Skip to main content

Principles and Kinetics of Biological Processes

  • Chapter
  • 2460 Accesses

Part of the book series: Handbook of Environmental Engineering ((HEE,volume 9))

Abstract

Biological technologies can be used to treat a vast majority of organic wastewaters because all organics could be biologically degraded if the proper microbial communities are established, maintained, and controlled. Before environmental engineers design and operate biological treatment systems that create the environment necessary for the effective treatment of wastewater, a sound understanding of the fundamentals of microbial growth and substrate use kinetics is essential. This chapter covers the above including basic microbiology and kinetics, kinetics of activated sludge process, factors affecting the nitrification process, kinetics of the nitrification process, denitrification by suspended growth systems and design examples.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. G. Bitton, Wastewater Microbiology, Wiley-Liss, New York (1999).

    Google Scholar 

  2. L. D. Benefield and C. W. Randall, Biological Process Design for Wastewater Treatment, Prentice-Hall, New Jersey (1980).

    Google Scholar 

  3. B. E. Rittmann and P. L. McCarty, Environmental Biotechnology, McGraw-Hill, New York (2001).

    Google Scholar 

  4. M. D. LaGrega, P. L. Buckingham, and J. C. Evan, Hazardous Waste Management, McGraw-Hill, New York (2001).

    Google Scholar 

  5. W. W. Eckenfelder, Industrial Water Pollution Control, McGraw-Hill, New York (2000).

    Google Scholar 

  6. R. L. Droste, Theory and Practice of Water and Wastewater Treatment, Wiley, New York (1997).

    Google Scholar 

  7. Metcalf & Eddy, Wastewater Engineering, McGraw-Hill, New York (2003).

    Google Scholar 

  8. S.J. Pirt, The maintenance energy of bacteria in growing cultures, Proceedings of the Royal Society of London, B163, 224–231 (1965).

    Article  Google Scholar 

  9. J. Chang, P. Chudoba, and B. Capdeville, Determination of the maintenance requirement of activated sludge, Water Science and Technology, 28, 139–142 (1993).

    CAS  Google Scholar 

  10. Y. Liu, and J. H. Tay, Interaction between catabolism and anabolism in the oxidative assimilation of dissolved organic carbon, Biotechnology Letters, 22, 1521–1525 (2000).

    Article  CAS  Google Scholar 

  11. D. Herbert, R. Elsworth, and R. C. Telling, The continuous culture of bacteria: a theoretical and experimental study, Journal of General Microbiology, 114, 601 (1956).

    Google Scholar 

  12. A. W. Lawrence and P. L. McCarty, Unified basis for biological treatment design and operation, Journal of Sanitary Engineering, 96, 757 (1970).

    Google Scholar 

  13. APHA, Standard Methods for the Examination of Water and Wastewater, 20th ed., American Public Health Association, Washington, DC (1998).

    Google Scholar 

  14. W W Eckenfelder and Y. Argaman, principles of biological and physical/chemical nitrogen removal. In: Phosphorus and Nitrogen removal from Municipal Wastewater, R. I. Sedlak (ed.), pp. 3–42, Lewis Publishers, New York (1991).

    Google Scholar 

  15. L. K. Wang, D. Veilkind, and M. H. Wang, Computer-aided mathematical modeling of stream purification capacity, Part I: Nonlinear DO model, Institute of Environmental Sciences 1976 Proceedings, 553 (1976).

    Google Scholar 

  16. L. K. Wang, C. P. C. Poon, and M. H. Wang, Control tests and kinetics of activated sludge process, Water, Air and Soil Pollution, 8, 315–351 (1977).

    Article  CAS  Google Scholar 

  17. S. F. Yang, J. H. Tay, and Y. Liu, A novel granular sludge sequencing-batch reactor for organic and nitrogen removal from wastewater, Journal of Biotechnology, 106, 77–86 (2003).

    Article  CAS  Google Scholar 

  18. P. Chudoba, Etude et Intérêt du Découplage Energetique dans les Processus D'épuration des Eaux par Voie Biologique Procédé OSA, Ph.D. thesis, Institut National des Sciences Appliquées, Toulouse, France (1991).

    Google Scholar 

  19. L. K. Wang, M. H. Wang, and D. B. Dahm, Design, Cost Estimation and Optimization of Sewage Collection and Treatment Systems for Housing Development in the Glenwood, New York Area, Technical Report No. ND-5390-M-1, Calspan Corporation, Buffalo, New York (1974).

