Skip to main content

Biological Nitrification and Denitrification Processes

  • Chapter
Biological Treatment Processes

Part of the book series: Handbook of Environmental Engineering ((HEE,volume 8))

Abstract

If the wastewater to be treated contains various forms of nitrogen, three biological treatment steps are required for nitrogen removal: (a) in a bio-oxidation step, organic nitrogen is anerobically broken down to ammonia nitrogen; (b) in a subsequent nitrification step, ammonia nitrogen in the wastewater is aerobically converted to nitrate nitrogen; and (c) in a final denitrification step, nitrate nitrogen is anaerobically or anoxically converted to nitrogen gas. This chapter discusses bio-oxidation, nitrification and denitrification process steps, their principles, and design considerations in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Barnes and P. J. Bliss (eds.), Biological control of nitrogen in wastewater treatment. E. and F.N. Spon Ltd, New York, USA (1983).

    Google Scholar 

  2. H. A. Painter, A review of literature on inorganic nitrogen metabolism in microorganisms. Water Res. 4(6), 393–450 (1970).

    Article  CAS  Google Scholar 

  3. P. L. McCarty, Thermodynamics of biological synthesis and growth. Prodeedings of the 11th Int. Conf. on water Pollut. Res. pp. 169–199, Tokyo, Japan (1964).

    Google Scholar 

  4. US EPA, Nitrogen control. TECHNOMIC publishing Co., Inc., USA (1993).

    Google Scholar 

  5. H. Laudelout and L. Van Techelen, Kinetics of the nitrite oxidation by Nitrobacter winogradski. J. Bacteriol. 79, 39 (1960).

    CAS  Google Scholar 

  6. M. Moreau, Y. Liu, B. Capdeville, J. M. Audic, and L. Calvez, Kinetic behaviors of heterotrophic and autotrophic biofilm in wastewater treatment processes. Water Sci. Technol. 29, 385–391 (1994).

    CAS  Google Scholar 

  7. F. Rogalla and M. M. Bourbigot, New developments in complete nitrogen removal with biological aerated filters. Water Sci. Technol. 22 (1–2), 273–280 (1990).

    CAS  Google Scholar 

  8. Y. Liu and B. Capdeville, Specific activity of nitrifying biofilm in water nitrification process. Water Res. 30, 1645–1650 (1996).

    Article  CAS  Google Scholar 

  9. B. Rusten, M. McCopy, R. Proctor, and J.G. Siljudalen, The innovative moving bed biofilm reactor/solid contact reaeration process for secondary treatment of municipal wastewater. Water Environ. Res. 70, 1083–1089 (1998).

    Article  CAS  Google Scholar 

  10. L. M. Prescott, J. P. Harley, and C. A. Klein, Microbiology. WCB/McGraw-Hill, Boston. USA. p. 181 (1999).

    Google Scholar 

  11. M. Wagner and A. Loy Bacterial community composition and function in sewage treatment systems. Curr. Opin. Biotech. 13, 218–228 (2002).

    Article  CAS  Google Scholar 

  12. M. Alexander and F. E. Clark, Nitrifying Bacteria. In Methods of Soil Analysis Black, C. A., ed.), American Society Agronomists. Madison, WI. pp. 1477–1483 (1965).

    Google Scholar 

  13. R. K. Jain, R. S. Burlage, and G. S. Sayler, Methods for detecting recombinant DNA in the environment. Crit. Rev. Biotechnol. 8, 33–47 (1988).

    Article  CAS  Google Scholar 

  14. G. S. Sayler, R. Fox, and J. W. Balckburn (eds.), Environmental Biotechnology for Waste Treat¬ment. Plenum, New York, USA (1991).

    Google Scholar 

  15. E. F. DeLong, Single cell identification using fluorescently labeled, ribosomal RNA-specific probes. In: Handbook of Methods of Aquatic Microbial Ecology. Kemp, P. E., Sherr, B. F., Sherr, E. B., and Cole, J. J. (eds.), Lewis, Boca Raton, FL. pp. 285–294 (1993).

    Google Scholar 

  16. K. B. Mullis and F. A. Fallona, Specific synthesis of DNA in vitro via a polymerse catalyzed chain reaction. Methods Enzymol. 155, 335–350 (1987).

    Article  CAS  Google Scholar 

  17. M. A. Voytek and B. B. Ward, Detection of ammonium-oxidizing bacteria of the beta-subclass of the class Proteobacteria in aquatic samples with the PCR. Appl. Environ. Microbiol. 61(4), 1444–1450 (1995).

    CAS  Google Scholar 

  18. J. I. Prosser, Autotrophic nitrification in bacteria. Adv. Microb. Physiol. 30, 125–181 (1989).

    Article  CAS  Google Scholar 

  19. A. E. McCaig, T. Embley, and J. Prosser, Molecular analysis of enrichment cultures of marine ammonia oxidizers. FEMS Microbiol. Lett. 120, 363–368 (1994).

    Article  CAS  Google Scholar 

  20. T. A. Hovanec and E. DeLong, Comparative analysis of nitrifying bacteria associated with freshwater and marine aquaria. Appl. Environ. Microbiol. 62, 2888–2896 (1996).

    CAS  Google Scholar 

  21. G. A. Kowalchuk, J. R. Stephen, W. J. Deboer I. Prosser, T. M. Embley, and J. W. Wold-endrop, Analysis of ammonia-oxidizing bacteria of the beta subdivision of the class pro-teobacteria in costal sand dunes by denaturing gradient gel electrophoresis and sequencing of PCR-amplified 16S ribosomal DNA fragments. Appl. Environ. Microbiol. 63, 1489–1497 (1997).

    CAS  Google Scholar 

  22. I. M. Head. W. D. Hiorns, T. M. Embley, A. J. McCarthy, and J. R. Saunders, The phylogeny of autotrophic ammonia-oxidizing bacteria as determined by analysis of 16S ribosomal RNA gene sequences. J. Gen. Microbiol. 139, 1147–1153 (1993).

    Article  CAS  Google Scholar 

  23. Wagner, M., Rath, G., Amann, R., Koops, H.-P., and Schleifer, K.-H. (1995), In situ identification of ammonia oxidizing bacteria. System. Appl. Microbiol. 18, 251–264.

    Article  CAS  Google Scholar 

  24. M. Wagner, G. Rath, H.-P. Koops, J. Flood, and R. Amann, In situ analysis of nitrifying bacteria in sewage treatment plants. Water Sci. Technol. 34, 237–244 (1996).

    CAS  Google Scholar 

  25. R. Witzig, W. Manz, S. Rosenberger, U. Kruger, M. Kraume, and U. Szewzyk, Microbiological aspects of a bioreactor with submerged membranes for aerobic treatment of municipal wastewater. Water Res. 36, 394–402 (2002).

    Article  CAS  Google Scholar 

  26. D. M. Ward, Molecular probes for analysis of microbial communities, In Structure and Function of Biofilm. Characklis, W. G. and Wilderer, P. A. (ed.), John Wiley, pp. 145–163 (1989).

    Google Scholar 

  27. A. Ohashi, D. G. Viraj de Silva, B. Mobarry, J. A. Manem, D. A. Stahl, and B. E. Rittmann, Influence of substrate C/N ratio on the structure of multi-species biofilms consisting of nitrifiers and heterotrophs. Water Sci. Technol. 32, 75–84 (1995).

    CAS  Google Scholar 

  28. G. Silyn-Roberts and G. Lewis, In situ analysis of Nitrosomonas spp. in wastewater treatment wetland biofilms. Water Res . 35, 2731–2739 (2001).

    Article  CAS  Google Scholar 

  29. Y. Inamori, T. Takai, N. Noda, A. Hirata, H. Niioka, Y. H. Gao, and M. Matsumura, Development of a rapid quantification method for Nitrosomonas and Nitrobacter using ELISA for wastewater treatment facilities. Water Sci. Technol. 36, 169–174 (1997).

    CAS  Google Scholar 

  30. B. Sandén, B. Björlenius, C. Grunditz, and G. Dalhammar, Nitrifying bacteria in the influent to a wastewater treatment plant — influence and importance on nitrifying capacity. Water Sci. Technol. 34, 75–82 (1996).

    Google Scholar 

  31. C. D. Sinigalliano, D. N. Kuhn, R. D. Jones, and M. A. Guerrero, In situ reverse transcription to detect the cbbL gene and visualize RuBisCO in chemoautotrophic nitrifying bacteria. Lett. Appl. Microbiol. 32(6), 388–393 (2001).

    Article  CAS  Google Scholar 

  32. H. Daims, U. Purkhold, L. Bjerrum, E. Arnold, P. A. Wilderer, and M. Wagner, Nitrification in sequencing biofilm batch reactors: lessons from molecular approaches. Water Sci. Technol. 43(3), 9–18 (2001).

    CAS  Google Scholar 

  33. B. E. Rittmann, C. S. Laspidou, J. Flax, D. A. Stahl, V. Urbain, H. Harduin, J. J. van der Waarde, B. Geurkink, M. J. C. Henssen, H. Brouwer, A. Klapwijk, and M. Wetterauw Molecular and modeling analyses of the structure and function of nitrifying activated sludge. Water Sci. Technol. 39(1), 51–59 (1999).

    Article  CAS  Google Scholar 

  34. L. H. Larsen, T. Kjör, and N. P. Revsbech A microscale \(NO_3^ - \) biosensor for environmental applications. Anal. Chem. 69, 3527–3531 (1997).

    Google Scholar 

  35. N. P. Revsbech, T. Kjör, L. Damgaard, and L. H. Larsen, Biosensors for analysis of water, sludge and sediments with emphasis on microscale biosensors, In: In situ Monitoring of Aquatic Systems: Chemical Analysis and Speciation J. Buffe and G. Horvai, eds.), Wiley, New York. pp. 195–222 (2000).

    Google Scholar 

  36. M. Nielsen, N. P. Revsbech, L. H. Larsen, and A. Lyngard, On-line determination of nitrite in wastewater treatment by use of a biosensor. Water Sci. Technol. (2002). In press.

    Google Scholar 

  37. D. Gapes and J. Keller, Analysis of biological wastewater treatment processes using multicom-ponent gas phase mass balancing. Biotechnol. Bioeng. 76, 361–375 (2001).

    Article  CAS  Google Scholar 

  38. Y. Liu and B. Capdeville, Kinetic behaviors of nitrifying biofilm growth in wastewater nitrification process. Environ. Technol. 15, 1001–1013 (1994).

    Article  CAS  Google Scholar 

  39. US EPA, Process design manual for nitrogen control, office of technology transfer. Washington DC. USA (1975).

    Google Scholar 

  40. D. L. Ford, R. L. Churchwell, and J. W. Kachtick, Comprehensive analysis of nitrification of chemical processing wastewater. J. Water Pollut. Control Fed. 52, 2726–2746 (1980).

    CAS  Google Scholar 

  41. F. Fdz-Polanco, S. Villaverde, and P. A. Garcia, Nitrite Accumulation in Submerged biofilters-combined effects. Water Sci. Technol. 34(3–4), 371–378 (1996).

    CAS  Google Scholar 

  42. Y. Liu and J. H. Tay, Factors affecting nitrite build-up in nitrifying biofilm reactor. J. Environ. Sci. Health 36, 1027–1040 (2001).

    Article  CAS  Google Scholar 

  43. A. C. Anthonisen, R. C. Loehr, T. B. S. Prakasam, and E. G. Srinarh, Inhibition of nitrification by ammonia and nitrous acid. J. Water Pollut. Control Fed. 48, 835–852 (1976).

    CAS  Google Scholar 

  44. R. T. Haug and P. L. McCarty, Nitrification with the submerged filter. Report prepared by the Department of Civil Engineering, Stanford University for the Environmental Protection Agency, Research Grant No. 17010EPM (August) (1971).

    Google Scholar 

  45. R. A. Pokuska and J. F. Andrews, Dynamics of nitrification in the activated sludge process. Proceedings of the 29th Industrial Waste Conference, Purdue University, Lafayette, IN. Ann arbor, MI: Ann Arbor Science. p. 1005 (1975).

    Google Scholar 

  46. Y. Liu and B. Capdeville, Some observation on free ammonia inhibition to Nitrobacter in nitrifying biofilm reactor. Biotechnol. Lett. 16, 309–314 (1994).

    Article  CAS  Google Scholar 

  47. A. L. Dowing, H. A. Painter, and G. Knowles, J. Inst. Sew. Purif. 63, 130–153 (1964).

    Google Scholar 

  48. M. J. Strankewich, Jr. Biological nitrification with the high purity oxygenation process. Proceed¬ings of the 28th Industrial Waste Conference, Purdue University, Lafayette, IN. Ann Arbor, MI: Ann Arbor Science (1974).

    Google Scholar 

  49. G. Bitton, Wastewater Microbiology. Wiley-Liss, New York (1999).

    Google Scholar 

  50. C. W. Chen, Concepts and Utilities of Ecological Model. JSED. Proc. ASCE 96. SA5, 1085–1097 (1970).

    Google Scholar 

  51. S. Okabe, Y.Oozawa, K. Hirata, and Y.Watanabe, Relationship between population dynamics of nitrifiers in biofilms and reactor performance at various C:N ratios. Water Res. 30(7), 1563–1572 (1996).

    Article  CAS  Google Scholar 

  52. C. Sato, J. L. Schnoor, and D. B. McDonald, Characterization of effects of copper, cadmium and nickel on the growth of Nitrosomonas europaea. Env. Toxicol. Chem. 5,403–416 (1986).

    CAS  Google Scholar 

  53. Y.W.Lee, S. K. Ong, and C. Sato, Effects of heavy metals on nitrifying bacteria. Water Sci. Technol. 36(12), 69–74 (1997).

    Article  CAS  Google Scholar 

  54. M. Paolo, D. Donatella, and G. Lorena, Response of SOUR and AUR to heavy metal contamina¬tion in activated sludge. Water Res. 33(10), 2459–2464 (1999).

    Article  Google Scholar 

  55. M. H. Christensen and P. Harrenmose, Biological dentrification of sewage: a literature review. Water Tech. 8, 509–555 (1977).

    CAS  Google Scholar 

  56. J. M. Tiedje, A. L. Sexstone, D. D. Myrold, and J. A. Robinson, Denitrification: ecological niches, competition and survival. Antonie van Leeuwenhoek 48, 569–583 (1982).

    Article  CAS  Google Scholar 

  57. R. L. Tate (ed.), Soil microbiology. John Wiley & Sons, Inc., New York, USA (2000).

    Google Scholar 

  58. P. L. McCarty, L. Beck, and P. St. Amant, Biological denitrification of wastewater by addition of organic materials. Procedings of the 24th Purdue Ind. Waste Conf., Purdue University, Lafayette, IN (1969).

    Google Scholar 

  59. A. L. Ballard and S. J. Ferguson Respiratory nitrate reductase from Paracoccus denitrificans. Evidence for two b-type haems in the γ subunit and properties of a water-soluble active enzyme containing α and β subunits. Eur. J. Biochem. 174, 207–212 (1988).

    Article  CAS  Google Scholar 

  60. D. Hernandez and J. J. Rowe, Oxygen regulation of nitrate uptake in denitrifying Pseudomonas aeruginosa. Appl. Environ. Microbiol. 53, 745–750 (1987).

    CAS  Google Scholar 

  61. M. R. Betlach and J. M. Tiedje, Kinetic explanation for accumulation of nitrite, nitric oxide, and nitrous oxide during bacterial denitrification. Appl. Environ. Microbiol. 42, 1074–1084 (1981).

    CAS  Google Scholar 

  62. L. I. Hochstein and G. A. Tomlinson, The enzymes associated with denitrification. Ann. Rev. Microbiol. 42, 231–261 (1988).

    Article  CAS  Google Scholar 

  63. F. B. Cady and W. V. Bartholomew, Sequential products of anaerobic denitrification in Norfolk soil material. Soil Sci. Soc. Am. Proc. 24, 477–482 (1960).

    Article  CAS  Google Scholar 

  64. G. S. Cooper and R. L. Smith, Sequence of products formed during denitrification in Some diverse western soil. Soil Sci. Soc. Am. Proc. 27, 659–662 (1963).

    Article  CAS  Google Scholar 

  65. E. A. Paul and F. E. Clark (ed.), Soil Microbiology and Biochemistry. Academic Press. San Diego California, USA (1996).

    Google Scholar 

  66. T. J. Simpkin and W C. Boyle, The lack of repression by oxygen of the dentirfying enzymes in activated sludge. Water Res. 22, 201–206 (1988).

    Article  CAS  Google Scholar 

  67. B. Baumann, M. Snozzi, A. J. B. Zehnder, and J. R. Vandermeer, Dynamics of denitrification activity of Paracoccus denitrificans in continuous culture during aerobic-anaerobic changes. J. Bacteriol. 178, 4367–4374 (1996).

    CAS  Google Scholar 

  68. R. Von Schultess, D. Wild, and W. Gujer, Nitric and nitrous oxides from denitrifying activated sludge at low oxygen concentration. Water Sci. Technol. 30, 123–132 (1994).

    Google Scholar 

  69. S. Otte, N. G. Grobben, L. A. Robertson, M. S. M. Jetten, and J. G. Kuenen, Nitrous oxide production by Alcaligenes faecalis under transient and dynamic aerobic and anaerobic conditions. Appl. Environ. Microbiol. 62, 2421–2426 (1996).

    CAS  Google Scholar 

  70. B. Baumann, M. Snozzi, J. R. Vandermeer, and A. J. G. Zenhder, Development of stable deni¬trifying cultures during repeated aerobic-anaerobic transient periods. Water Res. 31, 1947–1954 (1997).

    Article  CAS  Google Scholar 

  71. M. C. M. Van Loosdrecht and M. S. M Jetten, Microbilogical conversions in nitrogen removal. Water Sci. Technol. 38(1), 1–7 (1998).

    Article  Google Scholar 

  72. D. D. Focht and H. Joseph, An improved method for the enumeration of denitrifying bacteria. Soil Sci. Soc. Am. Proc. 37, 698–699 (1973).

    Article  Google Scholar 

  73. K.-H. Linne von Berg and H. Bothe, The distribution of denitrifying bacteria in soils monitored by DNA-probing. FEMS Microbiol. Ecol. 86, 331–340 (1992).

    Article  CAS  Google Scholar 

  74. D. Patureau, E. Helloin, E. Rustrian, T. Bouchez, J. P. Delgenes, and R. Moletta, Combined phosphate and nitrogen removal in a sequencing batch reactor using the aerobic denitrifier, Microvirgula aerodenitrificans. Water Res. 35(1), 189–197 (2001).

    Article  CAS  Google Scholar 

  75. D. Patureau, N. Bernet, P. Dabert, J. J. Godon, J. P. Steyer, J. P. Delgenes, and R. Moletta, Physi-ologial, molecular and modeling studies of an aerobic denitrifier: microvirgula aerodenitrificans. Use of its properties in an integrated nitrogen removal plant, Water Sci. Technol. 38(1), 167–175 (1998).

    Article  CAS  Google Scholar 

  76. Y. Tal, B. Schwartsburd, A. Nussinovitch, and J. van Rijn, Enumeration and factors influencing the relative abundance of a denitrifier Pseudomonas sp. JR12 entrapped in alginate beads. Environ. Pollut. 112(2), 99–106 (2001).

    Article  CAS  Google Scholar 

  77. R. Knowles and T. H., Blackburn (ed.), Nitrogen Isotope Techniques. Academic Press, San Diego (1993).

    Google Scholar 

  78. R. L. Stevens and R. J. Laughlin, Determining nitrogen-15 in nitrite or nitrate by producing nitrous oxide. Soil Sci. Soc. Am. J. 58, 1108–1116 (1994).

    Article  CAS  Google Scholar 

  79. E. J. Williams, G. L. Hutchinson, and F. C. Feshenfeld, NO and N2O emissions from soil. Global Biogeochem. 6, 351–388 (1992).

    Article  CAS  Google Scholar 

  80. P. D. Brooks, D. J. Herman, G. J. Atkins, S. J. Prosser, and A. Barrie, Rapid isotopic analysis of selected soil gases at atmospheric concentrations. In: Agricultural Ecosystem Effects on Trace Gases and Global Climate Change, ASA Special Publication 55, 193–202 (1993).

    Google Scholar 

  81. B. Batchelor, Kinetic analysis of alternative configuration for single-sludge nitrifica-tion/denitrification. J. Wat. Poll. Con. Fed. 54, 1493 (1982).

    CAS  Google Scholar 

  82. S. Hallin and M. Pell Methbolic properties of denitrifying bacteria adapting to methanol and ethanol in activated sludge. Water Res. 32(1), 13–18 (1998).

    Article  CAS  Google Scholar 

  83. M. Kurt, I. J. Dunn, and J. R. Bourne, Biological denitrification of drinking water using autotrophic organisms with hydrogen in a fludizied-bed biofilm reactor. Biotechnol. Bioeng. 29, 493–501 (1987).

    Article  CAS  Google Scholar 

  84. B. Halling-Sørensen and S. E. Jørgensen (ed.), The removal of nitrogen compounds from waste-water. Elsevier, Amsterdam, The Netherlands (1993).

    Google Scholar 

  85. I. Hiroki, H. Keisuke, and M. Tomonori Nitrous oxide production in high-loading biologi¬cal nitrogen removal process under low COD/N ratio condition. Water Res. 35(3), 657–664 (2001).

    Article  Google Scholar 

  86. W. W. Eckenfelder and Y. Argaman, Principles of biological and physical/chemical nitrogen removal. In Phosphorus and Nitrogen Removal from Municipal Wastewater (Sedlak, R., ed.), Lewis Publishers, New York. pp. 3–42 (1991).

    Google Scholar 

  87. Water Pollution Control Federation, Nutrient control (Manual of Practice No. Fd-7). Washington, DC (1983).

    Google Scholar 

  88. US EPA, Guidance manual on the development of local discharge limitations under the pretreat-ment program. US EPA Contract 68-01-7043. Washington, DC. USA (1987).

    Google Scholar 

  89. M. Henze, C. P. L. Grady, Jr., W. Gujer, G.v.R. Marais, and T. Matsuo, Activated Sludge Model No. 1, IAWPRC Scientific and Technical Report No. 1, IAWPRC, London, ISSN 1010-707X (1987).

    Google Scholar 

  90. M. Henze, W. Gujer, T. Mino, T. Matsuo, M. Wentzel, and G. V. R. Marais, Activated Sludge Model No. 2, IAWQ Scientific and Technical Report, No. 3, IAWQ. London (1995).

    Google Scholar 

  91. P. Kos, Short SRT (solids retention time) nitrification process/flowsheet. Water Sci.Technol. 38, 23–29 (1998).

    CAS  Google Scholar 

  92. Z. G. Yuan H. Bogaert, J. Leten, and W. Verstraete, Reducing the size of a nitrogen removal activated sludge plant by shortening the retention time of inert solids via sludge storage, Water Res. 34(2), 539–549 (2000).

    Article  CAS  Google Scholar 

  93. G. R. Dillon and V. K. Thomas, A pilot-scale evaluation of the biocarbone process for the treatment of settled sewage and for tertiary nitrification of secondary effluent. Water Sci. Technol. 22(1–2), 305–316 (1990).

    CAS  Google Scholar 

  94. M. Payraudeau, A. R. Pearce, R. Goldsmith, B. Bigot, and F. Wicquart, Experience with an up-flow biological aerated filter (BAF) for tertiary treatment: from pilot trails to full scale implementation.Water Sci. Tehcnol. 44 (2–3), 63–68 (2001).

    CAS  Google Scholar 

  95. K. Miserez, S. Philips, and W. Verstraete, New Biology for Advanced Wastewater Treatment. Water Sci. Technol. 40(4–5), 137–144 (1999).

    CAS  Google Scholar 

  96. N. Araki, A. Ohashi, I. Machdar, and H. Harada, Behaviors of nitrifiers in a novel biofilm reactor employing hanging sponge-cubes as attachment site. Water Sci. Technol. 39(7), 23–31 (1999).

    Article  CAS  Google Scholar 

  97. Y. Kazuaki, Y. Masanori, I. Akira, and O. Akira, A new oxygen supply method for simultaneous organic carbon removal and nitrification by a one-stage biofilm process. Water Sci. Technol. 37, 117–124 (1998).

    Google Scholar 

  98. L. Yang, Investigation of nitrification by co-immobilized nitrifying bacteria and zeolite in a batchwise fluidized bed. Water Sci. Technol. 35(8), 169–175 (1997).

    Article  CAS  Google Scholar 

  99. W. M. Rostron, D. C. Stuckey, and A. A. Young, Nitrification of high strength ammo¬nia wastewaters: comparative study of immobilization media. Water Res. 35(5), 1169– 1178 (2001).

    Article  CAS  Google Scholar 

  100. B. H. Jun, Y. Tanji, and H. Unno, Stimulating Accumulation of Nitrifying Bacteria in Porous Car¬rier by Addition of Inorganic Carbon in a Continuous-Flow Fluidized Bed Wastewater Treatment Reactor. J. Biosci. Bioeng. 89(4), 334–339 (2000).

    Article  CAS  Google Scholar 

  101. V. Lazarova and J. Manem, An Innovative Process for Waste water Treatment: The circulating Floating Bed Reactor. Water Sci. Technol. 34(9), 88–89 (1996).

    Google Scholar 

  102. Y. Liu, Adhesion kinetics of nitrifying bacteria on various thermoplastic supports. Colloids and Surfaces B: Biointerfaces 5, 213–219 (1995).

    Article  CAS  Google Scholar 

  103. Y. Liu and B. Capdeville, Growth dynamics of nitrifying biofilm in biological nitrogen removal process. Water Sci. Technol. 29, 377–380 (1994).

    CAS  Google Scholar 

  104. Liu, Y. (1997) Estimating minimum fixed biomass concentration and active thickness of nitrifying biofilm. J. Environ. Eng. 123, 198–202.

    Article  CAS  Google Scholar 

  105. Y. Liu and Q. D. Wang, Surface modification of bio-carrier by plasma oxidation-ferric ions coating technique to enhance bacterial adhesion. J. Environ. Sci. Health 31, 869–878 (1996).

    Google Scholar 

  106. Y. J. Chang and S. K. Tseng, A novel double-membrane system for simultaneous nitrification and denitrification in a single tank. Lett. Appl. Microbiol. 28(6), 453–456 (1999).

    Article  CAS  Google Scholar 

  107. B. Jimenez, B. Capdeville, H. Roques, and G. M. Faup, Design considerations for a nitrification-denitrification process unsing two fixed-bed reactorsin series. Water Sci. Technol. 19(1–2), 130– 150 (1987).

    Google Scholar 

  108. J. J. Chen, D. McCarty D. Slack, and H. Rundle, Full scale case studies of a simplified aerated filter (BAF) for organics and nitrogen removal. Water Sci. Technol. 41(4–5), 1–4 (2000).

    CAS  Google Scholar 

  109. E. V. Münch, K. Barr, S. Watts, and J. Keller, Suspended carrier technology allows upgrading high-rate activated sludge plants for nitrogen removal via process intensification. Water Sci. Technol. 41(4–5), 5–12 (2000).

    Google Scholar 

  110. J. P. Kramer, J. W. Wouters, M. P. M. Noordink, D. M. E. Anink, and J. M. Janus, Dynamic denitrificaion of 3600 m3/h sewage effluent by moving bed biofiltration. Water Sci. Technol. 41, 29–33 (2000).

    CAS  Google Scholar 

  111. M. Payraudeau, C. Paffoni, and M. Gousailles, Tertiary nitrification in an up flow biofilter on floating media: influence of temperature and COD load. Water Sci. Technol. 41(4–5), 21–27.

    Google Scholar 

  112. C. T. Frijters, S. Vellinga, T. Jorna, and R. Mulder, Extensive nitrogen removal in a new type of airlift reactor. Water Sci. Technol. 41(4–5), 469–476.

    Google Scholar 

  113. P. Chudoba, M. Pannier, A. Truc, and R. Pujol, A new fixed-film mobil bed bioreactor for denitrification of wastewaters. Water Sci. Technol. 38(8–9), 233–240.

    Google Scholar 

  114. K. F. Janning, X. Le Tallec, and P. Harremoës, Hydrolysis of organic wastewater particles in laboratory scale and pilot scale biofilm reactors under anoxic and aerobic conditions. Water Sci. Technol. 38, 8–9 (1998).

    Google Scholar 

  115. O. Turk and D. S. Mavinic, Maintaining nitrite build up in a system acclimated to free ammonia. Water Res. 23, 1383–1388 (1989).

    Article  CAS  Google Scholar 

  116. C. Hellinga, A. A. J. C. Schellen, J. W., Mulder, M. C. Van Loosdrecht, and J. J. Heijnen, The SHARON process; an innovative method for nitrogen removal from ammonium rich wastewater. Water Sci. Technol. 37(9), 135–142 (1997).

    Google Scholar 

  117. C. Hellinga, M. C. M. van Loosdrecht, and J. J. Heijnen, Model based design of a novel process for nitrogen removal from concentrated flows. Mathematical and Computer Modelling of Dynamical System. 5, 351–371 (1999).

    Article  Google Scholar 

  118. D. Patureau, N. Bernet, T. Bouchez, P. Dabert, J. P. Delgenes, and R. Moletta, Biological nitrogen removal in a single aerobic reactor by association of a nitrifying ecosystem to an aerobic denitri-fier, Microvirgula aerodenitrifican. J. Mol. Catalysis B: Enzymatic. 5(1–4), 435–439 (1998).

    Article  CAS  Google Scholar 

  119. N. Wrage G. L. Velthof M. L. van Beusichem, and O. Oenema, Role of nitrifier denitrification in the production of nitrous oxide. Soil Biol. Biochem. 33(12–13), 1723–1732 (2001).

    Article  CAS  Google Scholar 

  120. T. C. Zhang and D. G. Lampe, Sulfur: limestone autotrophic denitrification processes for treat¬ment of nitrate-contaminated water: batch experiments. Water Res. 33(3), 599–608 (1999).

    Article  CAS  Google Scholar 

  121. K. Kimura, M. Nakamura, and Y. Watanabe Nitrate removal by a combination of elemental sulfur-based denitrification and membrane filtration. Water Res. 36(7), 1758–1766 (2002).

    Article  CAS  Google Scholar 

  122. D. Castignetti, D. Palutsis, and J. Turley, An examination of proton translocation and energy conservation during heterotrophic nitrification. FEMS Microbiol. Lett. 54(1–3), 175–181 (1990).

    Article  CAS  Google Scholar 

  123. M. Daum, W. Zimmer, H. Papen, K. Kloos, K. Nawrath, and H. Bothe, Physiological and molec¬ular biological characterization of ammonia oxidation of the heterotrophic nitrifier Pseudomonas putida, Curr. Microbiol. 37(4), 281–288 (1998).

    Article  CAS  Google Scholar 

  124. D. Castignetti, Bioenergetic examination of the heterotrophic nitrifier-denitrifier Thiosphaera pantotropha. Antonie Van Leeuwenhoek. 58(4), 283–289 (1990).

    Article  CAS  Google Scholar 

  125. A. B. Gupta, Thiosphaera pantotropha: a sulphur bacterium capable of simultaneous het-erotrophic nitrification and aerobic denitrification, Enzyme Microbial Technol. 21(8), 589–595 (1997).

    Article  CAS  Google Scholar 

  126. A. B. Gupta and S. K. Gupta, Simultaneous carbon and nitrogen removal in a mixed culture aerobic RBC biofilm. Water Res. 33(2), 555–561 (1999).

    Article  CAS  Google Scholar 

  127. S. K. Toh, R. I. Webb, and N. J. Ashbolt, Enrichment of autotrophic anaerobic ammonium-oxidizing consortia from various wastewaters. Microbiol. Ecol. 43,154–167 (2002).

    Article  CAS  Google Scholar 

  128. M. S. M. Jetten, Improved nitrogen removal by application of new nitrogen-cycle bacteria. Rev. Environ. Sci. Biol./Technol. 1, 51–63 (2002).

    Article  CAS  Google Scholar 

  129. M. S. Jetten, M. Wagner, J. Fuerst, M. van Loosdrecht, G. Kuenen, and M. Strous, Microbiology and application of the anaerobic ammonium-oxidation (anammox) process. Curr. Opin. Biotech-nol. 12, 421–428 (2001).

    Google Scholar 

  130. A. Mulder, A. A. van der Graaf, L. A. Robertson, and J. G. Kuenen, Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor. FEMS Microbiol. Ecol. 16, 177–183 (1995).

    Article  CAS  Google Scholar 

  131. A. A. Van de Graaf, A. Mulder, P. de Bruijin, M. S. M. Jetten, L. A. Robertson, and J. G. Kuenen, Autotrophic growth of anaerobic ammonium-oxidizing micro-organisms in a fluidized bed reactor. Microbiol. 142, 2187–2196 (1996).

    Article  Google Scholar 

  132. M. Strous, Anammox and nitrification. In Microbiology of anaerobic ammonium oxidation. PhD thesis, 63–81. ISBN 90-9013621-5, the Netherlands (2000).

    Google Scholar 

  133. J. Schmidt, E. Bock, and M. S. M Jetten, Ammonia oxidation by Nitrosomonas eutropha with NO2 as oxidant that is not inhibited by acetylene, Microbiol. (UK) 147, 2247–2253 (2001).

    CAS  Google Scholar 

  134. M. Strous, J. G. Kunen, and M. S. M. Jetten Key physiology of anaerobic ammonium oxidation. Appl. Environ. Microbiol. 65, 3248–3250 (1999).

    CAS  Google Scholar 

  135. U. Van Dongen, M. S. M. Jetten, and M. S. M. van Loosdreche, The Sharon-anammox process for the treatment of ammonium rich wastewater. Water Sci. Technol. 44, 153–160 (2001).

    Google Scholar 

  136. C. Helmer, S. Kunst, S. Jureschko, M. C. Schmid, K. H. Schleifer, and M. Wagner, Nitrogen loss in a nitrifying biofilm system. Water Sci. Technol. 39, 13–21 (1999).

    CAS  Google Scholar 

  137. P. M. Wood, Autotrophic and heterotrophic mechanisms for ammonia oxidation. Soil Use and Management, 6(2), 78–79 (1990).

    Article  Google Scholar 

  138. B. De Heyder, T. Vanelst, H. Vanlangenhove, and W. Verstraete, Enhancement of ethane removal from waste gas by stimulating nitrification. Biodegradation. 8, 21–30 (1997).

    Article  Google Scholar 

  139. H. van Limbergen, E. M. Top, and W. Verstraete, Bioaugmentation in activated sludge: current features and future perspectives. Appl. Microbiol. Biotechnol. 50(1), 16–23 (1998).

    Article  Google Scholar 

  140. A. F. Gaudy and E. T. Gaudy Microbiology for Environmental Scientists and Engineers. McGraw-Hill, Singapore (1980).

    Google Scholar 

  141. S. Juretschko, G. Timmermann, M. Schmid, K. H. Schleifer, A. Pommerening-Roser, H. P. Koops, and M. Wagner, Combined molecular and conventional analyses of nitrifying bacterium diversity in activated sludge: Nitrosococcus mobillis and Nitrospira-like bacteria as dominant populations. Appl. Environ. Microbiol. 64, 3042–3051 (1998).

    CAS  Google Scholar 

  142. H. M. Dionisi, A. C. Layton, G. Harm, I. R. Gregory, K. G. Robinson, and G. S. Sayler, Quantification of Nitrosomonas oligotropha-like ammonia-oxidizing bacteria and Nitrospira spp. From full-scale wastewater treatment plants by competitive PCR. Appl. Environ. Microbiol. 68, 245–253 (2002).

    Article  CAS  Google Scholar 

  143. G. Tchobanoglous, F. L. Burton, and H. D. Stensel (ed.), Wastewater Engineering: Treatment and Reuse. Fourth Edition, McGraw-Hill Companies, Inc., New York (2003).

    Google Scholar 

  144. L. K. Wang, N. K. Shammas, and Y. T. Hung (eds.), Advanced Biological Treatment Processes. Humana Press, Totowa, NJ (2009).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lin, YM., Tay, JH., Liu, Y., Hung, YT. (2009). Biological Nitrification and Denitrification Processes. In: Wang, L.K., Pereira, N.C., Hung, YT. (eds) Biological Treatment Processes. Handbook of Environmental Engineering, vol 8. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-156-1_13

Download citation

Publish with us

Policies and ethics