Skip to main content

Assessment of Plaque Burden and Plaque Composition Using Intravascular Ultrasound

  • Chapter
  • First Online:
  • 1290 Accesses

Part of the book series: Contemporary Cardiology ((CONCARD))

Abstract

Intravascular ultrasound (IVUS) allows reliable identification, quantification, and characterization of coronary atherosclerotic plaque and has been validated as a precise atherosclerosis imaging modality. The knowledge accumulated with IVUS already has a major influence on treatment and prevention of coronary artery disease (CAD) and its risk factors. As a tool in clinical trials examining atherosclerotic disease progression, it is an integral part of antiatherosclerotic drug development. The primary endpoint in these trials is progression/regression of plaque burden and changes in plaque characteristics in long segments of the coronary tree, rather than focal assessment of individual “vulnerable plaques.” While definitive confirmation in combined imaging and clinical endpoint trials is incomplete, these results strongly suggest that global assessment of plaque burden and plaque characteristics can predict risk of future events or “patient vulnerability.”

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Libby P, Theroux P. Pathophysiology of coronary artery disease. Circulation 2005;111:3481–3488.

    Article  PubMed  Google Scholar 

  2. Burke AP, Farb A, Malcom GT, et al. Coronary risk factors and plaque morphology in men with coronary disease who died suddenly. N Engl J Med 1997;336:1276–1282.

    Article  PubMed  CAS  Google Scholar 

  3. Virmani R, Kolodgie FD, Burke AP, et al. Lessons from sudden coronary death: A comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol 2000;20:1262–1275.

    Article  PubMed  CAS  Google Scholar 

  4. Pasterkamp G, Schoneveld AH, van der Wal AC, et al. Relation of arterial geometry to luminal narrowing and histologic markers for plaque vulnerability: The remodeling paradox. J Am Coll Cardiol 1998;32:655–662.

    Article  PubMed  CAS  Google Scholar 

  5. Varnava AM, Mills PG, Davies MJ. Relationship between coronary artery remodeling and plaque vulnerability. Circulation 2002;105:939–943.

    Article  PubMed  Google Scholar 

  6. Kolodgie FD, Gold HK, Burke AP, et al. Intraplaque hemorrhage and progression of coronary atheroma. N Engl J Med 2003;349:2316–2325.

    Article  PubMed  CAS  Google Scholar 

  7. Moreno PR, Falk E, Palacios IF, et al. Macrophage infiltration in acute coronary syndromes: Implications for plaque rupture. Circulation 1994;90:775–777.

    Article  PubMed  CAS  Google Scholar 

  8. Cheruvu PK, Finn AV, Gardner C, et al. Frequency and distribution of thin-cap fibroatheroma and ruptured plaques in human coronary arteries: A pathologic study. J Am Coll Cardiol 2007;50:940–949.

    Article  PubMed  Google Scholar 

  9. Mann J, Davies MJ. Mechanisms of progression in native coronary artery disease: Role of healed plaque disruption. Heart 1999;82:265–268.

    PubMed  CAS  Google Scholar 

  10. Burke AP, Kolodgie FD, Farb A, et al. Healed plaque ruptures and sudden coronary death: Evidence that subclinical rupture has a role in plaque progression. Circulation 2001;103:934–940.

    Article  PubMed  CAS  Google Scholar 

  11. Buffon A, Biasucci LM, Liuzzo G, et al. Widespread coronary inflammation in unstable angina. N Engl J Med 2002;347:5–12.

    Article  PubMed  Google Scholar 

  12. Topol EJ, Nissen SE. Our preoccupation with coronary luminology. The dissociation between clinical and angiographic findings in ischemic heart disease. Circulation 1995;92:2333–2334.

    Article  PubMed  CAS  Google Scholar 

  13. Gussenhoven EJ, Essed CE, Lancee CT, et al. Arterial wall characteristics determined by intravascular ultrasound imaging: An in vitro study. J Am Coll Cardiol 1989;14:947–952.

    Article  PubMed  CAS  Google Scholar 

  14. Nissen SE, Grines CL, Gurley JC, et al. Application of a new phased-array ultrasound imaging catheter in the assessment of vascular dimensions. In vivo comparison to cineangiography. Circulation 1990;81:660–666.

    Article  PubMed  CAS  Google Scholar 

  15. Mintz GS, Nissen SE, Anderson WD, et al. American college of cardiology clinical expert consensus document on standards for acquisition, measurement and reporting of intravascular ultrasound studies (IVUS). J Am Coll Cardiol 2001;37:1478–1492.

    Article  PubMed  CAS  Google Scholar 

  16. Di Mario C, Gorge G, Peters R, et al. Clinical application and image interpretation in intracoronary ultrasound. Study group on intracoronary imaging of the working group of coronary circulation and of the subgroup on intravascular ultrasound of the working group of echocardiography of the European society of cardiology. Eur Heart J 1998;19:207–229.

    Article  PubMed  Google Scholar 

  17. Glagov S, Weisenberg E, Zarins CK, et al. Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med 1987;316:1371–1375.

    Article  PubMed  CAS  Google Scholar 

  18. Hodgson JMcB, Reddy KG, Suneja R, et al. Intracoronary ultrasound imaging: Correlation of plaque morphology with angiography, clinical syndrome and procedural results in patients undergoing coronary angioplasty. J Am Coll Cardiol 1993;21:35–44.

    Article  Google Scholar 

  19. Schoenhagen P, Ziada KM, Kapadia SR, et al. Extent and direction of arterial remodeling in stable and unstable coronary syndromes. Circulation 2000;101:598–603.

    Article  PubMed  CAS  Google Scholar 

  20. Nakamura M, Nishikawa H, Mukai S, et al. Impact of coronary artery remodeling on clinical presentation of coronary artery disease: An intravascular ultrasound study. J Am Coll Cardiol 2001;37:63–69.

    Article  PubMed  CAS  Google Scholar 

  21. Ambrose JA, Tannenbaum MA, Alexopoulos D, et al. Angiographic progression of coronary artery disease and the development of myocardial infarction. J Am Coll Cardiol 1988;12:56–62.

    Article  PubMed  CAS  Google Scholar 

  22. Ojio S, Takatsu H, Tanaka T, et al. Considerable time from the onset of plaque rupture and/or thrombi until the onset of acute myocardial infarction in humans: Coronary angiographic findings within 1 week before the onset of infarction. Circulation 2000;102:2063–2069.

    Article  PubMed  CAS  Google Scholar 

  23. Yamagishi M, Terashima M, Awano K, et al. Morphology of vulnerable coronary plaque: Insights from follow-up of patients examined by intravascular ultrasound before and acute coronary syndrome. J Am Coll Cardiol 2000;35:106–111.

    Article  PubMed  CAS  Google Scholar 

  24. Schoenhagen P, Tuzcu EM, Apperson-Hansen C, et al. Determinants of arterial wall remodeling during lipid-lowering therapy: Serial intravascular ultrasound observations from the reversal of atherosclerosis with aggressive lipid lowering therapy (REVERSAL) trial. Circulation 2006;113:2826–2834.

    Article  PubMed  CAS  Google Scholar 

  25. Goldstein JA, Demetriou D, Grines CL, et al. Multiple complex coronary plaques in patients with acute myocardial infarction. N Engl J Med 2000;343:915–922.

    Article  PubMed  CAS  Google Scholar 

  26. Guazzi MD, Bussotti M, Grancini L, et al. Evidence of multifocal activity of coronary disease in patients with acute myocardial infarction. Circulation 1997;96:1145–1151.

    Article  PubMed  CAS  Google Scholar 

  27. Rioufol G, Finet G, Ginon I, et al. Multiple atherosclerotic plaque rupture in acute coronary syndrome: A three-vessel intravascular ultrasound study. Circulation 2002;106:804–808.

    Article  PubMed  CAS  Google Scholar 

  28. Schoenhagen P, Stone GW, Nissen SE, et al. Coronary plaque morphology and frequency of ulceration distant from culprit lesions in patients with unstable and stable presentation. Arterioscler Thromb Vasc Biol 2003;23:1895–1900.

    Article  PubMed  CAS  Google Scholar 

  29. König A, Klauss V. Virtual histology. Heart 2007;93:977–982.

    Article  PubMed  Google Scholar 

  30. de Korte CL, Pasterkamp G, van der Steen AF, et al. Characterization of plaque components with intravascular ultrasound elastography in human femoral and coronary arteries in vitro. Circulation 2000;102:617–623.

    Article  PubMed  Google Scholar 

  31. Nair A, Kuban BD, Tuzcu EM, et al. Coronary plaque classification with intravascular ultrasound radiofrequency data analysis. Circulation 2002;106:2200–2206.

    Article  PubMed  Google Scholar 

  32. Kawasaki M, Takatsu H, Noda T, et al. Noninvasive quantitative tissue characterization and two-dimensional color-coded map of human atherosclerotic lesions using ultrasound integrated backscatter: Comparison between histology and integrated backscatter images. J Am Coll Cardiol 2001;38:486–492.

    Article  PubMed  CAS  Google Scholar 

  33. Takiuchi S, Rakugi H, Honda K, et al. Quantitative ultrasonic tissue characterization can identify high-risk atherosclerotic alteration in human carotid arteries. Circulation 2000;102:766–770.

    Article  PubMed  CAS  Google Scholar 

  34. Stahr PM, Hofflinghaus T, Voigtlander T, et al. Discrimination of early/intermediate and advanced/complicated coronary plaque types by radiofrequency intravascular ultrasound analysis. Am J Cardiol 2002;90:19–23.

    Article  PubMed  Google Scholar 

  35. Nair A, et al. Automated coronary plaque characterisation with intravascular ultrasound backscatter: Ex vivo validation. EuroInterv 2007;3:113–120.

    Google Scholar 

  36. Nakashima Y, Fujii H, Sumiyoshi S, et al. Early human atherosclerosis: Accumulation of lipid and proteoglycans in intimal thickenings followed by macrophage infiltration. Arterioscler Thromb Vasc Biol 2007;27:1159–1165.

    Article  PubMed  CAS  Google Scholar 

  37. Rodriguez-Granillo GA, García-García HM, Mc Fadden EP, et al. In vivo intravascular ultrasound-derived thin cap fibroatheroma detection using ultrasound radiofrequency data analysis. J Am Coll Cardiol 2005;46:2038–2042.

    Article  PubMed  Google Scholar 

  38. Rodriguez-Granillo GA, Vaina S, García-García HM, et al. Reproducibility of intravascular ultrasound radiofrequency data analysis: Implications for the design of longitudinal studies. Int J Cardiovasc Imaging 2006;22:621–631.

    Article  PubMed  Google Scholar 

  39. Rodriguez-Granillo GA, Serruys PW, Garcia-Garcia HM, et al. Coronary artery remodelling is related to plaque composition. Heart 2006;92:388–391.

    Article  PubMed  CAS  Google Scholar 

  40. Diethrich EB, Margolis PM, Reid DB, et al. Virtual histology intravascular ultrasound assessment of carotid artery disease: The carotid artery plaque virtual histology evaluation (CAPITAL) study. J Endovasc Ther 2007;14:676–686.

    Article  PubMed  Google Scholar 

  41. Wang JC, Normand SL, Mauri L, et al. Coronary artery spatial distribution of acute myocardial infarction occlusions. Circulation 2004;110:278–284.

    Article  PubMed  Google Scholar 

  42. Valgimigli M, Rodriguez-Granillo GA, Garcia-Garcia HM, et al. Distance from the ostium as an independent determinant of coronary plaque composition in vivo: An intravascular ultrasound study based radiofrequency data analysis in humans. Eur Heart J 2006;27:655–666.

    Article  PubMed  Google Scholar 

  43. Sankatsing RR, de Groot E, Jukema JW, et al. Surrogate markers for atherosclerotic disease. Curr Opin Lipidol 2005;16:434–441.

    Article  PubMed  CAS  Google Scholar 

  44. Nissen SE, Tuzcu EM, Schoenhagen P, et al. REVERSAL investigators. Effect of intensive compared with moderate lipid-lowering therapy on progression of coronary atherosclerosis: A randomized controlled trial. JAMA 2004;291:1071–1080.

    Article  PubMed  CAS  Google Scholar 

  45. Schartl M, Bocksch W, Koschyk DH, et al. Use of intravascular ultrasound to compare effects of different strategies of lipid-lowering therapy on plaque volume and composition in patients with coronary artery disease. Circulation 2001;104:387–392.

    Article  PubMed  CAS  Google Scholar 

  46. Nissen SE, Tuzcu EM, Schoenhagen P, et al. Reversal of atherosclerosis with aggressive lipid lowering (REVERSAL) investigators. Statin therapy, LDL cholesterol, C-reactive protein, and coronary artery disease. N Engl J Med 2005;352:29–38.

    Article  PubMed  CAS  Google Scholar 

  47. Okazaki S, Yokoyama T, Miyauchi K, et al. Early statin treatment in patients with acute coronary syndrome: Demonstration of the beneficial effect on atherosclerotic lesions by serial volumetric intravascular ultrasound analysis during half a year after coronary event: The ESTABLISH study. Circulation 2004;110:1061–1068.

    Article  PubMed  CAS  Google Scholar 

  48. Nissen SE, Nicholls SJ, Sipahi I, et al. Effect of very high-intensity statin therapy on regression of coronary atherosclerosis: The ASTEROID trial. JAMA 2006;295:1556–1565.

    Article  PubMed  CAS  Google Scholar 

  49. Nicholls SJ, Tuzcu EM, Sipahi I, et al. Statins, high-density lipoprotein cholesterol, and regression of coronary atherosclerosis. JAMA 2007;297:499–508.

    Article  PubMed  CAS  Google Scholar 

  50. Nissen SE, Tsunoda T, Tuzcu EM, et al. Effect of recombinant ApoA-I Milano on coronary atherosclerosis in patients with acute coronary syndromes: A randomized controlled trial. JAMA 2003;290:2292–2300.

    Article  PubMed  CAS  Google Scholar 

  51. Tardif JC, Gregoire J, L’Allier PL, et al. Effects of reconstituted high-density lipoprotein infusions on coronary atherosclerosis: A randomized controlled trial. JAMA 2007;297:1675–1682.

    Article  PubMed  Google Scholar 

  52. Tardif JC, Gregoire J, L’Allier PL, et al. Effects of the acyl coenzyme A:cholesterol acyltransferase inhibitor avasimibe on human atherosclerotic lesions. Circulation 2004;110:3372–3377.

    Article  PubMed  CAS  Google Scholar 

  53. Nissen SE, Tuzcu EM, Brewer HB, et al. ACTIVATE investigators. Effect of ACAT inhibition on the progression of coronary atherosclerosis. N Engl J Med 2006;354:1253–1263.

    Article  PubMed  CAS  Google Scholar 

  54. Nissen SE, Tardif JC, Nicholls SJ, et al. ILLUSTRATE investigators. Effect of torcetrapib on the progression of coronary atherosclerosis. N Engl J Med 2007;356:1304–1316.

    Article  PubMed  CAS  Google Scholar 

  55. Nissen SE, Tuzcu EM, Libby P, et al. Effect of antihypertensive agents on cardiovascular events in patients with coronary disease and normal blood pressure: The CAMELOT study: A randomized controlled trial. JAMA 2004;292:2217–2225.

    Article  PubMed  CAS  Google Scholar 

  56. Sipahi I, Tuzcu EM, Schoenhagen P, et al. Effects of normal, pre-hypertensive, and hypertensive blood pressure levels on progression of coronary atherosclerosis. J Am Coll Cardiol 2006;48:833–838.

    Article  PubMed  Google Scholar 

  57. Sipahi I, Tuzcu EM, Wolski KE, et al. Beta-blockers and progression of coronary atherosclerosis: Pooled analysis of 4 intravascular ultrasonography trials. Ann Intern Med 2007;147:10–18.

    Article  PubMed  Google Scholar 

  58. Schoenhagen P, Nissen SE. Coronary atherosclerotic disease burden: An emerging endpoint in progression/regression studies using intravascular ultrasound. Curr Drug Targets Cardiovasc Haematol Disord 2003;3:218–226.

    Article  PubMed  CAS  Google Scholar 

  59. Taylor AJ, Kent SM, Flaherty PJ, et al. ARBITER: Arterial biology for the investigation of the treatment effects of reducing cholesterol: A randomized trial comparing the effects of atorvastatin and pravastatin on carotid intima medial thickness. Circulation 2002;106:2055–2060.

    Article  PubMed  CAS  Google Scholar 

  60. Cannon CP, Braunwald E, McCabe CH, et al. Intensive versus moderate lipid lowering with statins after acute coronary syndromes. N Engl J Med 2004;350:1495–1504.

    Article  PubMed  CAS  Google Scholar 

  61. Barter PJ, Caulfield M, Eriksson M, Grundy SM, Kastelein JJ, Komajda M, Lopez-Sendon J, Mosca L, Tardif JC, Waters DD, Shear CL, Revkin JH, Buhr KA, Fisher MR, Tall AR, Brewer B. ILLUMINATE investigators. Effects of torcetrapib in patients at high risk for coronary events. N Engl J Med 2007;357:2109–2122.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Schoenhagen, P., Nair, A., Nicholls, S., Vince, G. (2011). Assessment of Plaque Burden and Plaque Composition Using Intravascular Ultrasound. In: Naghavi, M. (eds) Asymptomatic Atherosclerosis. Contemporary Cardiology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-179-0_36

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-179-0_36

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-178-3

  • Online ISBN: 978-1-60327-179-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics