Closed Ecological Systems, Space Life Support and Biospherics

Part of the Handbook of Environmental Engineering book series (HEE, volume 10)


This chapter explores the development of a new type of scientific tool – man-made closed ecological systems. These systems have had a number of applications within the past 50 years. They are unique tools for investigating fundamental processes and interactions of ecosystems. They also hold the potentiality for creating life support systems for space exploration and habitation outside of Earth’s biosphere. Finally, they are an experimental method of working with small “biospheric systems” to gain insight into the functioning of Earth’s biosphere. The chapter reviews the terminology of the field, the history and current work on closed ecological systems, bioregenerative space life support and biospherics in Japan, Europe, Russia, and the United States where they have been most developed. These projects include the Bios experiments in Russia, the Closed Ecological Experiment Facility in Japan, the Biosphere 2 project in Arizona, the MELiSSA program of the European Space Agency as well as fundamental work in the field by NASA and other space agencies. The challenges of achieving full closure, and of recycling air and water and producing high-production crops for such systems are discussed, with examples of different approaches being used to solve these problems. The implications for creating sustainable technologies for our Earth’s environment are also illustrated.

Key Words

Life support biospherics bioregenerative food air water recycling microcosm closed ecological systems Bios NASA CEEF Biosphere 2 BIO-Plex 


  1. 1.
    Nelson M, Allen J, Alling A, Dempster WF, Silverstone S (2003) Earth applications of closed ecological systems: relevance to the development of sustainability in our global biosphere. Adv Space Res 31(7):1649–1656CrossRefGoogle Scholar
  2. 2.
    Pechurkin NS (1994) Biospherics: a new science. Life Support Biosph Sci 1(2):73–78Google Scholar
  3. 3.
    Modell M, Spurlock J (1980) Rationale for evaluating a closed food chain for space habitats. In: Cheston TS, Winter DL (eds) Human factors of outer space production. American Astronautical Society Selected Symposium 50Google Scholar
  4. 4.
    Allen J (1991) Biosphere 2: the human experiment. Penguin, New YorkGoogle Scholar
  5. 5.
    Nelson M (1997) Bioregenerative life support for space habitation & extended planetary missions. In: Churchill S (ed) Fundamentals of space sciences, vol 2. Orbit Books, Malabar, FL, pp 315–336Google Scholar
  6. 6.
    Folsome CE (1985) Microbes. In: Snyder D (ed) The biosphere catalogue. Synergetic Press, Santa Fe, NM, pp 51–56Google Scholar
  7. 7.
    Folsome CE, Hanson JA (1986) The emergence of materially closed system ecology. In: Polunin N (ed) Ecosystem theory and application. Wiley, New York, pp 269–288Google Scholar
  8. 8.
    Hanson J (1982) Workshop on closed system ecology Summary report. Jet Propulsion Laboratory Publication #82-64, Pasadena, CAGoogle Scholar
  9. 9.
    Beyers RJ, Odum HT (eds) (1993) Ecological microcosms. Springer, New YorkGoogle Scholar
  10. 10.
    Salisbury FB, Bingham GE, Campbell WF, Carman JG, Bubenheim DL, Yendler B, Jahns G (1995) Growing super-dwarf wheat in Svet on Mir. Life Support Biosph Sci 2:31–39Google Scholar
  11. 11.
    Bugbee B, Salisbury FB (1989) Current and potential productivity of wheat for a controlled environment life support system. Adv Space Res 9(8):5–15CrossRefGoogle Scholar
  12. 12.
    Wheeler RM, Sager J, Prince R, Knott WM, Mackowiak C, Stutte G, Yorio N, Ruffe L, Peterson B, Goins G, Hinkle C, Berry WL (2003) Crop production for advanced life support system – Observations from the Kennedy Space Center Breadboard Project, NASA/TM-2003-211184Google Scholar
  13. 13.
    Wheeler RM, Mackowiak C, Stutte G, Sager J, Yorio N, Ruffe L, Fortson R, Dreschel T, Knott W, Corey KA (1996) NASA’s Biomass Production Chamber: a testbed for bioregenerative life support studies. Adv Space Res 18(45):215–224CrossRefGoogle Scholar
  14. 14.
    Knott W (1990) The CELSS breadboard project: plant production. In: Nelson M, Soffen G (eds) Biological life support systems. Synergetic Press, Tucson, AZ, pp 47–52Google Scholar
  15. 15.
    Bubenheim D (1990) CELSS research and development program. In: Nelson M, Soffen GA (eds) Biological life support systems. Synergetic Press, Oracle, AZ, pp 53–59 (Also in: National Technical Information Service Publication No. NASACP-3094)Google Scholar
  16. 16.
    Gitelson I, Lisovsky G, MacElroy R (2003) Manmade closed ecological systems. Taylor & Francis, London and New YorkGoogle Scholar
  17. 17.
    Pickering KD, Edeen MA (1998) Lunar–Mars Life Support Test Project Phase III water recovery system operation and results. SAE Technical paper series, 981707Google Scholar
  18. 18.
    NASA (National Aeronautics and Space Administration) (2002) Advanced life support project plan; CTDS-ADV-348 Rev C JSC 39168. U.S. National Aeronautics and Space Administration, Houston, TXGoogle Scholar
  19. 19.
    Allen JP, Nelson M, Alling AK (2003) The legacy of Biosphere 2 for the study of biospherics and closed ecological systems. Adv Space Res 31(7):1629–1640CrossRefGoogle Scholar
  20. 20.
    Nelson M, Dempster WF (1996) Living in space: results from Biosphere 2’s initial closure, an early testbed for closed ecological systems on Mars. American Astronautical Society: Science & Technology Series, AAS 95-488, vol 86, pp 363–390Google Scholar
  21. 21.
    Nelson M, Burgess T, Alling A, Alvarez-Romo N, Dempster W, Walford R, Allen J (1993) Using a closed Ecological System to study Earth’s biosphere: initial results from Biosphere 2. Bioscience 43(4):225–236CrossRefGoogle Scholar
  22. 22.
    Nelson M, Allen JP, Dempster W (1991) Biosphere 2, prototype project for a permanent and evolving life system for a Mars base. Adv Space Res 12(5):211–218CrossRefGoogle Scholar
  23. 23.
    Nelson M (1997).Nutrient recycling in Biosphere 2. Life Support Biosph Sci 4(3/4):145–153Google Scholar
  24. 24.
    Allen JP (2003) Ethnospherics. Ethics Sci Environ Polit 7–24Google Scholar
  25. 25.
    Allen J, Nelson M (1988) Space biospheres. Synergetic Press, Santa Fe, NMGoogle Scholar
  26. 26.
    Allen J (2002) People challenges in biospheric systems for long-term habitation in remote areas, space stations, Moon, and Mars expeditions. Life Support Biosph Sci 8:67–70Google Scholar
  27. 27.
    Allen J (2001) Artificial biospheres as a model for global ecology on planet Earth. Life Support Biosph Sci 7(3):273–282Google Scholar
  28. 28.
    Dempster W (1994) Methods for measurement and control of leakage in CELSS and their application and performance in the Biosphere 2 facility. COSPAR. Adv Space Res 14(11):331–335CrossRefGoogle Scholar
  29. 29.
    Dempster W (1988) Biosphere 2: design of a closed, manned terrestrial ecosystem. 18th intersociety conference on environmental systems. SAE Technical Paper Series 881096Google Scholar
  30. 30.
    Hord RM (1985) Handbook of space technology: status and projections. CRC, Boca Raton, FLGoogle Scholar
  31. 31.
    Nicogossian A, Parker JF (1982) Space physiology and medicine, NASA SP-447. U.S. Government Printing Office, Washington DCGoogle Scholar
  32. 32.
    Allen J (2000) A review of humanity’s taxonomic classification (
  33. 33.
    Alling A, Nelson M, Leigh L, Frye R, Alvarez-Romo N, MacCallum T, Allen J (1993) Experiments on the closed ecological system in the Biosphere 2 Test Module. In: Odum HT, Beyers R (eds) Ecological microcosms. Springer, New York, pp 463–479Google Scholar
  34. 34.
    A. Alling, L. Leigh, T. MacCallum, N. Alvarez-Romo, (1990) Biosphere 2 Test Module experimentation program. In: Nelson M, Soffen G (eds) Biological life support systems, Proceedings of the workshop on biological life support technologies: commercial opportunities. Synergetic Press, Santa Fe, NM/NASA Conf. Publication #3094Google Scholar
  35. 35.
    Frye R, Hodges C (1990) Soil bed work of the ERL in support of research and development of Biosphere 2. In: Nelson M, Soffen G (eds) Biological life support technologies: commercial opportunities. Synergetic Press, Santa Fe, NM/NASA Conf. Publication #3094Google Scholar
  36. 36.
    Kamshilov MM (1976) The evolution of the biosphere. Mir Publ., Moscow, RussiaGoogle Scholar
  37. 37.
    Alling A, Nelson M, Silverstone S (1993) Life under glass: the inside story of Biosphere 2. Biosphere Press/Synergetic Press, Santa Fe, NMGoogle Scholar
  38. 38.
    Nelson M, Alling A (1993) Biosphere 2 and its lessons for long-duration space habitats. In: Faughnan B (ed) Space manufacturing 9. The high frontier: accession, development and utilization. AIAA, Washington, DC, pp 280–287Google Scholar
  39. 39.
    Allen J, Nelson M (1999) Biospherics and Biosphere 2, Mission One (1991–1993). Ecol Eng 13:15–29CrossRefGoogle Scholar
  40. 40.
    Allen J (1997) Biospheric theory and report on overall Biosphere 2: design and performance during Mission One (1991–1993). Life Support Biosph Sci 4(3/4):95–108Google Scholar
  41. 41.
    National Commission on Space (1986) Pioneering the space frontier. Bantam Books, New YorkGoogle Scholar
  42. 42.
    Nelson M, Silverstone S, Poynter J (1993) Biosphere 2 agriculture: test bed for intensive, sustainable, non-polluting farming systems. Outlook Agric 22(3):167–174CrossRefGoogle Scholar
  43. 43.
    Silverstone S, Nelson M, Alling A, Allen J (2003).Development and research program for a soil-based bioregenerative agriculture system to feed a four person crew at a Mars base. Adv Space Res 31(1):69–75CrossRefGoogle Scholar
  44. 44.
    Nelson M, Dempster WF, Alvarez-Romo N, MacCallum T (1994) Atmospheric dynamics and bioregenerative technologies in a soil-based ecological life support system: initial results from Biosphere 2. Adv Space Res 14:(11):417–426CrossRefGoogle Scholar
  45. 45.
    Silverstone S, Nelson M (1996) Food production and nutrition in Biosphere 2: results from the first mission September 1991 to September 1993. Adv Space Res 18(4/5):49–61CrossRefGoogle Scholar
  46. 46.
    Walford R, Mock D, MacCallum T, Laseter J (1999) Physiologic changes in humans subjected to sever, selective calorie restriction for two years in Biosphere 2: health, aging, and toxicological perspectives. Toxicol Sci 52(Suppl):61–65Google Scholar
  47. 47.
    Salisbury F, Dempster WF, Allen JP, Alling A, Bubenheim D, Nelson M, Silverstone S (2002) Light, plants, and power for life support on Mars. Life Support Biosph Sci 8(3/4):161–172Google Scholar
  48. 48.
    Nelson M (1998) Wetland systems for bioregenerative reclamation of waste water: from closed systems to developing countries. Life Support Biosph Sci 5:357–369Google Scholar
  49. 49.
    Peterson J, Haberstock A, Siccama T, Vogt K, Vogt D, Tusting B (1992) The making of Biosphere 2. Restor Manag Notes 10(2):158–168Google Scholar
  50. 50.
    Nelson M, Dempster WF, Allen JP (2008) Integration of recent research for “Earth to Mars” life support systems. Adv Space Res 41(5):675–683CrossRefGoogle Scholar
  51. 51.
    Walford RL, Harris SB, Gunion MW (1992) The calorically restricted low-fat nutrient-dense diet in Biosphere 2 significantly lowers blood glucose, total leukocyte count, cholesterol, and blood pressure in humans. Proc Natl Acad Sci USA 89(23):11533–11537CrossRefGoogle Scholar
  52. 52.
    Dempster WF, Alling A, van Thillo M, Allen JP, Silverstone S, Nelson M (2004) Technical review of the Laboratory Biosphere closed ecological system facility, presented at COSPAR/IAF meeting, Houston, October 2002. Adv Space Res 34:1477–1482CrossRefGoogle Scholar
  53. 53.
    Nelson M, Dempster WF, Alling A, Allen JP, Rasmussen R, Silverstone S, Van Thillo M (2003) Initial experimental results from the Laboratory Biosphere closed ecological system facility. Adv Space Res 31(7):1721–1730CrossRefGoogle Scholar
  54. 54.
    Tsiolkovsky KE From: Research on the peaceful expansion of nuclear instruments. Quoted in: Starikovich S, A Month Alone with Chlorella. NASA-TT-F-16463 (1975)Google Scholar
  55. 55.
    Shepelev YeYa (1976) Ecological system in space flights. In: Aviatsiya i kosmonavtika, vol 1, pp 20–25Google Scholar
  56. 56.
    Shepelev YeYa (1966) Human life support systems in spaceship cabins on the basis of biological material cycling. In: Kosmicheskaya biologiya i meditsina (Space biology and medicine). Nauka, Moscow, pp 330–342Google Scholar
  57. 57.
    Dadykin VP (1968) Use of higher plants for regeneration of food, water and atmosphere in closed systems. Selskokhozyaistvennaya biologiya 3(1):137Google Scholar
  58. 58.
    Meleshko GI, Shepelev YeYa (1996) In: Gazenko OG (general editor) Biological life support systems. Problems of space biology, vol 72. Koshice, pp 245–260Google Scholar
  59. 59.
    Levinskikh MA, Sychev YN (1989) Growth and development of unicellular algae in space flight within the system “algobacterial cenosis-fish.” Kosmicheskaya biologiya i aviakosmicheskaya meditsina 5:32–35Google Scholar
  60. 60.
    Meleshko GI, Shepelev YeYa, Guryeva TS (1991) Embryonic development of birds in microgravity. Kosmicheskaya biologiya i aviakosmicheskaya meditsina 1:37–39Google Scholar
  61. 61.
    Sychev VN, Shepelev YeYa, Meleshko GI, Guryeva TS, Levinskikh MA (2001) Main characteristics of biological components of developing LSS observed during experiments aboard orbital complex MIR. Adv Space Res 27(9):1529–1534CrossRefGoogle Scholar
  62. 62.
    Sychev VN, Levinskikh MA, Shepelev YeYa (2003) Biological components of LSS for a Martian expedition. Adv Space Res 31(7):1693–1698CrossRefGoogle Scholar
  63. 63.
    Terskov IA, Gitelson JI, Kovrov BG et al (1979) Closed system: man – Higher plants (four month experiment). Translation of Nauka Press, Siberian Branch, Novocibirsk, publication. NASA-TM-76452, Washington, DCGoogle Scholar
  64. 64.
    André MH, Ducloux H, Richard C et al (1987) Etude des relations entre photosynthese respiration, transpiration et nutrition minerale chez le ble. Adv Space Res 7(4):105–114CrossRefGoogle Scholar
  65. 65.
    Blüm V (2003) Aquatic modules for bioregenerative life support systems: developmental aspects based on the space flight results of the C.E.B.A.S. mini-module. Adv Space Res 31(7):1683–1691CrossRefGoogle Scholar
  66. 66.
    Anken RH, Ibsch M, Rahmann H (1998) Morphometrische und ultrastrukturelle Aspekte des Otolithenwachstums bei Fischen unter veränderten Schwerkraftbedingungen. Abstr. Bilanzsymposium “Forschung unter Weltraumbedingungen”, 21–23. Sept. 1998, Norderney, pp 208–211Google Scholar
  67. 67.
    Becker W, Marxen J, Reelsen O, Rezgoui M (1998) Untersuchungen zur a) Schalenbildung und b) Embryonalentwicklung der Schnecke Biomphalaria glabrata unter μg – Bedingungen. Abstr. Bilanzsymposium “Forschung unter Weltraumbedingungen”, 21–23. Sept. 1998, Norderney, pp 205–207Google Scholar
  68. 68.
    Goerlich R, Piepenbreier K, Linscheid KP (1998) Immunologische Untersuchungen akzessorischer und mmunkompetenter Zellen der Kopfniere von Xiphophorus helleri unter μg – Bedingungen. Abstr. ilanzsymposium “Forschung unter Weltraumbedingungen”, 21–23. Sept. 1998, Norderney, pp 217–219Google Scholar
  69. 69.
    Holländer-Czytko H, Gunawardena B, Voeste D, Kruse C (1998) Ceratophyllum demersum L., die botanische Komponente des C.E.B.A.S.-Minimoduls; Metabolismus und Ionenaufnahme. Abstr. Bilanz-symposium “Forschung unter Weltraumbedingungen”, 21–23. Sept. 1998, Norderney, pp 235–236Google Scholar
  70. 70.
    Blüm V, Andriske M, Paris F, Voeste D (2000) The C.E.B.A.S. – Minimodule: behaviour of an artificial aquatic ecological system during spaceflight. Adv Space Res 26:253–262CrossRefGoogle Scholar
  71. 71.
    Lasseur C, Fedole I (1999) MELISSA Final report for 1998 activity ECT/FG/MMM/97.012, ESA.ESTEC/MCL/26 77. CHLGoogle Scholar
  72. 72.
    Nitta K (1987) An overview of Japanese CELSS research activities. Adv Space Res 7(4):95–104CrossRefGoogle Scholar
  73. 73.
    CEEF Closed Ecology Experiment Facilities (1998) Institute for Environmental Science, Booklet, Tokyo, JapanGoogle Scholar
  74. 74.
    Nitta K (2001) The CEEF, closed ecosystem as a laboratory for determining the dynamics of radioactive isotopes. Adv Space Res 27(9):1505–1512CrossRefGoogle Scholar
  75. 75.
    Odum HT (1994) Ecological and general systems: an introduction to systems ecology, Rev. edn. University Press of Colorado, Niwot, COGoogle Scholar
  76. 76.
    Wolverton BC (1986) Aquatic plants and wastewater treatment (an overview). In: Reddy KR, Smith WH (eds) Aquatic plants for water treatment and resource recovery. Magnolia Publication, Orlando, FL, pp 3–5Google Scholar
  77. 77.
    Mitsch WJ, Jorgensen S (eds) (1991) Ecological engineering: an introduction to ecotechnology. Wiley, New YorkGoogle Scholar
  78. 78.
    Cooke GD (1971) Ecology of space travel. In: Odum EP (ed) Fundamentals of ecology, 3rd edn. Saunders College Publishing, Philadelphia, PAGoogle Scholar
  79. 79.
    Yamashita M, Ishikawa Y, Oshima T, (2005). Engineering issues of microbial ecology in space agriculture. Biological Science Space. March, 19(1):25–36CrossRefGoogle Scholar
  80. 80.
    Hendrickx L, DeWever H, Hermans V, Mastroleo F, Morin N, Wilmotte A, Janssen P and Mergeay M (2006). Microbial ecology of the closed artifical ecosystem. Research in Microbiology. January, 157(1):77–86CrossRefGoogle Scholar
  81. 81.
    Encyclopedia Britannica (2010). Life-support system. Encyclopedia Britannica,
  82. 82.
    Mastroleo F, Houdt RV, Leroy B, Benotmane MA, Janssen A, Mergeay M, Vanhavere F, Hendrickx L, Wattiez R, and Leys N. (2009). Experimental design and environmental parameters affect Rhodospirillum rubrum S1H response to space flight. December 2009. The ISME Journal. 3(12): 1402–1419Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Institute of EcotechnicsLondonUK
  2. 2.Krasnoyarsk State UniversityKrasnoyarskRussia
  3. 3.Gobal Ecotechnics CorporationSanta FeUSA
  4. 4.Institute of Biophysics SB RASKrasnoyarskRussia
  5. 5.Institute of Biophysics SB RAS, Russian Academy of SciencesKrasnoyarskRussia

Personalised recommendations