    Google Scholar 

  20. J. R. McWhirter, Oxygen and activated sludge process, In: The Use of High-Purity Oxygen in the Activated Sludge Process, Vol. 1, J. R. Mcwhirter (ed.), pp. 25–62, CRC Press, Boca Raton, FL (1978).

    Google Scholar 

  21. H. Roques, B. Capdeville, J. C. Seropian, and H. Grigoropoulou, Oxygenation by hydrogen peroxide of the fixed biomass used in biological water treatment, Water Research, 18, 103–110 (1984).

    Article  CAS  Google Scholar 

  22. B. Abbassi, S. Dullstein, and N. Rabiger, Minimization of excess sludge production by increase of oxygen concentration in activated sludge flocs: experimental and theoretical approach, Water Research, 34, 139–146 (2000).

    Article  CAS  Google Scholar 

  23. A. G. Boon, and D. R. Burgess, Treatment of crude sewage in two high-rate activated sludge plants operated in series, Water Pollution Control, 74, 382 (1974).

    Google Scholar 

  24. T. R. Stall, and J. H. Sherrard, Effect of wastewater composition and cell residence time on phosphorus removal in activated sludge, Journal of Water Pollution Control Federation, 48, 307– 322 (1976).

    CAS  Google Scholar 

  25. R. Wunderlich, J. Barry, D. Greenwood, and C. Carry, Start-up of a high-purity, oxygen-activated sludge system at the Los Angeles County SanitationDistricts' Joint Water Pollution Control Plant, Journal of the Water Pollution Control Federation, 57, 1012–1018 (1985).

    CAS  Google Scholar 

  26. N. J. Horan, Biological Wastewater Treatment Systems, Wiley, Chichester (1990).

    Google Scholar 

  27. Y. Liu, and J. H. Tay, Strategy for minimization of excess sludge production from the activated sludge process, Biotechnology Advances, 19, 97–107 (2001).

    Article  Google Scholar 

  28. Y. Liu, Chemically reduced excess sludge production in the activated sludge process, Chemosphere 50, 1–7 (2003).

    Article  CAS  Google Scholar 

  29. N. K. Shammas, Optimization of Biological Nitrification, Ph.D. dissertation, Microfilm Publication, University of Michigan, Ann Arbor, MI (1971).

    Google Scholar 

  30. K. M. Mackenthun, A Review of algae, lake weeds, and nutrients, Journal of the Water Pollution Control Federation, 34, 1077 (1962).

    CAS  Google Scholar 

  31. K. Wuhrmann, Objectives, technology, and of results of nitrogen and phosphorus removal processes, University of Texas, Water Resources Symposium No. 1, 21 (1968).

    Google Scholar 

  32. W. W. Eckenfelder, Jr., A design procedure for biological nitrification and denitrification, Chemical Engineering Progress Symposium Series, 63(78), 230 (1967).

    CAS  Google Scholar 

  33. P. M. Sutton, K. L. Murphy, and B. E. Jank, Kinetic studies of single sludge nitrogen removal systems, Progress in Water Technology, 10, 241 (1978).

    CAS  Google Scholar 

  34. D. F. Bishop, J. A. Heidman, and J. B. Stamberg, Single-stage nitrification-denitrification, Journal of the Water Pollution Control Federation, 48, 520 (1976).

    CAS  Google Scholar 

  35. P. M. Sutton, K. L. Murphy, and B. E. Jank, Design considerations for integrated nutrient removal systems, Progress in Water Technology, 10, 469 (1978).

    CAS  Google Scholar 

  36. P. A. Vesilind (ed.), Wastewater Treatment Plant Design, Water Environment Federation, Alexandria, VA (2003).

    Google Scholar 

  37. P. H. Jones and H. N. Sabra, Effect of systems solids retention time on nitrogen removal from activated sludge, Water Pollution Control, 79, 106 (1980).

    CAS  Google Scholar 

  38. C. S. Huang and N. E. Hopson, Nitrification rate in biological processes. Journal of Environmental Engineering Division, American Society of Civil Engineers EE2, 100, 409 (1974).

    Google Scholar 

  39. P. M. Sutton, T. R. Bridle, W. K. Bedford, and J. Arnold, Nitrification and denitrification of an industrial wastewater, Journal of the Water Pollution Control Federation, 53, 176 (1981).

