Applications of Environmental Biotechnology

  • Volodymyr Ivanov
  • Yung-Tse Hung
Part of the Handbook of Environmental Engineering book series (HEE, volume 10)


Environmental biotechnology is a system of scientific and engineering knowledge related to the use of microorganisms and their products in the prevention of environmental pollution through biotreatment of solid, liquid, and gaseous wastes, bioremediation of polluted environments, and biomonitoring of environment and treatment processes. The advantages of biotechnological treatment of wastes are as follows: biodegradation or detoxication of a wide spectrum of hazardous substances by natural microorganisms; availability of a wide range of biotechnological methods for complete destruction of hazardous wastes; and diversity of the conditions suitable for biodegradation. The main considerations for application of biotechnology in waste treatment are technically and economically reasonable rate of biodegradability or detoxication of substances during biotechnological treatment, big volume of treated wastes, and ability of natural microorganisms to degrade substances. Type of biotreatment is based on physiological type of applied microorganisms, such as fermenting anaerobic, anaerobically respiring (anoxic), microaerophilic, and aerobically respiring microorganisms. All types of biotechnological treatment of wastes can be enhanced using optimal environmental factors, better availability of contaminants and nutrients, or addition of selected strain(s) biomass. Bioaugmentation can accelerate start-up or biotreatment process in case microorganisms, which are necessary for hazardous waste treatment, are absent or their concentration is low in the waste; if the rate of bioremediation performed by indigenous microorganisms is not sufficient to achieve the treatment goal within the prescribed duration; when it is necessary to direct the biodegradation to the best pathway of many possible pathways; and to prevent growth and dispersion in waste treatment system of unwanted or nondetermined microbial strain which may be pathogenic or opportunistic one. Biosensors are essential tools in biomonitoring of environment and treatment processes. Combinations of biosensors in array can be used to measure concentration or toxicity of a set of hazardous substances. Microarrays for simultaneous qualitative or quantitative detection of different microorganisms or specific genes in the environmental sample are also useful in the monitoring of environment.

Key Words

Environmental biotechnology wastes biotreatment biodegradation bioaugmentation biosensors biomonitoring 


  1. 1.
    Talley JW, Sleeper PM (1997) Ann N Y Acad Sci 829:16–29CrossRefGoogle Scholar
  2. 2.
    Ivanov V, Wang J-Y, Stabnikova O, Krasinko V, Stabnikov V, Tay ST-L, Tay J-H (2004) Water Sci Technol 49:421–431Google Scholar
  3. 3.
    Ivanov V, Stabnikov V, Zhuang W-Q, Tay ST-L, Tay J-H (2005) J Appl Microbiol 98:1152–1161CrossRefGoogle Scholar
  4. 4.
    Evans GM, Furlong JC (2003) Environmental biotechnology: theory and applications. Wiley, ChichesterGoogle Scholar
  5. 5.
    Moo-Young M, Anderson WA, Chakrabarty AM (eds) (1996) Environmental biotechnology: principles and applications. Kluwer, DordrechtGoogle Scholar
  6. 6.
    Rittman B, McCarty PL (2000) Environmental biotechnology: principles and applications. McGraw-Hill, BostonGoogle Scholar
  7. 7.
    Armenante PM (1993) In: Levin MA, Gealt MA (eds) Biotreatment of industrial and hazardous wastes. McGrew-Hill, New York, pp 65–112Google Scholar
  8. 8.
    Gonzalez-Flecha B, Demple B (1997) Homeostatic regulation of intracellular hydrogen peroxide concentration in aerobically growing Escherichia coli. J Bacteriol 179:382–388CrossRefGoogle Scholar
  9. 9.
    Eriksson M, Yu E, Sodersten Z, Dalhammar G, Mohn WW (2003) Appl Environ Microbiol 69:275–284CrossRefGoogle Scholar
  10. 10.
    Borch T, Ambus P, Laturnus F, Svensmark B, Gron C (2003) Chemosphere 51:143–152CrossRefGoogle Scholar
  11. 11.
    Marttinen SK, Kettunen RH, Sormunen KM, Rintala JA (2003) Water Res 37:1385–1393CrossRefGoogle Scholar
  12. 12.
    Otal E, Lebrato J (2002) Environ Technol 23:1405–1414CrossRefGoogle Scholar
  13. 13.
    Tchobanoglous G, Theisen H, Vigil SA (1993) Integrated solid waste management: engineering principles and management issues. McGraw-Hill, SingaporeGoogle Scholar
  14. 14.
    Ito A, Takachi T, Aizawa J, Umita T (2001) Water Sci Technol 44:59–64Google Scholar
  15. 15.
    Xiang L, Chan LC, Wong JW (2000) Chemosphere 41:283–287CrossRefGoogle Scholar
  16. 16.
    Tamaki S, Frankenberger WT Jr (1992) Rev Environ Contam Toxicol 124:79–110Google Scholar
  17. 17.
    Gadd GM (2000) Sci Total Environ 258:119–227CrossRefGoogle Scholar
  18. 18.
    Vainshtein M, Kuschk P, Mattusch J, Vatsourina A, Wiessner A (2003) Water Res 37:1401–1405CrossRefGoogle Scholar
  19. 19.
    Atlas RM (1993) In: Levin MA, Gealt MA (eds) Biotreatment of industrial and hazardous wastes. McGrew-Hill, New York, pp 19–37Google Scholar
  20. 20.
    Coppella SJ, DelaCruz N, Payne GF, Pogell BM, Speedie MK, Karns JS, Sybert EM, Connor MA (1990) Biotechnol Prog 6:76–81CrossRefGoogle Scholar
  21. 21.
    De Mot R, Parret AH (2002) Trends Microbiol 10:502–508CrossRefGoogle Scholar
  22. 22.
    Talley JW, Sleeper P (1997) Ann N Y Acad Sci 829:16–29CrossRefGoogle Scholar
  23. 23.
    Bass DH, Hastings NA, Brown RA (2000) J Hazard Mater 72:101–119CrossRefGoogle Scholar
  24. 24.
    Zappi M, White K, Hwang HM, Bajpai R, Qasim M (2000) J Air Waste Manag Assoc 50:1818–1830CrossRefGoogle Scholar
  25. 25.
    Ensley BD (1994) Curr Opin Biotechnol 5:249–252CrossRefGoogle Scholar
  26. 26.
    Vasilyeva G, Kreslavski VD, Oh BT, Shea PJ (2001) Environ Toxicol Chem 20:965–971CrossRefGoogle Scholar
  27. 27.
    Tay ST-L, Ivanov V, Yi S, Zhuang W-Q, Tay J-H (2002) Microb Ecol 44(3):278–285CrossRefGoogle Scholar
  28. 28.
    Ivanov V. (2006) Structure of aerobically grown microbial granules. In: Biogranulation Technologies for Wastewater Treatment (Joo-Hwa Tay, Stephen Tiong-Lee Tay, Yu Liu, Show Kuan Yeow, Volodymyr Ivanov, eds). Elsevier, Amsterdam, pp. 115–134CrossRefGoogle Scholar
  29. 29.
    Reuschenbach P, Pagga U, Strotmann U (2003) Water Res 37:1571–1582CrossRefGoogle Scholar
  30. 30.
    Bentley A, Atkinson A, Jezek J, Rawson DM (2001) Toxicol In Vitro 15:469–475CrossRefGoogle Scholar
  31. 31.
    Inui T, Tanaka Y, Okayas Y, Tanaka H (2002) Water Sci Technol 45:271–278Google Scholar
  32. 32.
    Lajoie CA, Lin SC, Nguyen H, Kelly CJ (2002) J Microbiol Methods 50:273–282CrossRefGoogle Scholar
  33. 33.
    Ames BN (1971) In: Hollaender A (ed) Chemical mutagens, principles and methods for their detection. Plenum, New York, pp 267–282CrossRefGoogle Scholar
  34. 34.
    Czyz A, Jasiecki J, Bogdan A, Szpilewska H, Wegrzyn G (2000) Appl Environ Microbiol 66:599–605CrossRefGoogle Scholar
  35. 35.
    Hwang HM, Shi X, Ero I, Jayasinghe A, Dong S, Yu H (2001) Chemosphere 45:445–451CrossRefGoogle Scholar
  36. 36.
    Yamamoto A, Kohyama Y, Hanawa T (2002) J Biomed Mater Res 59:176–183CrossRefGoogle Scholar
  37. 37.
    Burlage RS (1997) In: Hurst CJ, Crawford RL, McInerney MJ (eds) Manual of environmental microbiology. ASM, Washington, DC, pp 115–123Google Scholar
  38. 38.
    Dewettinck T, Van Hege K, Verstraete W (2001) Water Res 35:2475–2483CrossRefGoogle Scholar
  39. 39.
    Nielsen M, Revsbech NP, Larsen LH, Lynggaard-Jensen A (2002) Water Sci Technol 45:69–76Google Scholar
  40. 40.
    Hatsu M, Ohta J, Takamizawa K (2002) Can J Microbiol 48:848–852CrossRefGoogle Scholar
  41. 41.
    Nogueira R, Melo LF, Purkhold U, Wuertz S, Wagner M (2002) Water Res 36:469–481CrossRefGoogle Scholar
  42. 42.
    Sekiguchi Y, Kamagata Y, Ohashi A, Harada H (2002) Water Sci Technol 45:19–25Google Scholar
  43. 43.
    Fredrickson HL, Perkins EJ, Bridges TS, Tonucci RJ, Fleming JK, Nagel A, Diedrich K, Mendez-Tenorio A, Doktycz MJ, Beattie KL (2001) Sci Total Environ 274:137–149CrossRefGoogle Scholar
  44. 44.
    Koizumi Y, Kelly JJ, Nakagawa T, Urakawa H, El-Fantroussi S, Al-Muzaini S, Fukui M, Urushigawa Y, Stahl DA (2002) Appl Environ Microbiol 68:3215–3225CrossRefGoogle Scholar
  45. 45.
    Loy A, Lehner A, Lee N, Adamczyk J, Meier H, Ernst J, Schleifer KH, Wagner M (2002) Appl Environ Microbiol 68:5064–5081CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Volodymyr Ivanov
    • 1
  • Yung-Tse Hung
    • 2
  1. 1.School of Civil and Environmental EngineeringNanyang Technological UniversitySingaporeSingapore
  2. 2.Department of Civil and Environmental EngineeringCleveland State UniversityClevelandUSA

Personalised recommendations