Skip to main content

Value-Added Biotechnological Products from Organic Wastes

Part of the Handbook of Environmental Engineering book series (HEE,volume 10)

Abstract

Different organic wastes may be used as raw material for value-added products. The chapter represents organic wastes as a raw material for biotechnological transformation and gives brief descriptions of biotechnologies for transformation of organic wastes into such value-added products as enzymes, organic acids, flavours, polysaccharides, mushrooms, biodegradable plastics, animal feed, biomass for bioremediation, dietary fibers, pharmaceuticals, gibberellic acid, chemicals (acetone and butanol, glycerol) and fuel (ethanol and hydrogen). It describes microorganisms, which can be used for biosynthesis of value-added products, and highlights most essential factors affecting the process of their biosynthesis. Examples of biotechnologies for biotransformation of organic wastes into value-added products are presented. Such environmental biotechnologies as bioconversion of organic waste into compost or fertilizer, recovery of metals from solid and liquid wastes, recovery of phosphate and ammonium from liquid wastes by application of iron-reducing and iron-oxidizing bacteria are described in the chapter.

Key Words

  • organic waste
  • biotransformation
  • biotechnological products
  • environmental biotechnology

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-60327-140-0_8
  • Chapter length: 52 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-1-60327-140-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Hardcover Book
USD   299.99
Price excludes VAT (USA)
Fig. 8.1
Fig. 8.2
Fig. 8.3
Fig. 8.4
Fig. 8.5
Fig. 8.6

References

  1. Paredes-López O, Alpuche-Solís A (1991) In: Martin AM (ed) Bioconversion of waste materials to industrial products. Elsevier, New York, pp 117–145

    Google Scholar 

  2. Laufenberg G, Kunz B, Nystroem M (2003) Bioresour Technol 87:167–198

    CrossRef  Google Scholar 

  3. Endreß H-U (2000) Fruit Process 10:273–276

    Google Scholar 

  4. Schieber A, Stintzing FC, Carle R (2001) Trends Food Sci Technol 12:401–413

    CrossRef  Google Scholar 

  5. Nakata B (1994) Biocycle 4:61

    Google Scholar 

  6. Carvalheiro F, Roseiro JC, Collaco MTA (1994) Process Biochem 29:601–605

    CrossRef  Google Scholar 

  7. Tran CT, Mitchell DA (1995) Biotechnol Lett 17:1107–1110

    CrossRef  Google Scholar 

  8. Haddadin MS, Abdulrahim SM, Al-Khawaldeh GY, Robinson RK (1999) J Chem Technol Biotechnol 74:613–618

    CrossRef  Google Scholar 

  9. Tekin AR, Dalgic AC (2000) Resour Conserv Recycling 30:301–313

    CrossRef  Google Scholar 

  10. Clemente A, Sanchez-Vioque R, Vioque J, Bautista J, Millan F (1997) Food Biotechnol 11:273–291

    CrossRef  Google Scholar 

  11. Zheng Z, Shetty K (2000) Process Biochem 35:825–830

    CrossRef  Google Scholar 

  12. Manthey JA, Grohmann K (1996) J Agric Food Chem 44:811–814

    CrossRef  Google Scholar 

  13. Dronnet VM, Axelos MAV, Renard CM, Thibault JF (1998) Carbohydr Polym 35:29–37

    CrossRef  Google Scholar 

  14. Sriroth K, Chollakup R, Chotineeranat S, Piyachomkwan K, Oates CG (2000) Bioresour Technol 71:63–69

    CrossRef  Google Scholar 

  15. Pandey A, Soccol CR, Mitchel D (2000) Process Biochem 35:1153–1169

    CrossRef  Google Scholar 

  16. Martins ES, Silva D, Da Silva R, Gomes E (2002) Process Biochem 37:949–954

    CrossRef  Google Scholar 

  17. De Gregorio A, Mandalari G, Arena N, Nucita F, Tripodo MM, Lo Curto RB (2002) Bioresour Technol 83:89–94

    CrossRef  Google Scholar 

  18. Kashyap DR, Soni SK, Tewari R (2003) Bioresour Technol 88:251–254

    CrossRef  Google Scholar 

  19. Selvakumar P, Pandey A (1999) Process Biochem 34:851–855

    CrossRef  Google Scholar 

  20. Gupte A, Madamwar D (1997) Biotechnol Prog 13:166–168

    CrossRef  Google Scholar 

  21. Krishna C, Chandrasekaran M (1996) Appl Microbiol Biotechnol 46:106–111

    CrossRef  Google Scholar 

  22. Krishma C (1999) Bioresour Technol 69:231–239

    CrossRef  Google Scholar 

  23. Selvakumar P, Ashakumary L, Pandey A (1998) Bioresour Technol 65:83–85

    CrossRef  Google Scholar 

  24. Shamala TR, Sreekantiah KR (1986) Enzyme Microb Technol 8:178–182

    CrossRef  Google Scholar 

  25. Regalado C, Garcia-Almendarez BE, Venegas-Barrera LM, Tellez-Jurado A, Rodriguez-Serrano G, Huerta-Ochoa S, Whitaker JR (2000) J Sci Food Agric 80:1343–1350

    CrossRef  Google Scholar 

  26. Garg N, Hang YD (1995) J Food Sci Technol 32:19–21

    Google Scholar 

  27. Woiciechowski AL, Soccol CR, Ramos LP, Pandey A (1999) Process Biochem 34:949–955

    CrossRef  Google Scholar 

  28. Lu MY, Maddox IS, Brooks JD (1998) Process Biochem 33:117–123

    CrossRef  Google Scholar 

  29. Tran CT, Sly LI, Mitchell DA (1998) World J Microbiol Biotechnol 14:399–404

    CrossRef  Google Scholar 

  30. Nampoothiri KM, Pandey A (1996) Biotechnol Lett 16:199–204

    CrossRef  Google Scholar 

  31. Balakrishnan K, Pandey A (1996) J Sci Ind Res 55:365–372

    Google Scholar 

  32. Ohno A, Ano T, Shoda M (1996) Process Biochem 31:801–806

    CrossRef  Google Scholar 

  33. Bandelier S, Renaud R, Durand A (1997) Process Biochem 32:141–145

    CrossRef  Google Scholar 

  34. Tomasini A, Fajardo C, Barrios-Gonzalez J (1997) World J Microbiol Biotechnol 13:203–206

    CrossRef  Google Scholar 

  35. Haddadin MSY, Abu-Resh IM, Haddadin FAS, Robinson RK (2001) Bioresour Technol 78: 225–230

    CrossRef  Google Scholar 

  36. Rhishipal R, Philip R (1998) Bioresour Technol 65:225–256

    CrossRef  Google Scholar 

  37. Bhalla TC, Joshi M (1994) World J Microbiol Biotechnol 10:116–117

    CrossRef  Google Scholar 

  38. Barnett C, Smith A, Scanlon B, Israilides CJ (1999) Carbohydr Polym 38:203–209

    CrossRef  Google Scholar 

  39. Israilides C, Scanlon B, Smith A, Harding SE, Jumel K (1994) Carbohydr Polym 25:203–209

    CrossRef  Google Scholar 

  40. Stredansky M, Conti E (1999) Process Biochem 34:581–587

    CrossRef  Google Scholar 

  41. López MJ, Moreno J, Ramos-Cormenzana A (2001) Water Res 35:1828–1830

    CrossRef  Google Scholar 

  42. Bonnin E, Grange H, Lesage-Meessen L, Astherb M, Thibault J-F (2000) Carbohydr Polym 41:143–151

    CrossRef  Google Scholar 

  43. Medeiros ABP, Pandey A, Freitas RJS, Christen P, Soccol CR (2000) Biochem Eng J 6:33–39

    CrossRef  Google Scholar 

  44. Tanaka K, Hilary ZD, Ishizaki A (1999) J Biosci Bioeng 87:642–646

    CrossRef  Google Scholar 

  45. Nigam JN (2000) J Biotechnol 80:189–193

    CrossRef  Google Scholar 

  46. Zhu Y, Wu Z, Yang S-T (2002) Process Biochem 38:657–666

    CrossRef  Google Scholar 

  47. Yetis M, Gündüz U, Eroglu I, Yücel M, Türker L (2000) Int J Hydrogen Energy 25:1035–1041

    CrossRef  Google Scholar 

  48. Yokoi H, Maki R, Hirose J, Hayashi S (2002) Biomass Bioenergy 22:389–395

    CrossRef  Google Scholar 

  49. Ueno Y, Otsuka S, Morimoto M (1996) J Ferment Bioeng 82:194–197

    CrossRef  Google Scholar 

  50. Kalia VC, Jain SR, Kumar A, Joshi AP (1994) World J Microbiol Biotechnol 10:24–27

    CrossRef  Google Scholar 

  51. Singh SP, Srivastava SC, Pandey KD (1994) Int J Hydrogen Energy 19:437–440

    CrossRef  Google Scholar 

  52. Makkar RS, Cameotra SS (1997) J Am Oil Chem Soc 74:887–889

    CrossRef  Google Scholar 

  53. Fox SL, Bala GA (2000) Bioresour Technol 75:253–240

    CrossRef  Google Scholar 

  54. Rusendi D, Sheppard JD (1995) Bioresour Technol 54:191–196

    CrossRef  Google Scholar 

  55. Mathur SP (1991) In: Martin AM (ed) Bioconversion of waste materials to industrial products. Kluwer, Dordrecht, pp 147–183

    Google Scholar 

  56. Pandey A (2003) Biochem Eng J 13:81–84

    CrossRef  Google Scholar 

  57. Anupama, Ravindra P (2000) Biotechnol Adv 18:459–479

    CrossRef  Google Scholar 

  58. Suryanarayan S (2003) Biochem Eng J 13:189–195

    CrossRef  Google Scholar 

  59. Durand A (2003) Biochem Eng J 13:113–125

    CrossRef  Google Scholar 

  60. Mitchell DA, Krieger N, Stuart DM, Pandey A (2000) Process Biochem 35:1211–1225

    CrossRef  Google Scholar 

  61. Godfrey T, West S (1996) In: Godfrey T, West S (eds) Industrial enzymology. Stockholm Press, New York, pp 1–17

    Google Scholar 

  62. Berovic M, Ostroversnik H (1997) J Biotechnol 53:47–53

    CrossRef  Google Scholar 

  63. Hang YD, Woodams EE (1994) Lebensmittel-Wissenschaft und-Technologie 27:194–196

    CrossRef  Google Scholar 

  64. Moresi M, Petruccioli M, Federici F (1991) Appl Microbiol Biotechnol 34:742–748

    CrossRef  Google Scholar 

  65. Cavalitto SF, Arcas JA, Hours RA (1996) Biotechnol Lett 18:251–256

    CrossRef  Google Scholar 

  66. Garzón CG, Hours RA (1992) Bioresour Technol 39:93–95

    CrossRef  Google Scholar 

  67. Bailly M (2002) Desalination 144:157–162

    CrossRef  Google Scholar 

  68. Shojaosadati SA, Babaeipour V (2002) Process Biochem 37:909–914

    CrossRef  Google Scholar 

  69. Hofvendahl K, Hahn-Hägerdal B (2000) Enzyme Microb Technol 26:87–107

    CrossRef  Google Scholar 

  70. Mehaia MA, Cheryan M (1986) Enzyme Microb Technol 8:289–292

    CrossRef  Google Scholar 

  71. Armani A (1998) World J Microbiol Biotechnol 14:529–534

    CrossRef  Google Scholar 

  72. Fitzpatrick JJ, Ahrens M, Smith S (2001) Process Biochem 36:671–675

    CrossRef  Google Scholar 

  73. Mehaia MA, Cheryan M (1987) Appl Biochem Biotechnol 14:21–27

    CrossRef  Google Scholar 

  74. Vlaemynck G, Traest P, De Vilder J (1989) Medelingen van de Faculteit Landbouwwetenschappen Rijksuniversiteit Gent 54:1369–1376

    Google Scholar 

  75. Roukas T, Kotzekidou P (1998) Enzyme Microb Technol 22:199–204

    CrossRef  Google Scholar 

  76. Silva EM, Yang ST (1995) J Biotechnol 41:59–70

    CrossRef  Google Scholar 

  77. Krischke W, Schroder M, Trosch W (1991) Appl Microbiol Biotechnol 34:573–578

    CrossRef  Google Scholar 

  78. Venkatesh KV, Okos MR, Wankat PC (1993) Process Biochem 28:231–241

    CrossRef  Google Scholar 

  79. Tyagi RD, Kluepfel D, Couillard D (1991) In: Martin AM (ed) Bioconversion of waste materials to industrial products. Elsevier, Essex, UK, pp 313–333

    Google Scholar 

  80. Garde A, Jonsson G, Schmidt AS, Ahring BK (2000) Bioresour Technol 81:39–43

    Google Scholar 

  81. McCaskey TA, Zhou SD, Britt SN, Strickland R (1994) Appl Biochem Biotechnol 45–46:555–563

    CrossRef  Google Scholar 

  82. Ruengruglikit C, Hang YD (2003) Lebensmittel-Wissenschaft und-Technologie 36:573–575

    CrossRef  Google Scholar 

  83. Tejayadi S, Cheryan M (1995) Appl Microbiol Biotechnol 43:242–248

    CrossRef  Google Scholar 

  84. Kurbanoglu EB, Kurbanoglu NI (2003) FEMS Microbiol Lett 225:29–34

    CrossRef  Google Scholar 

  85. Pauli T, Fitzpatrick JJ (2002) Process Biochem 38:1–6

    CrossRef  Google Scholar 

  86. Hartmann H (1996) Perfumer Flavorist 21:21–24

    Google Scholar 

  87. Miwaukee WI Flavors and fragrances. Aldrich Chemical Co., USA

    Google Scholar 

  88. Thibault JF, Asther M, Ceccaldi BC, Couteau D, Delattre M, Duarte JC, Faulds CB, Heldt-Hansen HP, Kroon P, Lesage-Meessen L, Micard V, Renard CMGC, Tuohy M, Van Hulle S, Williamson G (1998) Lebensmittel-Wissenschaft und-Technologie 31:530–536

    CrossRef  Google Scholar 

  89. Christen P, Meza JC, Revah S (1997) Mycol Res 101:911–919

    CrossRef  Google Scholar 

  90. Bramorski A, Christen P, Ramirez M, Soccol CR, Revah S (1998) Biotechnol Lett 20:359–362

    CrossRef  Google Scholar 

  91. Soares M, Christen P, Pandey A, Soccol CR (2000) Process Biochem 35:857–861

    CrossRef  Google Scholar 

  92. Lomascolo A, Stentelaire C, Asther M, Lesage-Meessen L (1999) Trends Biotechnol 17:282–289

    CrossRef  Google Scholar 

  93. Faulds CB, Williamson G (1995) Appl Microbiol Biotechnol 43:1082–1087

    CrossRef  Google Scholar 

  94. Micard V, Renard CMGC, Thibault J-F (1994) Lebensmittel-Wissenschaft und-Technologie 27:59–66

    CrossRef  Google Scholar 

  95. Sancho AI, Bartolomé B, Gómez-Cordovés C, Williamson G, Faulds CB (2001) J Cereal Sci 34:173–179

    CrossRef  Google Scholar 

  96. Kües U, Liu Y (2000) Appl Microbiol Biotechnol 54:141–152

    CrossRef  Google Scholar 

  97. Bobek P, Galbavy S (1999) Nahrung 43:339–342

    CrossRef  Google Scholar 

  98. Wasser SP (2002) Appl Microbiol Biotechnol 60:258–274

    CrossRef  Google Scholar 

  99. Manzi P, Aguzzi A, Pizzoferrato L (2001) Food Chem 73:321–325

    CrossRef  Google Scholar 

  100. Hernández D, Sánchez JE, Yamasaki K (2003) Bioresour Technol 90:145–150

    CrossRef  Google Scholar 

  101. Chiu S-W, Law S-C, Ching M-L, Cheung K-W, Chen M-J (2000) J Gen Appl Microbiol 46:269–282

    CrossRef  Google Scholar 

  102. Villas-Bôas SG, Esposito E, Mitchell DA (2002) Anim Feed Sci Technol 98:1–12

    CrossRef  Google Scholar 

  103. Hoogerheide C, Yamada K, Littlehailes JD, Ohno K (1979) Int Union Pure Appl Chem 51: 2537–2560

    Google Scholar 

  104. Choi MH, Park YP (1999) Bioresour Technol 70:231–236

    CrossRef  Google Scholar 

  105. Choi MH, Ji GE, Koh KH, Ryu YW, Jo DH, Park YH (2002) Bioresour Technol 83:251–253

    CrossRef  Google Scholar 

  106. Chanda S, Chakrabatri S (1996) Bioresour Technol 57:51–54

    CrossRef  Google Scholar 

  107. Hang YD, Woodams EE, Hang LE (2003) Bioresour Thechnol 86:305–307

    CrossRef  Google Scholar 

  108. Stabnikova O, Wang JY, Ding HB, Tay JH (2005) Bioresour Technol 96:747–751

    CrossRef  Google Scholar 

  109. Ferrera J, Paeza G, Marmola Z, Ramonesa E, Garciab H, Forsterc CF (1996) Bioresour Technol 57:55–60

    CrossRef  Google Scholar 

  110. Ghanem KM (1992) Microbiologia 8:39–43

    Google Scholar 

  111. Gálvez A, Ramírez MJ, García-Garibay M (1990) Arch Latinoam Nutr 40:252–262

    Google Scholar 

  112. Pointing SB (2001) Appl Microbiol Biotechnol 57:20–33

    CrossRef  Google Scholar 

  113. Reddy CA (1995) Curr Opin Biotechnol 6:320–328

    CrossRef  Google Scholar 

  114. Roldán-Carrillo T, Rodríguez-Vázquez R, Díaz-Cervantes D, Vázquez-Torres H, Manzur-Guzmán A, Torres-Domínguez A (2003) Bioresour Technol 86:1–5

    CrossRef  Google Scholar 

  115. Morgan P, Lee S, Stephen S, Lewis T, Sherpard A, Watkinson R (1993) Soil Biol Biochem 25:279–287

    CrossRef  Google Scholar 

  116. Eggen T, Majcherczyk A (1998) Int Biodeterior Biodegradation 41:111–117

    CrossRef  Google Scholar 

  117. Gramss G, Voigt KD, Kirsche B (1999) Biodegradation 10:51–62

    CrossRef  Google Scholar 

  118. Bingham SA, Day NE, Luben R, Ferrari P, Slimani N, Norat T, Clavel-Chapelon F, Kesse E, Nieters A, Boeing H, Tjønneland A, Overvad K, Martinez C, Dorronsoro M, Gonzalez CA, Key TJ, Trichopoulou A, Naska A, Vineis P, Tumino R, Krogh V, Bueno-de-Mesquita HB, Peeters PHM, Berglund G, Hallmans G, Lund E, Skeie G, Kaaks R, Riboli E (2003) Lancet 361: 1496–1501

    CrossRef  Google Scholar 

  119. Ellaiah P, Srinivasulu B, Adinarayana K (2004) Process Biochem 39:529–534

    CrossRef  Google Scholar 

  120. Adinarayana K, Prabhakar T, Srinivasulu V, Anitha Rao M, Jhansi Lakshmi P, Ellaiah P (2003) Process Biochem 39:171–177

    CrossRef  Google Scholar 

  121. Yang SS (1996) Renewable Energy 9:976–979

    CrossRef  Google Scholar 

  122. Ramana Murthy MV, Mohan EVS, Sadhukhan AK (1999) Process Biochem 34:269–280

    CrossRef  Google Scholar 

  123. Demain AL (1999) Appl Microbiol Biotechnol 52:455–463

    CrossRef  Google Scholar 

  124. Barrios-González J, Castillo TE, Mejía A (1993) Biotechnol Adv 11:525–537

    CrossRef  Google Scholar 

  125. Ohno A, Ano T, Shoda M (1993) J Ferment Bioeng 75:23–27

    CrossRef  Google Scholar 

  126. Robinson T, Singh D, Nigam P (2001) Appl Microbiol Biotechnol 55:284–289

    CrossRef  Google Scholar 

  127. Szakacs G, Morovjan G, Tengerdy RP (1998) Biotechnol Lett 20:411–415

    CrossRef  Google Scholar 

  128. Dürre P (1998) Appl Microbiol Biotechnol 49:639–648

    CrossRef  Google Scholar 

  129. Voget CE, Mignone CF, Ertola RJ (1985) Biotechnol Lett 7:43–46

    CrossRef  Google Scholar 

  130. Grobben NG, Eggink G, Cuperus EP, Huizing HJ (1993) Appl Microbiol Biotechnol 39:494–498

    CrossRef  Google Scholar 

  131. Sombrutai W, Takagi M, Yoshida T (1996) J Ferment Bioeng 81:543–547

    CrossRef  Google Scholar 

  132. Jesse TW, Ezeji TC, Qureshi N, Blaschek HP (2002) J Ind Microbiol Biotechnol 29:117–123.

    CrossRef  Google Scholar 

  133. Claassen PA, Budde MA, López-Contreras AM (2000) J Mol Microbiol Biotechnol 2:39–44

    Google Scholar 

  134. Gapes JR, Nimcevic D, Friedl A (1996) Appl Environ Microbiol 62:3210–3219

    Google Scholar 

  135. Schoutens GH, Kossen NWF (1986) Chem Eng J 32:B51–B56

    CrossRef  Google Scholar 

  136. Mostafa NA (2001) Energy Conversion Manag 42:1133–1142

    CrossRef  Google Scholar 

  137. Jenq W, Speckman RA, Crang RE, Steinberg MP (1989) Appl Environ Microbiol 55:573–578

    Google Scholar 

  138. Mostafa NA, Magdy YH (1998) Energy Conversion Manag 39:671–677

    CrossRef  Google Scholar 

  139. Kurbanoglu EB, Kurbanoglu NI (2004) Energy Conversion Manag 45:225–234

    CrossRef  Google Scholar 

  140. Sahoo DK, Agarwal GP (2001) Process Biochem 36:839–846

    CrossRef  Google Scholar 

  141. Mielenz JR (2001) Curr Opin Microbiol 4:324–329

    CrossRef  Google Scholar 

  142. Nigam JN (1999) J Biotechnol 72:197–202

    CrossRef  Google Scholar 

  143. Gibbons WR (1989) J Ferment Bioeng 67:258–265

    CrossRef  Google Scholar 

  144. Srivastava S, Modi DR, Garg SK (1997) Bioresour Technol 60:263–265

    CrossRef  Google Scholar 

  145. Doran JB, Aldrich HC, Ingram LO (1994) Biotechnol Bioeng 44:240–247

    CrossRef  Google Scholar 

  146. Golias H, Dumsday GJ, Stanley GA, Pamment NB (2002) J Biotechnol 96:155–168

    CrossRef  Google Scholar 

  147. Martín C, Galbe M, Wahlbom CF, Hahn-Hägerdal B, Jönsson LJ (2002) Enzyme Microb Technol 31:274–282

    CrossRef  Google Scholar 

  148. Bothast RJ, Nichols NN, Dien BS (1999) Biotechnol Prog 15:867–875

    CrossRef  Google Scholar 

  149. Jeoh T, Agblevor FA (2001) Biomass Bioenergy 21:109–120

    CrossRef  Google Scholar 

  150. Lee J (1997) J Biotechnol 56:1–24

    CrossRef  Google Scholar 

  151. Lindsay SE, Bothast RJ, Ingram LO (1995) Appl Microbiol Biotechnol 43:70–75

    CrossRef  Google Scholar 

  152. Lawford HG, Rousseau JD (2003) Appl Biochem Biotechnol 105–108:457–469

    CrossRef  Google Scholar 

  153. Wood BE, Ingram LO (1992) Appl Environ Microbiol 58:2103–2110

    Google Scholar 

  154. Eroǧlu E, Gündüz U, Yücel M, Türker L, Eroglu ğ (2004) Int J Hydrogen Energy 29:163–171

    CrossRef  Google Scholar 

  155. Fascetti E, D’Addario E, Todini O, Robertiello A (1998) Int J Hydrogen Energy 23:753–760

    CrossRef  Google Scholar 

  156. Sasikala K, Ramana CV (1991) Indian J Exp Biol 29:74–75

    Google Scholar 

  157. Zhu H, Suzuki T, Tsygankov AA, Asada Y, Miyake J (1999) Int J Hydrogen Energy 24:305–310

    CrossRef  Google Scholar 

  158. Das D, Veziroǧlu TN (2001) Int J Hydrogen Energy 26:13–28

    CrossRef  Google Scholar 

  159. Wang CC, Chang CW, Chu CP, Lee DJ, Chang B-V, Liao CS (2003) J Biotechnol 102:83–92

    CrossRef  Google Scholar 

  160. Lay JJ, Lee YJ, Noike T (1999) Water Res 33:2579–2586

    CrossRef  Google Scholar 

  161. Sparling R, Risbey D, Poggi-Varaldo HM (1997) Int J Hydrogen Energy 22:563–566

    CrossRef  Google Scholar 

  162. Ueno Y, Kawai T, Sato S, Otsuka S, Morimoto M (1995) J Ferment Bioeng 79:395–397

    CrossRef  Google Scholar 

  163. Nielsen AT, Amandusson H, Bjorklund R, Dannetun H, Ejlertsson J, Ekedahl L-G, Lundström I, Svensson BH (2001) Int J Hydrogen Energy 26:547–550

    CrossRef  Google Scholar 

  164. Mizuno O, Ohara T, Shinya M, Noike T (2000) Water Sci Technology 42:345–350

    Google Scholar 

  165. Staler RA, Frederickon J (2001) Resour Conserv Recycling 32:359–374

    CrossRef  Google Scholar 

  166. Renkow M, Rubin AR (1998) J Environ Manag 53:339–347

    CrossRef  Google Scholar 

  167. Wang JY, Stabnikova O, Tay STL, Ivanov V, Tay JH (2003) World J Microbiol Biotechnol 19:427–432

    CrossRef  Google Scholar 

  168. Wang JY, Stabnikova O, Ivanov V, Tay STL, Tay JH (2003) Waste Manag Res 21:405–415

    CrossRef  Google Scholar 

  169. Wang JY, Stabnikova O, Tay STL, Ivanov V, Tay JH (2004) Water Sci Technol 49:147–154

    Google Scholar 

  170. Stabnikova O, Ding HB, Tay JH, Wang JY (2005) Waste Manag Res 23(1):39–47

    CrossRef  Google Scholar 

  171. Ivanov VN, Wang JY, Stabnikova OV, Tay STL, Tay JH (2004) J Appl Microbiol 96:641–647

    CrossRef  Google Scholar 

  172. Holmes DS (1991) In: Martin AM (ed) Bioconversion of waste materials to industrial products. Elsevier, London, pp 441–474

    Google Scholar 

  173. Jaworska MM, Guibal E (2003) Waste Manag 23:339–344

    CrossRef  Google Scholar 

  174. Morin KA, Hutt NM (2001) Waste Manag 21:185–190

    CrossRef  Google Scholar 

  175. Lizama HM (2001) Int J Miner Process 62:257–269

    CrossRef  Google Scholar 

  176. Wang J (2002) Process Biochem 37:847–850

    CrossRef  Google Scholar 

  177. Volesky B, Holan ZR (1995) Biotechnol Prog 11:235–250

    CrossRef  Google Scholar 

  178. Salinas E, Elorza de Orellano M, Rezza I, Martinez L, Marchesvky E, Sanz de Tosetti M (2000) Bioresour Technol 72:107–112

    CrossRef  Google Scholar 

  179. Strandberg GW, Schmate SE, Parrott JR (1981) Appl Environ Microbiol 41:237–245

    Google Scholar 

  180. Galun M, Galun E, Siegel BZ, Keller P, Lehr H, Siegel SM (1987) Water Air Soil Pollut 33: 359–371

    CrossRef  Google Scholar 

  181. Kapoor A, Viraraghavan T (1998) Water Res 32:1968–1977

    CrossRef  Google Scholar 

  182. Bayoumy ME, Bewtra JK, Ali HI, Biswas N (1999) Water Air Soil Pollut 112:67–84

    CrossRef  Google Scholar 

  183. Foucher S, Brunet FB, Ignatiadis I, Morin D (2001) Chem Eng Sci 56:1639–1645

    CrossRef  Google Scholar 

  184. Hulshoff PLW, Lens PNL, Weijma J, Stams AJM (2001) Water Sci Technol 44:67–76

    Google Scholar 

  185. Tuppurainen KO, Vaisanen AO, Rintala JA (2002) Miner Eng 15:847–852

    CrossRef  Google Scholar 

  186. Utgikar VP, Harmon SM, Chaudhary N, Tabak HH, Govind R, Haines JR (2002) Environ Toxicol 17:40–48

    CrossRef  Google Scholar 

  187. Mohanty SS, Das T, Mishra SP, Chaudhury GR (2000) Biometals 13:73–76

    CrossRef  Google Scholar 

  188. Tabak HH, Scharp R, Burckle J, Kawahara FK, Govind R (2003) Biodegradation 14:423–436

    CrossRef  Google Scholar 

  189. Jung JY, Chung YC, Ahn DH (1997) Biotechnol Tech 11:137–140

    CrossRef  Google Scholar 

  190. Jong T, Parry DL (2003) Water Res 37:3379–3389

    CrossRef  Google Scholar 

  191. Kaksonen AH, Franzmann PD, Puhakka JA (2003) Biodegradation 14:207–217

    CrossRef  Google Scholar 

  192. Chardin B, Giudici-Orticoni M-T, De Luca G, Guigliarelli B, Bruschi M (2003) Appl Microbiol Biotechnol 63:315–321

    CrossRef  Google Scholar 

  193. Michel C, Giudici-Orticoni MT, Baymann F, Bruschi M (2003) Water Air Soil Pollut Focus 3:161–169

    CrossRef  Google Scholar 

  194. Tebo BM, Obraztsova AY (1998) FEMS Microbiol Lett 162:193–198

    CrossRef  Google Scholar 

  195. Fytianos K, Voudrias E, Raikos N (1998) Environ Pollut 101:123–130

    CrossRef  Google Scholar 

  196. Waite TD (2002) Rev Environ Sci Biotechnol 1:9–15

    CrossRef  Google Scholar 

  197. Altinbas M, Yangin C, Ozturk I (2002) Water Sci Technol 46:271–278

    Google Scholar 

  198. Battistoni P, De Angelis A, Prisciandaro M, Boccadoro R, Bolzonella D (2002) Water Res l36:1927–1938

    CrossRef  Google Scholar 

  199. Carlsson H, Aspegren H, Lee N (1997) Water Res l31:1047–1055

    Google Scholar 

  200. Munch EV, Barr K (2001) Water Res 35:151–159

    CrossRef  Google Scholar 

  201. Ivanov V, Wang JY, Stabnikova O, Krasinko V, Stabnikov V, Tay STL, Tay JH (2004) Water Sci Technol 49:421–431

    Google Scholar 

  202. Fredrdrickson JK, Gorby YA (1996) Curr Opin Biotechnol 7:287–294

    CrossRef  Google Scholar 

  203. Lovley DR, Anderson RT (2000) Hydrogeol J 8:77–88

    CrossRef  Google Scholar 

  204. Straub KL, Benz M, Schink B (2001) FEMS Microbiol Ecol 34:181–186

    CrossRef  Google Scholar 

  205. Luu YS, Ramsay JA (2003) World J Microbiol Biotechnol 19:215–225

    CrossRef  Google Scholar 

  206. Nielsen JL, Juretschko S, Wagner M, Nielsen PH (2002) Appl Environ Microbiol 68:4629–4636

    CrossRef  Google Scholar 

  207. Ivanov VN, Stabnikova EV, Stabnikov VP, Kim IS, Zubair A (2002) Appl Biochem Microbiol 38:255–258

    CrossRef  Google Scholar 

  208. Ivanov VN, Stabnikova EV, Shirokih VO (1997) Microbiology 66:337–341

    Google Scholar 

  209. Cornell RM, Schwertmann U (1996) The iron oxide. VCH Publishers, New York, NY

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Stabnikova, O., Wang, JY., Ivanov, V. (2010). Value-Added Biotechnological Products from Organic Wastes. In: Wang, L., Ivanov, V., Tay, JH. (eds) Environmental Biotechnology. Handbook of Environmental Engineering, vol 10. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-140-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-140-0_8

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-58829-166-0

  • Online ISBN: 978-1-60327-140-0

  • eBook Packages: EngineeringEngineering (R0)