    CAS  Google Scholar 

  40. C. W. Randall and D. Buth, Nitrite build-up in activated sludge resulting from temperature effects, Journal of the Water Pollution Control Federation, 56, 1039 (1984).

    CAS  Google Scholar 

  41. N. K. Shammas, Biocontactors for wastewater reuse, kinetic approach for achieving the required effluent quality, First Saudi Engineering Conference, Jeddah, KSA, May (1983).

    Google Scholar 

  42. A. P. Sincero and G. A. Sincero, Environmental Engineering – A Design Approach, Prentice-Hall, Upper Saddle River, NJ (1996).

    Google Scholar 

  43. M. H. Gerardi, Nitrification and Denitrification in the Activated Sludge Process, Wiley Inter-Science, New York, December (2001).

    Google Scholar 

  44. N. K. Shammas, Interactions of temperature, pH and biomass on the nitrification process, Journal of the Water Pollution Control Federation, 58, 1, 52–59, January (1986).

    CAS  Google Scholar 

  45. A. L. Downing et al., Nitrification in the activated sludge process, Journal of the Institute of Sewage Purification, 130 (1964).

    Google Scholar 

  46. G. Knowles et al., Determination of kinetic constants for nitrifying bacteria in mixed culture with the aid of an electronic computer, Journal of General Microbiology, 38, 263 (1965).

    CAS  Google Scholar 

  47. F. E. Stratton and P. L. McCarty, Prediction of nitrification effects on the dissolved oxygen balance of streams, Environmental Science and Technology, 1, 405 (1967).

    Article  Google Scholar 

  48. H. A. Painter and K. Jones, The use of the wide-bore dropping- mercury electrode for the Determination of rates of oxygen uptake and of oxidation of ammonia by microorganisms, Journal of Applied Bacteriology, 26, 471 (1963).

    Google Scholar 

  49. H. E. Wild, C. N. Sawyer, and T. C. McMahon, Factors affecting nitrification kinetics, 43rd Annual Conference, Water Pollution Control Federation, Boston, MA, October 9 (1970).

    Google Scholar 

  50. D. F. Bishop et al., Single-stage nitrification-denitrification, Journal of the Water Pollution Control Federation, 48, 520 (1976).

    CAS  Google Scholar 

  51. A. L. Downing, Factors to be considered in the design of activated sludge plants, Proceedings of Water Resources Symposium No. 1, University of Texas Press, Austin, TX, 190 (1968).

    Google Scholar 

  52. A. M. Buswell et al., Laboratory studies on the kinetics of the growth of nitrosomonas with relation to the nitrification phase of the BOD test, Applied Microbiology, 2, 21 (1954).

    CAS  Google Scholar 

  53. US EPA, Nitrification and Denitrification Facilities-Wastewater Treatment, Environmental Protection Agency, Technology Transfer, EPA-625/4-73-004a, August (1973).

    Google Scholar 

  54. N. K. Shammas, An allosteric kinetic model for the nitrification process, Proceedings of Tenth Annual Conference of Water Supply Improvement Association, Honolulu, HI, pp. 1–30, July (1982).

    Google Scholar 

  55. J. Monod, J. Wyman, and J. P. Changeux, On the nature of allosteric transitions: a plausible model, Journal of Molecular Biology, 12, 88 (1965).

    Article  CAS  Google Scholar 

  56. C. Frieden, Treatment of enzyme kinetic data, II the multisite case: comparison of allosteric models and a possible new mechanism, Journal of Biological Chemistry, 242, 4045 (1967).

    CAS  Google Scholar 

  57. M. V. Volkenstein and B. N. Goldstein, Allosteric enzyme models and their analysis by the theory of graphs, Biochemica et Biophysica Acta, 115, 478 (1966).

    CAS  Google Scholar 

  58. B. R. Rabin, Co-operative effects in enzyme catalysis: a possible kinetic model based on substrate-induced conformation isomerization, Biochemical Journal, 102, 22c (1967).

    CAS  Google Scholar 

  59. J. R. Sweeny and J. R. Fisher, An alternative to allosterism and cooperativity in the interpretation of enzyme kinetic data, Biochemistry, 7, 561 (1968).

    Article  CAS  Google Scholar 

  60. D. Koshland, G. Nemethy and D. Filmer, Comparison of experimental binding data and theoretical models in proteins containing subunits, Biochemistry, 5, 365 (1966).

    Article  CAS  Google Scholar 

  61. E. Kvamme and A. Pihl (eds.), Regulation of enzyme activity and allosteric interactions, Proceedings of the 4th Meeting of the Federation of European Biochemical Societies, Oslo (1967), Academic Press, New York (1968).

    Google Scholar 

  62. T. E. Barman, Enzyme Handbook, Springer-Verlag, New York (1969).

    Google Scholar 

  63. H. Boring and A. Horon, Analysis of kinetic data of allosteric enzymes by a linear plot, FEBS Letters, 3, 325 (1969).

    Article  Google Scholar 

  64. B. Formby and J. Clausen, Allosteric and kinetic properties of a K-dependent acylphosphatase in rat brain synaptosomes and its possible relation to (Na+ + K+) ATPase, Hoppe-Seyler's Zeitschrift Für Physiologische Chemie, 350, 973 (1969).

    CAS  Google Scholar 

  65. K. Kirschner, Temperature-jump relaxation with an allosteric enzyme: glyceraldehyde-3-phosphate dehydrogenase, Proceedings of the 4th Meeting of FEBS, Academic Press, New York, 39 (1968).

    Google Scholar 

  66. P.L. Ipata and G. Cercignani, The effect of pH on the allosteric properties of sheep brain. FEBS Letters, 7, 129 (1970).

    Article  CAS  Google Scholar 

  67. WEF, Technology Assessments: Nitrogen Removal Using Oxidation Ditches, Water Environment Federation, July (2000).

    Google Scholar 

  68. R. I. Sedlak, Phosphorus and Nitrogen Removal from Municipal Wastewater: Principles and Practice, 2nd ed., Lewis Publishers, New York, October (1991).

    Google Scholar 

  69. B. R. Blicker, Process Optimization of an On-Site Wastewater Treatment System for Nitrogen Removal, M.S. thesis, Environmental Engineering, Montana State University, December (1997).

    Google Scholar 

  70. M. Debabrata, Hybrid reactor system for wastewater treatment–application and approach of modeling, International Journal of Environment and Pollution (India), 21, 2, 105–131 (2004).

    Article  Google Scholar 

  71. L. K Wang, N. C Pereira, and Y. T. Hung (eds.), Biological Treatment Processes, Humana Press, Totowa, NJ (2005).

    Google Scholar 

  72. Y. Liu, J. H. Tay, and Y. T. Hung, Biological nitrification and denitrification. In: Biological Treatment Processes, L. K Wang, N. C Pereira, and Y. T. Hung (eds.), Humana Press, Totowa, NJ (2005).

    Google Scholar 

  73. B. Halling-Soresen and S. E. Jorgensen, Removal of Nitrogen Compounds from Wastewater, Elsevier, Amsterdam, (1993).

    Google Scholar 

  74. H. Constantin, S. Raoult, W. Montigny, and M. Fick, Environmental Technology, 17, 831– 840 (1996).

    Article  CAS  Google Scholar 

  75. EvTEC, Wastewater Denitrification Technologies, Pennsylvania Department of Environmental Protection, http://www.cerf.org/evtec/eval/padep.htm, April (2001).

  76. INI, Workshop on Advanced Approaches to Quantify Denitrification, International Nitrogen Initiative, Sponsored by EPA, Workshop Final Report May (2004).

    Google Scholar 

  77. L. K Wang, Y. T. Hung, and N. K. Shammas (eds.), Advanced Physicochemical Treatment Processes, Humana Press, Totowa, NJ (2005).

    Google Scholar 

  78. L. K. Wang, E. Fahey, and Z. Wu, Dissolved air flotation. In Physicochemical Treatment Processes, L. K Wang, Y. T. Hung, and N. K. Shammas (eds.), Humana Press, Totowa, NJ (2005).

    Chapter  Google Scholar 

  79. L. K Wang, Y. T. Hung, and N. K. Shammas (eds.), Physicochemical Treatment Processes, Humana Press, Totowa, NJ (2005).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer ScienceCBusiness Media, LLC

About this chapter

Cite this chapter

Shammas, N.K., Liu, Y., Wang, L.K. (2009). Principles and Kinetics of Biological Processes. In: Wang, L.K., Shammas, N.K., Hung, YT. (eds) Advanced Biological Treatment Processes. Handbook of Environmental Engineering, vol 9. Humana Press. https://doi.org/10.1007/978-1-60327-170-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-170-7_1

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-360-2

  • Online ISBN: 978-1-60327-170-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics