS  Google Scholar 

  34. Danesh J, Wheeler JG, Hirschfield GM, et al. C-reactive protein and other circulating markers of inflammation in the prediction of coronary heart disease. N Engl J Med 2004;350(14):1387–97.

    Article  PubMed  CAS  Google Scholar 

  35. Khot UN, Khot MB, Bajzer CT, et al. Prevalence of conventional risk factors in patients with coronary heart disease. JAMA 2003;290(7):898–904.

    Article  PubMed  Google Scholar 

  36. Greenland P, Knoll MD, Stamler J, et al. Major risk factors as antecedents of fatal and nonfatal coronary heart disease events. JAMA 2003;290(7):891–7.

    Article  PubMed  Google Scholar 

  37. Grundy SM, Pasternak R, Greenland P, Smith S, Jr., Fuster V. Assessment of cardiovascular risk by use of multiple-risk-factor assessment equations: a statement for healthcare professionals from the American Heart Association and the American College of Cardiology. Circulation 1999;100(13):1481–92.

    Article  PubMed  CAS  Google Scholar 

  38. Wilson PW, D’Agostino RB, Levy D, Belanger AM, Silbershatz H, Kannel WB. Prediction of coronary heart disease using risk factor categories. Circulation 1998;97(18):1837–47.

    Article  PubMed  CAS  Google Scholar 

  39. Kannel WB, D’Agostino RB, Silbershatz H, Belanger AJ, Wilson PW, Levy D. Profile for estimating risk of heart failure. Arch Intern Med 1999;159(11):1197–204.

    Article  PubMed  CAS  Google Scholar 

  40. Murabito JM, D’Agostino RB, Silbershatz H, Wilson WF. Intermittent claudication. A risk profile from The Framingham Heart Study. Circulation 1997;96(1):44–9.

    Article  PubMed  CAS  Google Scholar 

  41. Wolf PA, D’Agostino RB, Belanger AJ, Kannel WB. Probability of stroke: a risk profile from the Framingham Study. Stroke 1991;22(3):312–8.

    Article  PubMed  CAS  Google Scholar 

  42. D’Agostino RB, Sr., Vasan RS, Pencina MJ, et al. General cardiovascular risk profile for use in primary care: the Framingham Heart Study. Circulation 2008;117:743–53.

    Article  PubMed  Google Scholar 

  43. De Backer G, Ambrosioni E, Borch-Johnsen K, et al. European guidelines on cardiovascular disease prevention in clinical practice. Third Joint Task Force of European and other societies on Cardiovascular Disease Prevention in Clinical Practice. Eur Heart J 2003;24(17):1601–10.

    Article  PubMed  Google Scholar 

  44. Graham I, Atar D, Borch-Johnsen K, et al. European guidelines on cardiovascular disease prevention in clinical practice: full text Fourth Joint Task Force of the European Society of Cardiology and other societies on cardiovascular disease prevention in clinical practice (constituted by representatives of nine societies and by invited experts). Eur J Cardiovasc Prev Rehabil 2007;14(Suppl 2):S1–113.

    Article  PubMed  Google Scholar 

  45. Pearson TA, Blair SN, Daniels SR, et al. AHA guidelines for primary prevention of cardiovascular disease and stroke: 2002 Update: consensus panel guide to comprehensive risk reduction for adult patients without coronary or other atherosclerotic vascular diseases. American Heart Association Science Advisory and Coordinating Committee. Circulation 2002;106(3):388–91.

    Article  PubMed  Google Scholar 

  46. Cook NR. Use and misuse of the receiver operating characteristic curve in risk prediction. Circulation 2007;115(7):928–35.

    Article  PubMed  Google Scholar 

  47. D’Agostino RB, Sr., Grundy S, Sullivan LM, Wilson P. Validation of the Framingham coronary heart disease prediction scores: results of a multiple ethnic groups investigation. JAMA 2001;286(2):180–7.

    Article  PubMed  Google Scholar 

  48. Barzi F, Patel A, Gu D, et al. Cardiovascular risk prediction tools for populations in Asia. J Epidemiol Community Health 2007;61(2):115–21.

    Article  PubMed  CAS  Google Scholar 

  49. Liu J, Hong Y, D’Agostino RB, Sr., et al. Predictive value for the Chinese population of the Framingham CHD risk assessment tool compared with the Chinese Multi-Provincial Cohort Study. JAMA 2004;291(21):2591–9.

    Article  PubMed  CAS  Google Scholar 

  50. Bhopal R, Fischbacher C, Vartiainen E, Unwin N, White M, Alberti G. Predicted and observed cardiovascular disease in South Asians: application of FINRISK, Framingham and SCORE models to Newcastle Heart Project data. J Public Health (Oxf) 2005;27(1):93–100.

    Article  Google Scholar 

  51. Brindle P, Emberson J, Lampe F, et al. Predictive accuracy of the Framingham coronary risk score in British men: prospective cohort study. BMJ 2003;327(7426):1267.

    Article  PubMed  Google Scholar 

  52. Hense HW, Schulte H, Lowel H, Assmann G, Keil U. Framingham risk function overestimates risk of coronary heart disease in men and women from Germany – results from the MONICA Augsburg and the PROCAM cohorts. Eur Heart J 2003;24(10):937–45.

    Article  PubMed  Google Scholar 

  53. Marrugat J, Subirana I, Comin E, et al. Validity of an adaptation of the Framingham cardiovascular risk function: the VERIFICA Study. J Epidemiol Community Health 2007;61(1):40–7.

    Article  PubMed  Google Scholar 

  54. Wu Y, Liu X, Li X, et al. Estimation of 10-year risk of fatal and nonfatal ischemic cardiovascular diseases in Chinese adults. Circulation 2006;114(21):2217–25.

    Article  PubMed  Google Scholar 

  55. Akosah KO, Schaper A, Cogbill C, Schoenfeld P. Preventing myocardial infarction in the young adult in the first place: how do the National Cholesterol Education Panel III guidelines perform? J Am Coll Cardiol 2003;41(9):1475–9.

    Article  PubMed  Google Scholar 

  56. Nasir K, Michos ED, Blumenthal RS, Raggi P. Detection of high-risk young adults and women by coronary calcium and National Cholesterol Education Program Panel III guidelines. J Am Coll Cardiol 2005;46(10):1931–6.

    Article  PubMed  Google Scholar 

  57. Berry JD, Lloyd-Jones DM, Garside DB, Greenland P. Framingham risk score and prediction of coronary heart disease death in young men. Am Heart J 2007;154(1):80–6.

    Article  PubMed  Google Scholar 

  58. Philips B, de Lemos JA, Patel MJ, McGuire DK, Khera A. Relation of family history of myocardial infarction and the presence of coronary arterial calcium in various age and risk factor groups. Am J Cardiol 2007;99(6):825–9.

    Article  PubMed  CAS  Google Scholar 

  59. Ajani UA, Ford ES. Has the risk for coronary heart disease changed among U.S. adults? J Am Coll Cardiol 2006;48(6):1177–82.

    Article  PubMed  Google Scholar 

  60. Ridker PM, Buring JE, Rifai N, Cook NR. Development and validation of improved algorithms for the assessment of global cardiovascular risk in women: the Reynolds Risk Score. JAMA 2007;297(6):611–9.

    Article  PubMed  CAS  Google Scholar 

  61. Ford ES, Giles WH, Mokdad AH, Myers GL. Distribution and correlates of C-reactive protein concentrations among adult US women. Clin Chem 2004;50(3):574–81.

    Article  PubMed  CAS  Google Scholar 

  62. Lloyd-Jones DM, Larson MG, Beiser A, Levy D. Lifetime risk of developing coronary heart disease. Lancet 1999;353(9147):89–92.

    Article  PubMed  CAS  Google Scholar 

  63. Lloyd-Jones DM, Liu K, Tian L, Greenland P. Narrative review: assessment of C-reactive protein in risk prediction for cardiovascular disease. Ann Intern Med 2006;145(1):35–42.

    Article  PubMed  CAS  Google Scholar 

  64. Cohen JC, Boerwinkle E, Mosley TH, Jr., Hobbs HH. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N Engl J Med 2006;354(12):1264–72.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Khera, A. (2011). History of the Evolution of Cardiovascular Risk Factors and the Predictive Value of Traditional Risk-Factor-Based Risk Assessment. In: Naghavi, M. (eds) Asymptomatic Atherosclerosis. Contemporary Cardiology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-179-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-179-0_7

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-178-3

  • Online ISBN: 978-1-60327-179-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics