Skip to main content

Intravascular Characterization of Vulnerable Coronary Plaque

  • Chapter
  • First Online:
  • 1268 Accesses

Part of the book series: Contemporary Cardiology ((CONCARD))

Abstract

Acute coronary syndromes result from rupture of macrophage-rich, inflamed thin-capped fibroatheroma with superimposed thrombus formation. Ruptured plaques are felt to arise from precursor “vulnerable” lesions that are presumed to be at high risk of disruption. Observations now document that many patients with ACS harbor multiple complex unstable plaques, supporting the concept that plaque instability is not merely a local vascular accident, but instead reflects more systemic pathophysiologic processes. The recognition of the ubiquity of substantial but nonflow limiting lesions that may serve as the fodder for subsequent plaque rupture has resulted in a paradigm shift in thinking about the pathophysiology of coronary artery disease, with the focus no longer solely on the degree of arterial luminal narrowing. This chapter will review: (1) Definitions of vulnerable plaque; (2) Limitations of conventional angiography for detection of vulnerable plaque; (3) Nonangiographic invasive methods to image vulnerable plaques; (4) Invasive technologies to characterize plaque including IVUS, angioscopy, NIR spectroscopy, optical coherence tomography (OCT), catheter-based MRI and thermography.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Davies MJ, Thomas A. Thrombosis and acute coronary artery lesions in sudden cardiac ischemic death. N Engl J Med 1984;310:1137–1140.

    Article  PubMed  CAS  Google Scholar 

  2. Falk E, Shah PK, Fuster V. Coronary plaque disruption. Circulation 1995;92:657–671.

    Article  PubMed  CAS  Google Scholar 

  3. Libby P. Molecular bases of the acute coronary syndromes. Circulation 1995;91:2844–2850.

    Article  PubMed  CAS  Google Scholar 

  4. Cutlip DE, Chhabra AG, Baim DS, Chauhan MS, Marulkar S, Massaro J, Bakhai A, Cohen DJ, Kuntz RE, Ho KK. Beyond restenosis: five-year clinical outcomes from second-generation coronary stent trials. Circulation 2004;110:1226–1230.

    Article  PubMed  Google Scholar 

  5. Goldstein JA, Demetriou D, Grines CL, et al. Multiple complex coronary plaques in patients with acute myocardial infarction. N Engl J Med 2000;343:915–922.

    Article  PubMed  CAS  Google Scholar 

  6. Muller JE, Abela GS, Nesto RW, Tofler GH. Triggers, acute risk factors and vulnerable plaques: the lexicon of a new frontier. J Am Coll Cardiol 1994;23:809–813.

    Article  PubMed  CAS  Google Scholar 

  7. Glaser R, Selzer F, Faxon DP, Laskey WK, Cohen HA, Slater J, Detre KM, Wilensky RL. Clinical progression of incidental, asymptomatic lesions discovered during culprit vessel coronary intervention. Circulation 2005;111:143–149.

    Article  PubMed  Google Scholar 

  8. Libby P. Act local, act global: inflammation and the multiplicity of “vulnerable” coronary plaques. J Am Coll Cardiol 2005;45:1600–1602.

    Article  PubMed  Google Scholar 

  9. Goldstein JA. Angiographic plaque complexity: the tip of the unstable plaque iceberg. J Am Coll Cardiol 2002;39(9):1456–1463.

    Article  Google Scholar 

  10. Lutgens E, van Suylen RJ, Faber BC, Gijbels MJ, Eurlings PM, Bijnens AP, Cleutjens KB, Heeneman S, Daemen MJ. Atherosclerotic plaque rupture: local or systemic process? Arterioscler Thromb Vasc Biol 2003;23:2123–2130.

    Article  PubMed  CAS  Google Scholar 

  11. Hansson GK. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med 2005;352:1685–1695.

    Article  PubMed  CAS  Google Scholar 

  12. Virmani R, Kolodgie FD, Burke AP, Farb A, Schwartz SM. Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol 2000;20:1262–1275.

    Article  PubMed  CAS  Google Scholar 

  13. Schaar JA, Muller JE, Falk E, Virmani R, Fuster V, Serruys PW, Colombo A, Stefanadis C, Casscells W, Moreno PR, Maseri A, van der Steen AF. Terminology for high-risk and vulnerable coronary artery plaques: report of a meeting on the vulnerable plaque, June 17 and 18, 2003, Santorini, Italy. Eur Heart J 2004;25:1077–1082.

    Article  PubMed  Google Scholar 

  14. Fuster V, Moreno PR, Fayad ZA, Corti R, Badimon JJ. Atherothrombosis and high-risk plaque. Part I: Evolving concepts. J Am Coll Cardiol 2005;20:46:937–954.

    Article  Google Scholar 

  15. Farb A, Burke AP, Tang AL, Liang TY, Mannan P, Smialek J, Virmani R. Coronary plaque erosion without rupture into a lipid core: a frequent cause of coronary thrombosis in sudden coronary death. Circulation 1996;93:1354–1363.

    Article  PubMed  CAS  Google Scholar 

  16. Kolodgie FD, Burke AP, Farb A, Gold HK, Yuan J, Narula J, Finn AV, Virmani R. The thin-cap fibroatheroma: a type of vulnerable plaque: the major precursor lesion to acute coronary syndromes. Curr Opin Cardiol 2001;16:285–292.

    Article  PubMed  CAS  Google Scholar 

  17. Cheruvu P, Finn A, Gardner C, Caplan J, Goldstein JA, Stone GW, Virmani R, Muller JE. Frequency and distribution of thin-cap fibroatheroma and ruptured plaques in human coronary arteries – a pathologic study. J Am Coll Cardiol 2007;50:940–949.

    Article  PubMed  Google Scholar 

  18. Waxman S, Ishibashi F, Muller JE. Detection and treatment of vulnerable plaques and vulnerable patients: novel approaches to prevention of coronary events. Circulation 2006;114:2390–2411.

    Article  PubMed  Google Scholar 

  19. Nishimura RA, Edwards WD, Warnes CA, Reeder GS, Holmes DR Jr, Tajik AJ, Yock PG. Intravascular ultrasound imaging: in vitro validation and pathologic correlation. J Am Coll Cardiol 1990;16:145–154.

    Article  PubMed  CAS  Google Scholar 

  20. DeMaria AN, Narula J, Mahmud E, Tsimikas S. Imaging vulnerable plaque by ultrasound. J Am Coll Cardiol 2006;47:C32–C39.

    Article  PubMed  Google Scholar 

  21. Rioufol G, Gilard M, Finet G, Ginon I, Boschat J, Andre-Fouet X. Evolution of spontaneous atherosclerotic plaque rupture with medical therapy: long-term follow-up with intravascular ultrasound. Circulation 2004;110:2875–2880.

    Article  PubMed  Google Scholar 

  22. Hong MK, Mintz GS, Lee CW, Suh IW, Hwang ES, Jeong YH, Park DW, Kim YH, Han KH, Cheong SS, Kim JJ, Park SW, Park SJ. Serial intravascular ultrasound evidence of both plaque stabilization and lesion progression in patients with ruptured coronary plaques: effects of statin therapy on ruptured coronary plaque. Atherosclerosis April 3, 2006.DOI:10.1016/j.atherosclerosis.2006.02.040. Available at: http://www.sciencedirect.com. Accessed September 19, 2006.

  23. Smits PC, Pasterkamp G, Quarles van Ufford MA, Eefting FD, Stella PR, de Jaegere PP, Borst C. Coronary artery disease: arterial remodeling and clinical presentation. Heart 1999;82:461–464.

    PubMed  CAS  Google Scholar 

  24. Schoenhagen P, Ziada KM, Kapadia SR, Crowe TD, Nissen SE, Tuzcu EM. Extent and direction of arterial remodeling in stable versus unstable coronary syndromes: an intravascular ultrasound study. Circulation 2000;101:598–603.

    Article  PubMed  CAS  Google Scholar 

  25. Pasterkamp G, Schoneveld AH, Hijnen DJ, de Kleijn DP, Teepen H, van der Wal AC, Borst C. Atherosclerotic arterial remodeling and the localization of macrophages and matrix metalloproteases 1, 2, and 9 in the human coronary artery. Atherosclerosis 2000;150:245–253.

    Article  PubMed  CAS  Google Scholar 

  26. Varnava AM, Mills PG, Davies MJ. Relationship between coronary artery remodeling and plaque vulnerability. Circulation 2002;105:939–943.

    Article  PubMed  Google Scholar 

  27. Pasterkamp G, Galis ZS, de Kleijn DP. Expansive arterial remodeling: location, location, location. Arterioscler Thromb Vasc Biol 2004;24:650–657.

    Article  PubMed  CAS  Google Scholar 

  28. Guedes A, Tardif JC. Intravascular ultrasound assessment of atherosclerosis. Curr Atheroscler Rep 2004;6:219–224.

    Article  PubMed  Google Scholar 

  29. Huang H, Virmani R, Younis H, Burke AP, Kamm RD, Lee RT. The impact of calcification on the biomechanical stability of atherosclerotic plaques. Circulation 2001;103:1051–1056.

    Article  PubMed  CAS  Google Scholar 

  30. Ehara S, Kobayashi Y, Yoshiyama M, Shimada K, Shimada Y, Fukuda D, Nakamura Y, Yamashita H, Yamagishi H, Takeuchi K, Naruko T, Haze K, Becker AE, Yoshikawa J, Ueda M. Spotty calcification typifies the culprit plaque in patients with acute myocardial infarction: an intravascular ultrasound study. Circulation 2004;110:3424–3429.

    Article  PubMed  Google Scholar 

  31. Burke AP, Weber DK, Kolodgie FD, Farb A, Taylor AJ, Virmani R. Pathophysiology of calcium deposition in coronary arteries. Herz 2001;26:239–244.

    Article  PubMed  CAS  Google Scholar 

  32. Yamagishi M, Terashima M, Awano K, Kijima M, Nakatani S, Daikoku S, Ito K, Yasumura Y, Miyatake K. Morphology of vulnerable coronary plaque: insights from follow-up of patients examined by intravascular ultrasound before an acute coronary syndrome. J Am Coll Cardiol 2000;35:106–111.

    Article  PubMed  CAS  Google Scholar 

  33. Kawasaki M, Takatsu H, Noda T, Ito Y, Kunishima A, Arai M, Nishigaki K, Takemura G, Morita N, Minatoguchi S, Fujiwara H. Noninvasive quantitative tissue characterization and two-dimensional color-coded map of human atherosclerotic lesions using ultrasound integrated backscatter: comparison between histology and integrated backscatter images. J Am Coll Cardiol 2001;38:486–492.

    Article  PubMed  CAS  Google Scholar 

  34. Murashige A, Hiro T, Fujii T, Imoto K, Murata T, Fukumoto Y, Matsuzaki M. Detection of lipid-laden atherosclerotic plaque by wavelet analysis of radiofrequency intravascular ultrasound signals: in vitro validation and preliminary in vivo application. J Am Coll Cardiol 2005;45:1954–1960.

    Article  PubMed  Google Scholar 

  35. Nair A, Kuban BD, Tuzcu EM, Schoenhagen P, Nissen SE, Vince DG. Coronary plaque classification with intravascular ultrasound radiofrequency data analysis. Circulation 2002;106:2200–2206.

    Article  PubMed  Google Scholar 

  36. Kawasaki M, Sano K, Okubo M, Yokoyama H, Ito Y, Murata I, Tsuchiya K, Minatoguchi S, Zhou X, Fujita H, Fujiwara H. Volumetric quantitative analysis of tissue characteristics of coronary plaques after statin therapy using three-dimensional integrated backscatter intravascular ultrasound. J Am Coll Cardiol 2005;45:1946–1953.

    Article  PubMed  CAS  Google Scholar 

  37. Fujii K, Carlier SG, Mintz GS, Wijns W, Colombo A, Bose D, Erbel R, de Ribamar Costa J Jr, Kimura M, Sano K, Costa RA, Lui J, Stone GW, Moses JW, Leon MB. Association of plaque characterization by intravascular ultrasound virtual histology and arterial remodeling. Am J Cardiol 2005;96:1476–1483.

    Article  PubMed  Google Scholar 

  38. Rodriguez-Granillo GA, Serruys PW, Garcia-Garcia HM, Aoki J, Valgimigli M, van Mieghem CA, McFadden E, de Jaegere PP, de Feyter P. Coronary artery remodelling is related to plaque composition. Heart 2006;92:388–391.

    Article  PubMed  CAS  Google Scholar 

  39. Valgimigli M, Rodriguez-Granillo GA, Garcia-Garcia HM, Malagutti P, Regar E, de Jaegere P, de Feyter P, Serruys PW. Distance from the ostium as an independent determinant of coronary plaque composition in vivo: an intravascular ultrasound study based radiofrequency data analysis in humans. Eur Heart J 2006;27:655–663.

    Article  PubMed  Google Scholar 

  40. Carlier SG, Mintz GS, Stone GW. Imaging of atherosclerotic plaque using radiofrequency ultrasound signal processing. J Nucl Cardiol 2006;13(6):831–840.

    Article  PubMed  Google Scholar 

  41. de Korte CL, van der Steen AF, Cespedes EI, Pasterkamp G. Intravascular ultrasound elastography in human arteries: initial experience in vitro. Ultrasound Med Biol 1998;24:401–408.

    Article  PubMed  Google Scholar 

  42. Schaar JA, de Korte CL, Mastik F, Strijder C, Pasterkamp G, Boersma E, Serruys PW, van der Steen AF. Characterizing vulnerable plaque features with intravascular elastography. Circulation 2003;108:2636–2641.

    Article  PubMed  Google Scholar 

  43. Schaar JA, Regar E, Mastik F, McFadden EP, Saia F, Disco C, de Korte CL, de Feyter PJ, van der Steen AF, Serruys PW. Incidence of high strain patterns in human coronary arteries: assessment with three dimensional intravascular palpography and correlation with clinical presentation. Circulation 2004;109:2716–2719.

    Article  PubMed  Google Scholar 

  44. Thieme T, Wernecke KD, Meyer R, Brandenstein E, Habedank D, Hinz A, Felix SB, Baumann G, Kleber FX. Angioscopic evaluation of atherosclerotic plaques: validation by histomorphologic analysis and association with stable and unstable coronary syndromes. J Am Coll Cardiol 1996;28:1–6.

    Article  PubMed  CAS  Google Scholar 

  45. Blankenhorn DH. The infiltration of carotenoids into human atheromas and xanthomas. Ann Intern Med 1960;53:944–954.

    Article  CAS  Google Scholar 

  46. Ishibashi F, Aziz K, Abela GS, Waxman S. Update on coronary angioscopy: review of a 20-year experience and potential application for detection of vulnerable plaque. J Intervent Cardiol 2006;19:17–25.

    Article  PubMed  Google Scholar 

  47. Uchida Y, Nakamura F, Tomaru T, Morita T, Oshima T, Sasaki T, Morizuki S, Hirose J. Prediction of acute coronary syndromes by percutaneous coronary angioscopy in patients with stable angina. Am Heart J 1995;130:195–203.

    Article  PubMed  CAS  Google Scholar 

  48. Miyamoto A, Prieto AR, Friedl SE, Lin FC, Muller JE, Nesto RW, Abela GS. Atheromatous plaque cap thickness can be determined by quantitative color analysis during angioscopy: implications for identifying the vulnerable plaque. Clin Cardiol 2004;27:9–15.

    Article  PubMed  Google Scholar 

  49. Waxman S, Sassower MA, Mittleman MA, Zarich S, Miyamoto A, Manzo KS, Muller JE, Abela GS, Nesto RW. Angioscopic predictors of early adverse outcome after coronary angioplasty in patients with unstable angina and non-Q-wave myocardial infarction. Circulation 1996;93:2106–2113.

    Article  PubMed  CAS  Google Scholar 

  50. Mizuno K, Satomura K, Miyamoto A, Arakawa K, Shibuya T, Arai T, Kurita A, Nakamura H, Ambrose JA. Angioscopic evaluation of coronary-artery thrombi in acute coronary syndromes. N Engl J Med 1992;326:287–291.

    Article  PubMed  CAS  Google Scholar 

  51. de Feyter PJ, Ozaki Y, Baptista J, Escaned J, Di Mario C, de Jaegere PP, Serruys PW, Roelandt JR. Ischemia-related lesion characteristics in patients with stable or unstable angina: a study with intracoronary angioscopy and ultrasound. Circulation 1995;92:1408–1413.

    Article  PubMed  Google Scholar 

  52. Nissen SE. Pathobiology, not angiography, should guide management in acute coronary syndrome/non-ST-segment elevation myocardial infarction: the non-interventionist’s perspective. J Am Coll Cardiol 2003;41:103S–112S.

    Article  PubMed  Google Scholar 

  53. Takano M, Inami S, Ishibashi F, Okamatsu K, Seimiya K, Ohba T, Sakai S, Mizuno K. Angioscopic follow-up study of coronary ruptured plaques in nonculprit lesions. J Am Coll Cardiol 2005;45:652–658.

    Article  PubMed  Google Scholar 

  54. Rentrop KP. Thrombi in acute coronary syndromes: revisited and revised. Circulation 2000;101:1619–1626.

    Article  PubMed  CAS  Google Scholar 

  55. Asakura M, Ueda Y, Yamaguchi O, Adachi T, Hirayama A, Hori M, Kodama K. Extensive development of vulnerable plaques as a pancoronary process in patients with myocardial infarction: an angioscopic study. J Am Coll Cardiol 2001;37:1284–1288.

    Article  PubMed  CAS  Google Scholar 

  56. Waxman S, Mittleman MA, Zarich SW, Fitzpatrick PJ, Lewis SM, Leeman DE, Shubrooks SJ Jr, Snyder JT, Muller JE, Nesto RW. Angioscopic assessment of coronary lesions underlying thrombus. Am J Cardiol 1997;79:1106–1109.

    Article  PubMed  CAS  Google Scholar 

  57. Mizuno K, Miyamoto A, Satomura K, Kurita A, Arai T, Sakurada M, Yanagida S, Nakamura H. Angioscopic coronary macromorphology in patients with acute coronary disorders. Lancet 1991;337:809–812.

    Article  PubMed  CAS  Google Scholar 

  58. Lehmann KG, Oomen JA, Slager CJ, de Feyter PJ, Serruys PW. Chromatic distortion during angioscopy: assessment and correction by quantitative colorimetric angioscopic analysis. Cathet Cardiovasc Diagn 1998;45:191–201.

    Article  PubMed  CAS  Google Scholar 

  59. Ueda Y, Ohtani T, Shimizu M, Hirayama A, Kodama K. Assessment of plaque vulnerability by angioscopic classification of plaque color. Am Heart J 2004;148:333–335.

    Article  PubMed  Google Scholar 

  60. Oyabu J, Ueda Y, Ogasawara N, Okada K, Hirayama A, Kodama K. Angioscopic evaluation of neointima coverage: sirolimus drug-eluting stent versus bare metal stent. Am Heart J 2006;152(6):1168–1174.

    Article  PubMed  CAS  Google Scholar 

  61. Tearney GJ, Jang IK, Bouma BE. Optical coherence tomography for imaging vulnerable plaque. J Biomed Opt 2006;11:021002.

    Article  PubMed  Google Scholar 

  62. Jang IK, Bouma BE, Kang DH, Park SJ, Park SW, Seung KB, Choi KB, Shishkov M, Schlendorf KH, Pomerantsev E, Houser SL, Aretz HT, Tearney GJ. Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: comparison with intravascular ultrasound. J Am Coll Cardiol 2002;39:604–609.

    Article  PubMed  Google Scholar 

  63. Yabushita H, Bouma BE, Houser SL, Aretz HT, Jang IK, Schlendorf KH, Kauffman CR, Shishkov M, Kang DH, Halpern EF, Tearney GJ. Characterization of human atherosclerosis by optical coherence tomography. Circulation 2002;106:1640–1645.

    Article  PubMed  Google Scholar 

  64. Tearney GJ, Yabushita H, Houser SL, Aretz HT, Jang IK, Schlendorf KH, Kauffman CR, Shishkov M, Halpern EF, Bouma BE. Quantification of macrophage content in atherosclerotic plaques by optical coherence tomography. Circulation 2003;107:113–119.

    Article  PubMed  Google Scholar 

  65. Stamper D, Weissman NJ, Brezinski M. Plaque characterization with optical coherence tomography. J Am Coll Cardiol 2006;47:C69–C79.

    Article  PubMed  Google Scholar 

  66. Jang IK, Tearney GJ, MacNeill B, Takano M, Moselewski F, Iftima N, Shishkov M, Houser S, Aretz HT, Halpern EF, Bouma BE. In vivo characterization of coronary atherosclerotic plaque by use of optical coherence tomography. Circulation 2005;111:1551–1555.

    Article  PubMed  Google Scholar 

  67. Yun SH, Tearney GJ, de Boer JF, Iftima N, Bouma BE. High-speed optical frequency-domain imaging. Optics Express 2003;11:2953–2963.

    Article  PubMed  CAS  Google Scholar 

  68. MacNeill BD, Jang IK, Bouma BE, Iftima N, Takano M, Yabushita H, Shishkov M, Kauffman CR, Houser SL, Aretz HT, DeJoseph D, Halpern EF, Tearney GJ. Focal and multi-focal plaque macrophage distributions in patients with acute and stable presentations of coronary artery disease. J Am Coll Cardiol 2004;44:972–979.

    Article  PubMed  Google Scholar 

  69. Caplan JD, Waxman S, Nesto RW, Muller JE. Near-infrared spectroscopy for the detection of vulnerable coronary artery plaques. J Am Coll Cardiol 2006;47:C92–C96.

    Article  PubMed  Google Scholar 

  70. Jaross W, Neumeister V, Lattke P, Schuh D. Determination of cholesterol in atherosclerotic plaques using near infrared diffuse reflection spectroscopy. Atherosclerosis 1999;147:327–337.

    Article  PubMed  CAS  Google Scholar 

  71. Moreno PR, Lodder RA, Purushothaman KR, Charash WE, O’Connor WN, Muller JE. Detection of lipid pool, thin fibrous cap, and inflammatory cells in human aortic atherosclerotic plaques by near-infrared spectroscopy. Circulation 2002;105:923–927.

    Article  PubMed  Google Scholar 

  72. Wang J, Geng YJ, Guo B, Klima T, Lal BN, Willerson JT, Casscells W. Near-infrared spectroscopic characterization of human advanced atherosclerotic plaques. J Am Coll Cardiol 2002;39:1305–1313.

    Article  PubMed  Google Scholar 

  73. Gardner C, Tan H, DeJesus S, Caplan J, Muller JE. Identification of thin-capped fibroatheroma through blood with probe-based near infrared spectroscopy in human coronary autopsy specimens. Abstract, TCT Meeting, 2007.

    Google Scholar 

  74. Waxman S, L’Allier P, Goldstein J, Krucoff MW, Tardif J-C, Dixon S, Petersen J, Nesto RW, Sum S, Hendricks M, Caplan J, Muller JE. Detection of lipid rich plaque by near-infrared spectroscopy (NIRS) in patients undergoing coronary intervention: results in an unblended cohort of the SPECTroscopic Assessment of Coronary Lipid (SPECTACL) Study. Abstract, TCT Meeting, 2007.

    Google Scholar 

  75. Brennan JF 3rd, Romer TJ, Lees RS, Tercyak AM, Kramer JR Jr, Feld MS. Determination of human coronary artery composition by Raman spectroscopy. Circulation 1997;96:99105.

    Article  Google Scholar 

  76. Romer TJ, Brennan JF 3rd, Fitzmaurice M, Feldstein ML, Deinum G, Myles JL, Kramer JR, Lees RS, Feld MS. Histopathology of human coronary atherosclerosis by quantifying its chemical composition with Raman spectroscopy. Circulation 1998;97:878–885.

    Article  PubMed  CAS  Google Scholar 

  77. Romer TJ, Brennan JF 3rd, Puppels GJ, Zwinderman AH, van Duinen SG, van der Laarse A, van der Steen AF, Bom NA, Bruschke AV. Intravascular ultrasound combined with Raman spectroscopy to localize and quantify cholesterol and calcium salts in atherosclerotic coronary arteries. Arterioscler Thromb Vasc Biol 2000;20:478–483.

    Article  PubMed  CAS  Google Scholar 

  78. Nogueira GV, Silveira L, Martin AA, Zangaro RA, Pacheco MT, Chavantes MC, Pasqualucci CA. Raman spectroscopy study of atherosclerosis in human carotid artery. J Biomed Opt 2005;10:031117.

    Article  PubMed  Google Scholar 

  79. Casscells W, Hathorn B, David M, Krabach T, Vaughn WK, McAllister HA, Bearman G, Willerson JT. Thermal detection of cellular infiltrates in living atherosclerotic plaques: possible implications for plaque rupture and thrombosis. Lancet 1996;347:1447–1451.

    Article  PubMed  CAS  Google Scholar 

  80. Diamantopoulos L. Arterial wall thermography. J Interv Cardiol 2003;16:261–266.

    Article  PubMed  Google Scholar 

  81. Stefanadis C, Diamantopoulos L, Vlachopoulos C, Tsiamis E, Dernellis J, Toutouzas K, Stefanadi E, Toutouzas P. Thermal heterogeneity within human atherosclerotic coronary arteries detected in vivo: a new method of detection by application of a special thermography catheter. Circulation 1999;99:1965–1971.

    Article  PubMed  CAS  Google Scholar 

  82. Stefanadis C, Toutouzas K, Tsiamis E, Stratos C, Vavuranakis M, Kallikazaros I, Panagiotakos D, Toutouzas P. Increased local temperature in human coronary atherosclerotic plaques: an independent predictor of clinical outcome in patients undergoing a percutaneous coronary intervention. J Am Coll Cardiol 2001;37:1277–1283.

    Article  PubMed  CAS  Google Scholar 

  83. Ten Have AG, Draaijers EB, Gijsen FJ, Wentzel JJ, Slager CJ, Serruys PW, van der Steen AF. Influence of catheter design on lumen wall temperature distribution in intracoronary thermography. J Biomech Published online before print, April 5, 2006.

    Google Scholar 

  84. Wilensky RL, Song HK, Ferrari VA. Role of magnetic resonance and intravascular magnetic resonance in the detection of vulnerable plaques. J Am Coll Cardiol 2006;47:C48–C56.

    Article  PubMed  Google Scholar 

  85. Larose E, Yeghiazarians Y, Libby P, Yucel EK, Aikawa M, Kacher DF, Aikawa E, Kinlay S, Schoen FJ, Selwyn AP, Ganz P. Characterization of human atherosclerotic plaques by intravascular magnetic resonance imaging. Circulation 2005;112:2324–2331.

    Article  PubMed  Google Scholar 

  86. Correia LC, Atalar E, Kelemen MD, Ocali O, Hutchins GM, Fleg JL, Gerstenblith G, Zerhouni EA, Lima JA. Intravascular magnetic resonance imaging of aortic atherosclerotic plaque composition. Arterioscler Thromb Vasc Biol 1997;17:3626–3632.

    Article  PubMed  CAS  Google Scholar 

  87. Schneiderman J, Wilensky RL, Weiss A, Samouha E, Muchnik L, Chen-Zion M, Ilovitch M, Golan E, Blank A, Flugelman M, Rozenman Y, Virmani R. Diagnosis of thin-cap fibroatheromas by a self-contained intravascular magnetic resonance imaging probe in ex vivo human aortas and in situ coronary arteries. J Am Coll Cardiol 2005;45:1961–1969.

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

We are grateful for the excellent editorial assistance of Diane Q. Forti in the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James A. Goldstein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Goldstein, J.A., Muller, J.E. (2011). Intravascular Characterization of Vulnerable Coronary Plaque. In: Naghavi, M. (eds) Asymptomatic Atherosclerosis. Contemporary Cardiology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-179-0_34

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-179-0_34

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-178-3

  • Online ISBN: 978-1-60327-179-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics