Skip to main content

Insulin Resistance and Inhibitors of the Insulin Receptor Tyrosine Kinase

  • Chapter
The Metabolic Syndrome

Part of the book series: Contemporary Endocrinology ((COE))

  • 1532 Accesses

Abstract

Tissue resistance to insulin is a clinically significant phenomenon that predisposes an individual to numerous health risks beyond the well-established role it plays in the pathogenesis of type 2 diabetes mellitus (T2D). Quantification of whole-body insulin resistance in humans typically involves determining the ability of insulin to stimulate glucose uptake into muscle. The hyperinsulinemic, euglycemic clamp procedure provides a measurement of muscle insulin sensitivity, as this tissue accounts for 75% of glucose disposal under these conditions (1). The decrement in glucose disposal in an insulin-resistant state such as obesity is entirely due to reduced muscle glucose uptake (1). However, insulin resistance can occur in any insulin target tissue, and will produce a phenotype distinct for the biological characteristics of that tissue (2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. De Fronzo RA. Lilly lecture 1987. The triumvirate: Beta-cell, muscle, liver—a collusion responsible for NIDDM. Diabetes 1988; 37(6):667–687.

    Google Scholar 

  2. Biddinger SB, Kahn CR. From mice to men: Insights into the insulin resistance syndromes. Annu Rev Physiol 2006; 68:123–158.

    CAS  PubMed  Google Scholar 

  3. Barnard RJ, Youngren JF. Regulation of glucose transport in skeletal muscle. FASEB J 1992; 6(14):3238–3244.

    CAS  PubMed  Google Scholar 

  4. Groop LC. Insulin resistance: The fundamental trigger of type 2 diabetes. Diabetes Obes Metab 1999; 1(suppl 1):S1–S7.

    CAS  PubMed  Google Scholar 

  5. Taniguchi CM, Emanuelli B, Kahn CR. Critical nodes in signalling pathways: Insights into insulin action. Nat Rev Mol Cell Biol 2006; 7(2):85–96.

    CAS  PubMed  Google Scholar 

  6. Kahn CR, White MF. The insulin receptor and the molecular mechanism of insulin action. J Clin Invest 1988; 82(4):1151–1156.

    CAS  PubMed  Google Scholar 

  7. Avruch J. Insulin signal transduction through protein kinase cascades. Mol Cell Biochem 1998; 182(1–2):31–48.

    CAS  PubMed  Google Scholar 

  8. Pirola L, Johnston AM, Van Obberghen E. Modulation of insulin action. Diabetologia 2004; 47(2):170–184.

    CAS  PubMed  Google Scholar 

  9. White MF. Insulin signaling in health and disease. Science 2003; 302(5651):1710–1711.

    CAS  PubMed  Google Scholar 

  10. Sesti G, Federici M, Hribal ML, Lauro D, Sbraccia P, Lauro R. Defects of the insulin receptor substrate (IRS) system in human metabolic disorders. FASEB J 2001; 15(12):2099–2111.

    CAS  PubMed  Google Scholar 

  11. Bluher M, Michael MD, Peroni OD, Ueki K, Carter N, Kahn BB et al. Adipose tissue selective insulin receptor knockout protects against obesity and obesity-related glucose intolerance. Dev Cell 2002; 3(1):25–38.

    CAS  PubMed  Google Scholar 

  12. Bruning JC, Michael MD, Winnay IN, Hayashi T, Horsch D, Accili D et al. A muscle-specific insulin receptor knockout exhibits features of the metabolic syndrome of NIDDM without altering glucose tolerance. Mol Cell 1998; 2(5):559–569.

    CAS  PubMed  Google Scholar 

  13. Bruning JC, Gautam D, Burks DJ, Gillette J, Schubert M, Orban PC et al. Role of brain insulin receptor in control of body weight and reproduction. Science 2000; 289(5487):2122–2125.

    CAS  PubMed  Google Scholar 

  14. Kim JK, Michael MD, Previs SF, Peroni OD, Mauvais-Jarvis F, Neschen S et al. Redistribution of substrates to adipose tissue promotes obesity in mice with selective insulin resistance in muscle. J Clin Invest 2000; 105(12):1791–1797.

    CAS  PubMed  Google Scholar 

  15. Kulkarni RN, Bruning JC, Winnay IN, Postic C, Magnuson MA, Kahn CR. Tissue-specific knockout of the insulin receptor in pancreatic beta cells creates an insulin secretory defect similar to that in type 2 diabetes. Cell 1999; 96(3):329–339.

    CAS  PubMed  Google Scholar 

  16. Michael MD, Kulkarni RN, Postic C, Previs SF, Shulman GI, Magnuson MA et al. Loss of insulin signaling in hepatocytes leads to severe insulin resistance and progressive hepatic dysfunction. Mol Cell 2000; 6(1):87–97.

    CAS  PubMed  Google Scholar 

  17. Vicent D, Ilany J, Kondo T, Naruse K, Fisher SJ, Kisanuki YY et al. The role of endothelial insulin signaling in the regulation of vascular tone and insulin resistance. J Clin Invest 2003; 111(9):1373–1380.

    CAS  PubMed  Google Scholar 

  18. Chang PY, Benecke H, Marchand-Brustel Y, Lawitts J, Moller DE. Expression of a dominant-negative mutant human insulin receptor in the muscle of transgenic mice. J Biol chem 1994; 269(23):16034–16040.

    CAS  PubMed  Google Scholar 

  19. Chang PY, Goodyear LJ, Benecke H, Markuns JS, Moller DE. Impaired insulin signaling in skeletal muscles from transgenic mice expressing kinase-deficient insulin receptors. J Biol chem 1995; 270(21):12593–12600.

    CAS  PubMed  Google Scholar 

  20. Moller DE, Chang PY, Yaspelkis BB, III, Flier JS, Wallberg-Henriksson H, Ivy JL. Transgenic mice with muscle-specific insulin resistance develop increased adiposity, impaired glucose tolerance, and dyslipidemia. Endocrinology 1996; 137(6):2397–2405.

    CAS  PubMed  Google Scholar 

  21. Haluska P, Carboni JM, Loegering DA, Lee FY, Wittman M, Saulnier MG et al. In vitro and in vivo antitumor effects of the dual insulin-like growth factor-l/insulin receptor inhibitor, BMS-554417. Cancer Res 2006; 66(1):362–371.

    CAS  PubMed  Google Scholar 

  22. Manchem VP, Goldfine ID, Kohanski RA, Cristobal CP, Lum RT, Schow SR et al. A novel small molecule that directly sensitizes the insulin receptor in vitro and in vivo. Diabetes 2001; 50(4):824–830.

    CAS  PubMed  Google Scholar 

  23. Li M, Youngren JF, Manchem VP, Kozlowski M, Zhang BB, Maddux BA et al. Small molecule insulin receptor activators potentiate insulin action in insulin-resistant cells. Diabetes 2001; 50(10):2323–2328.

    CAS  PubMed  Google Scholar 

  24. Cheng M, Chen S, Schow SR, Manchem VP, Spevak WR, Cristobal CP et al. In vitro and in vivo prevention of HIV protease inhibitor-induced insulin resistance by a novel small molecule insulin receptor activator. J Cell Biochem 2004; 92(6):1234–1245.

    CAS  PubMed  Google Scholar 

  25. Ebina Y, Ellis L, Jarnagin K, Edery M, Graf L, Clauser E et al. The human insulin receptor cDNA: The structural basis for hormone-activated transmembrane signalling. Cell 1985; 40(4):747–758.

    CAS  PubMed  Google Scholar 

  26. Ullrich A, Bell JR, Chen EY, Herrera R, Petruzzelli LM, Dull TJ et al. Human insulin receptor and its relationship to the tyrosine kinase family of oncogenes. Nature 1985; 313(6005):756–761.

    CAS  PubMed  Google Scholar 

  27. Ullrich A, Gray A, Tam AW, Yang-Feng T, Tsubokawa M, Collins C et al. Insulin-like growth factor I receptor primary structure: Comparison with insulin receptor suggests structural determinants that define functional specificity. EMBO J 1986; 5(10):2503–2512.

    CAS  PubMed  Google Scholar 

  28. Abbott AM, Bueno R, Pedrini MT, Murray JM, Smith RJ. Insulin-like growth factor I receptor gene structure. J Biol chem 1992; 267(15):10759–10763.

    CAS  PubMed  Google Scholar 

  29. Seino S, Seino M, Nishi S, Bell GI. Structure of the human insulin receptor gene and characterization of its promoter. Proc Natl Acad Sci USA 1989; 86(1):114–118.

    CAS  PubMed  Google Scholar 

  30. Hubbard SR, Till JH. Protein tyrosine kinase structure and function. Annu Rev Biochem 2000; 69:373–398.

    CAS  PubMed  Google Scholar 

  31. De Meyts P, Whittaker J. Structural biology of insulin and IGFI receptors: Implications for drug design. Nat Rev Drug Discov 2002; 1(10):769–783.

    PubMed  Google Scholar 

  32. Cann AD, Kohanski RA. Cis-autophosphorylation of juxtamembrane tyrosines in the insulin receptor kinase domain. Biochemistry 1997; 36(25):7681–7689.

    CAS  PubMed  Google Scholar 

  33. White MF, Kahn CR. The insulin signaling system. J Biol Chem 1994; 269(1):1–4.

    CAS  PubMed  Google Scholar 

  34. Yonezawa K, Ando A, Kaburagi Y, Yamamoto-Honda R, Kitamura T, Hara K et al. Signal transduction pathways from insulin receptors to Ras. Analysis by mutant insulin receptors. J Biol Chem 1994; 269(6):4634–4640.

    CAS  PubMed  Google Scholar 

  35. Kaburagi Y, Momomura K, Yamamoto-Honda R, Tobe K, Tamori Y, Sakura H et al. Site-directed mutagenesis of the juxtamembrane domain of the human insulin receptor. J Biol Chem 1993; 268(22):16610–16622.

    CAS  PubMed  Google Scholar 

  36. Smith JE, Sheng ZF, Kallen RG. Effects of tyrosine-phenylalanine mutations on auto-and transphosphorylation reactions catalyzed by the insulin receptor beta-subunit cytoplasmic domain. DNA Cell Biol 1994; 13(6):593–604.

    CAS  PubMed  Google Scholar 

  37. Hubbard SR. Crystal structure of the activated insulin receptor tyrosine kinase in complex with peptide substrate and ATP analog. EMBO J 1997; 16(18):5572–5581.

    CAS  PubMed  Google Scholar 

  38. Ablooglu AJ, Kohanski RA. Activation of the insulin receptor’s kinase domain changes the ratedetermining step of substrate phosphorylation. Biochemistry 2001; 40(2):504–513.

    CAS  PubMed  Google Scholar 

  39. Wilden PA, Kahn CR. The level of insulin receptor tyrosine kinase activity modulates the activities of phosphatidylinositol 3-kinase, microtubule-associated protein, and S6 kinases. Mol Endocrinol 1994; 8(5):558–567.

    CAS  PubMed  Google Scholar 

  40. Chaika OV, Chaika N, Volle DJ, Hayashi H, Ebina Y, Wang LM et al. Mutation of tyrosine 960 within the insulin receptor juxtamembrane domain impairs glucose transport but does not inhibit ligand-mediated phosphorylation of insulin receptor substrate-2 in 3T3-Ll adipocytes. J Biol Chem 1999; 274(17):12075–12080.

    CAS  PubMed  Google Scholar 

  41. Sawka-Verhelle D, Filloux C, Tartare-Deckert S, Mothe I, Van Obberghen E. Identification of Stat 5B as a substrate of the insulin receptor. Eur J Biochem 1997; 250(2):411–417.

    CAS  PubMed  Google Scholar 

  42. Kaburagi Y, Yamamoto-Honda R, Tobe K, Ueki K, Yachi M, Akanuma Y et al. The role of the NPXY motif in the insulin receptor in tyrosine phosphorylation of insulin receptor substrate-1 and Shc. Endocrinology 1995; 136(8):3437–3443.

    CAS  PubMed  Google Scholar 

  43. Gustafson TA, He W, Craparo A, Schaub CD, O’Neill TJ. Phosphotyrosine-dependent interaction of SHC and insulin receptor substrate 1 with the NPEY motif of the insulin receptor via a novel non-SH2 domain. Mol Cell Biol 1995; 15(5):2500–2508.

    CAS  PubMed  Google Scholar 

  44. Zick Y. Insulin resistance: A phosphorylation-based uncoupling of insulin signaling. Trends Cell Biol 2001; 11(11):437–441.

    CAS  PubMed  Google Scholar 

  45. Zimmet P, Alberti KG, Shaw J. Global and societal implications of the diabetes epidemic. Nature 2001; 414(6865):782–787.

    CAS  PubMed  Google Scholar 

  46. Amer P, Pollare T, Lithell H, Livingston IN. Defective insulin receptor tyrosine kinase in human skeletal muscle in obesity and type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia 1987; 30(6):437–440.

    Google Scholar 

  47. Caro JF, Sinha MK, Raju SM, Ittoop O, Pories WJ, Flickinger EG et al. Insulin receptor kinase in human skeletal muscle from obese subjects with and without noninsulin dependent diabetes. J Clin Invest 1987; 79(5):1330–1337.

    CAS  PubMed  Google Scholar 

  48. Cortright RN, Azevedo JL, Jr., Zhou Q, Sinha M, Pories WJ, Itani SI et al. Protein kinase C modulates insulin action in human skeletal muscle. Am J Physiol Endocrinol Metab 2000; 278(3):E553–E562.

    CAS  PubMed  Google Scholar 

  49. Goodyear LJ, Giorgino F, Sherman LA, Carey J, Smith RJ, Dohm GL. Insulin receptor phosphorylation, insulin receptor substrate-1 phosphorylation, and phosphatidylinositol 3-kinase activity are decreased in intact skeletal muscle strips from obese subjects. J Clin Invest 1995; 95(5):2195–2204.

    CAS  PubMed  Google Scholar 

  50. Cusi K, Maezono K, Osman A, Pendergrass M, Patti ME, Pratipanawatr T et al. Insulin resistance differentially affects the PI 3-kinase-and MAP kinase-mediated signaling in human muscle. J Clin Invest 2000; 105(3):311–320.

    CAS  PubMed  Google Scholar 

  51. Youngren JF, Goldfine ID, Pratley RE. Decreased muscle insulin receptor kinase correlates with insulin resistance in normoglycemic Pima Indians. Am J Physiol 1997; 273(2 Pt 1):E276–E283.

    CAS  PubMed  Google Scholar 

  52. Friedman JE, Ishizuka T, Liu S, Farrell CJ, Bedol D, Koletsky RJ et al. Reduced insulin receptor signaling in the obese spontaneously hypertensive Koletsky rat. Am J Physiol 1997; 273(5 Pt 1): E1104–E1023.

    Google Scholar 

  53. Coba MP, Munoz MC, Dominici FP, Toblli JE, Pena C, Bartke A et al. Increased in vivo phosphorylation of insulin receptor at serine 994 in the liver of obese insulin-resistant Zucker rats. J Endocrinol 2004; 182(3):433–444.

    CAS  PubMed  Google Scholar 

  54. Christ CY, Hunt D, Hancock J, Garcia-Macedo R, Mandarino LJ, Ivy JL. Exercise training improves muscle insulin resistance but not insulin receptor signaling in obese Zucker rats. J Appl Physiol 2002; 92(2):736–744.

    CAS  PubMed  Google Scholar 

  55. Yuan M, Konstantopoulos N, Lee J, Hansen L, Li ZW, Karin M et al. Reversal of obesity-and diet-induced insulin resistance with salicylates or targeted disruption of Ikkbeta. Science 2001; 293(5535): 1673–1677.

    CAS  PubMed  Google Scholar 

  56. Uysal KT, Wiesbrock SM, Marino MW, Hotamisligil GS. Protection from obesity-induced insulin resistance in mice lacking TNF-alpha function. Nature 1997; 389(6651):610–614.

    CAS  PubMed  Google Scholar 

  57. Arner P. Insulin resistance in type 2 diabetes: Role of the adipokines. Curr Mol Med 2005; 5(3):333–339.

    CAS  PubMed  Google Scholar 

  58. Tomas E, Kelly M, Xiang X, Tsao TS, Keller C, Keller P et al. Metabolic and hormonal interactions between muscle and adipose tissue. Proc Nutr Soc 2004; 63(2):381–385.

    CAS  PubMed  Google Scholar 

  59. Petersen KF, Shulman GI. Etiology of insulin resistance. Am J Med 2006; 119(5 suppl 1):S10–S16.

    PubMed  Google Scholar 

  60. Pender C, Goldfine ID, Tanner CJ, Pories WJ, MacDonald KG, Havel PJ et al. Muscle insulin receptor concentrations in obese patients post bariatric surgery: Relationship to hyperinsulinemia. Int J Obes Relat Metab Disord 2004; 28(3):363–369.

    CAS  PubMed  Google Scholar 

  61. Youngren JF, Paik J, Barnard RJ. Impaired insulin-receptor autophosphorylation is an early defect in fat-fed, insulin-resistant rats. J Appl Physiol 2001; 91(5):2240–2247.

    CAS  PubMed  Google Scholar 

  62. Prada PO, Zecchin HG, Gasparetti AL, Torsoni MA, Ueno M, Hirata AE et al. Western diet modulates insulin signaling, c-Jun N-terminal kinase activity, and insulin receptor substrate-1ser307 phosphorylation in a tissue-specific fashion. Endocrinology 2005; 146(3):1576–1587.

    CAS  PubMed  Google Scholar 

  63. Taouis M, Dagou C, Ster C, Durand G, Pinault M, Delarue J. N-3 polyunsaturated fatty acids prevent the defect of insulin receptor signaling in muscle. Am J Physiol Endocrinol Metab 2002; 282(3): E664–E671.

    CAS  PubMed  Google Scholar 

  64. Qin B, Nagasaki M, Ren M, Bajotto G, Oshida Y, Sato Y. Cinnamon extract prevents the insulin resistance induced by a high-fructose diet. Horm Metab Res 2004; 36(2):119–125.

    CAS  PubMed  Google Scholar 

  65. Bezerra RM, Ueno M, Silva MS, Tavares DQ, Carvalho CR, Saad MJ. A high fructose diet affects the early steps of insulin action in muscle and liver of rats. J Nutr 2000; 130(6):1531–1535.

    CAS  PubMed  Google Scholar 

  66. Hyakukoku M, Higashiura K, Ura N, Murakami H, Yamaguchi K, Wang L et al. Tissue-specific impairment of insulin signaling in vasculature and skeletal muscle of fructose-fed rats. Hypertens Res 2003; 26(2):169–176.

    CAS  PubMed  Google Scholar 

  67. Goodyear LJ, Kahn BB. Exercise, glucose transport, and insulin sensitivity. Annu Rev Med 1998; 49:235–261.

    CAS  PubMed  Google Scholar 

  68. Wojtaszewski JF, Nielsen JN, Richter EA. Invited review: Effect of acute exercise on insulin signaling and action in humans. J Appl Physiol 2002; 93(1):384–392.

    CAS  PubMed  Google Scholar 

  69. Youngren JF, Keen S, Kulp JL, Tanner CJ, Houmard JA, Goldfine ID. Enhanced muscle insulin receptor autophosphorylation with short-term aerobic exercise training. Am J Physiol Endocrinol Metab 2001; 280(3):E528–E533.

    CAS  PubMed  Google Scholar 

  70. Heled Y, Shapiro Y, Shani Y, Moran DS, Langzam L, Braiman L et al. Physical exercise enhances protein kinase C delta activity and insulin receptor tyrosine phosphorylation in diabetes-prone psammomys obesus. Metabolism 2003; 52(8):1028–1033.

    CAS  PubMed  Google Scholar 

  71. Chibalin AV, Yu M, Ryder JW, Song XM, Galuska D, Krook A et al. Exercise-induced changes in expression and activity of proteins involved in insulin signal transduction in skeletal muscle: Differential effects on insulin-receptor substrates 1 and 2. Proc Natl Acad Sci USA 2000; 97(1):38–43.

    CAS  PubMed  Google Scholar 

  72. Kump DS, Booth FW. Alterations in insulin receptor signalling in the rat epitrochlearis muscle upon cessation of voluntary exercise. J Physiol 2005; 562(Pt 3):829–838.

    CAS  PubMed  Google Scholar 

  73. Hirose M, Kaneki M, Sugita H, Yasuhara S, Martyn JA. Immobilization depresses insulin signaling in skeletal muscle. Am J Physiol Endocrinol Metab 2000; 279(6):E1235–E1241.

    CAS  PubMed  Google Scholar 

  74. Hirose M, Kaneki M, Sugita H, Yasuhara S, Ibebunjo C, Martyn JA. Long-term denervation impairs insulin receptor substrate-1-mediated insulin signaling in skeletal muscle. Metabolism 2001; 50(2):216–222.

    CAS  PubMed  Google Scholar 

  75. Bertelli DF, Ueno M, Amaral ME, Toyama MH, Carneiro EM, Marangoni S et al. Reversal of denervation-induced insulin resistance by SHIP2 protein synthesis blockade. Am J Physiol Endocrinol Metab 2003; 284(4):E679–E687.

    CAS  PubMed  Google Scholar 

  76. Maegawa H, Shigeta Y, Egawa K, Kobayashi M. Impaired autophosphorylation of insulin receptors from abdominal skeletal muscles in nonobese subjects with NIDDM. Diabetes 1991; 40(7): 815–819.

    CAS  PubMed  Google Scholar 

  77. Obermaier-Kusser B, White MF, Pongratz DE, Su Z, Ermel B, Muhlbacher C et al. A defective intramolecular autoactivation cascade may cause the reduced kinase activity of the skeletal muscle insulin receptor from patients with non-insulin-dependent diabetes mellitus. J Biol Chem 1989; 264(16):9497–9504.

    CAS  PubMed  Google Scholar 

  78. Scheck SH, Barnard RJ, Lawani LO, Youngren JF, Martin DA, Singh R. Effects of NIDDM on the glucose transport system in human skeletal muscle. Diabetes Res 1991; 16(3):111–119.

    CAS  PubMed  Google Scholar 

  79. Nyomba BL, Ossowski VM, Bogardus C, Mott DM. Insulin-sensitive tyrosine kinase: relationship with in vivo insulin action in humans. Am J Physiol 1990; 258(6, pt. 1):E964–E974.

    CAS  PubMed  Google Scholar 

  80. Meyer MM, Levin K, Grimmsmann T, Beck-Nielsen H, Klein HH. Insulin signalling in skeletal muscle of subjects with or without Type II-diabetes and first degree relatives of patients with the disease. Diabetologia 2002; 45(6):813–822.

    CAS  PubMed  Google Scholar 

  81. Nolan JJ, Freidenberg G, Henry R, Reichart D, Olefsky JM. Role of human skeletal muscle insulin receptor kinase in the in vivo insulin resistance of noninsulin-dependent diabetes mellitus and obesity. J Clin Endocrinol Metab 1994; 78(2):471–477.

    CAS  PubMed  Google Scholar 

  82. Perseghin G, Ghosh S, Gerow K, Shulman GI. Metabolic defects in lean nondiabetic offspring of NIDDM parents: A cross-sectional study. Diabetes 1997; 46(6):1001–1009.

    CAS  PubMed  Google Scholar 

  83. Kashyap SR, Belfort R, Berria R, Suraamornkul S, Pratipranawatr T, Finlayson J et al. Discordant effects of a chronic physiological increase in plasma FFA on insulin signaling in healthy subjects with or without a family history of type 2 diabetes. Am J Physiol Endocrinol Metab 2004; 287(3): E537–E546.

    CAS  PubMed  Google Scholar 

  84. Handberg A, Vaag A, Vinten J, Beck-Nielsen H. Decreased tyrosine kinase activity in partially purified insulin receptors from muscle of young, non-obese first degree relatives of patients with type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia 1993; 36(7):668–674.

    CAS  PubMed  Google Scholar 

  85. Petersen KF, Dufour S, Befroy D, Garcia R, Shulman GI. Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N Engl J Med 2004; 350(7):664–671.

    CAS  PubMed  Google Scholar 

  86. Frittitta L, Youngren J, Vigneri R, Maddux BA, Trischitta V, Goldfine ID. PC-1 content in skeletal muscle of non-obese, non-diabetic subjects: relationship to insulin receptor tyrosine kinase and whole body insulin sensitivity. Diabetologia 1996; 39(10):1190–1195.

    CAS  PubMed  Google Scholar 

  87. Grasso G, Frittitta L, Anello M, Russo P, Sesti G, Trischitta V. Insulin receptor tyrosine-kinase activity is altered in both muscle and adipose tissue from non-obese normoglycaemic insulin-resistant subjects. Diabetologia 1995; 38(1):55–61.

    CAS  PubMed  Google Scholar 

  88. Virkamaki A, Korsheninnikova E, Seppala-Lindroos A, Vehkavaara S, Goto T, Halavaara J et al. Intramyocellular lipid is associated with resistance to in vivo insulin actions on glucose uptake, anti-lipolysis, and early insulin signaling pathways in human skeletal muscle. Diabetes 2001; 50(10):2337–2343.

    CAS  PubMed  Google Scholar 

  89. Jackson S, Bagstaff SM, Lynn S, Yeaman SJ, Turnbull DM, Walker M. Decreased insulin responsiveness of glucose uptake in cultured human skeletal muscle cells from insulin-resistant nondiabetic relatives of type 2 diabetic families. Diabetes 2000; 49(7): 1169–1177.

    CAS  PubMed  Google Scholar 

  90. Krutzfeldt J, Kausch C, Yolk A, Klein HH, Rett K, Haring HU et al. Insulin signaling and action in cultured skeletal muscle cells from lean healthy humans with high and low insulin sensitivity. Diabetes 2000; 49(6):992–998.

    CAS  PubMed  Google Scholar 

  91. Youngren JF, Goldfine ID, Pratley RE. Insulin receptor autophosphorylation in cultured myoblasts correlates to glucose disposal in Pima Indians. Am J Physiol 1999; 276(5, pt. 1):E990–E994.

    CAS  PubMed  Google Scholar 

  92. Ciaraldi TP, Abrams L, Nikoulina S, Mudaliar S, Henry RR. Glucose transport in cultured human skeletal muscle cells: Regulation by insulin and glucose in nondiabetic and non-insulin-dependent diabetes mellitus subjects. J Clin Invest 1995; 96(6):2820–2827.

    CAS  PubMed  Google Scholar 

  93. Gaster M, Petersen I, Hojlund K, Poulsen P, Beck-Nielsen H. The diabetic phenotype is conserved in myotubes established from diabetic subjects: evidence for primary defects in glucose transport and glycogen synthase activity. Diabetes 2002; 51(4):921–927.

    CAS  PubMed  Google Scholar 

  94. Vollenweider P, Menard B, Nicod P. Insulin resistance, defective insulin receptor substrate 2-associated phosphatidylinositol-3′ kinase activation, and impaired atypical protein kinase C (zeta/lambda) activation in myotubes from obese patients with impaired glucose tolerance. Diabetes 2002; 51(4): 1052–1059.

    CAS  PubMed  Google Scholar 

  95. Henry RR, Abrams L, Nikoulina S, Ciaraldi TP. Insulin action and glucose metabolism in nondiabetic control and NIDDM subjects: Comparison using human skeletal muscle cell cultures. Diabetes 1995; 44(8):936–946.

    CAS  PubMed  Google Scholar 

  96. Henry RR, Ciaraldi TP, Abrams-Carter L, Mudaliar S, Park KS, Nikoulina SE. Glycogen synthase activity is reduced in cultured skeletal muscle cells of non-insulin-dependent diabetes mellitus subjects: Biochemical and molecular mechanisms. J Clin Invest 1996; 98(5):1231–1236.

    CAS  PubMed  Google Scholar 

  97. Pender C, Goldfine ID, Kulp JL, Tanner CJ, Maddux BA, MacDonald KG et al. Analysis of insulin-stimulated insulin receptor activation and glucose transport in cultured skeletal muscle cells from obese subjects. Metabolism 2005; 54(5):598–603.

    CAS  PubMed  Google Scholar 

  98. Catalano PM, Tyzbir ED, Roman NM, Amini SB, Sims EA. Longitudinal changes in insulin release and insulin resistance in nonobese pregnant women. Am J Obstet Gynecol 1991; 165(6, pt. 1):1667–1672.

    CAS  PubMed  Google Scholar 

  99. Kautzky-Willer A, Prager R, Waldhausl W, Pacini G, Thomaseth K, Wagner OF et al. Pronounced insulin resistance and inadequate beta-cell secretion characterize lean gestational diabetes during and after pregnancy. Diabetes Care 1997; 20(11):1717–1723.

    CAS  PubMed  Google Scholar 

  100. Shao J, Catalano PM, Yamashita H, Ruyter I, Smith S, Youngren J et al. Decreased insulin receptor tyrosine kinase activity and plasma cell membrane glycoprotein-1 overexpression in skeletal muscle from obese women with gestational diabetes mellitus (GDM): evidence for increased serine/threonine phosphorylation in pregnancy and GDM. Diabetes 2000; 49(4):603–610.

    CAS  PubMed  Google Scholar 

  101. Dunaif A, Xia J, Book CB, Schenker E, Tang Z. Excessive insulin receptor serine phosphorylation in cultured fibroblasts and in skeletal muscle: A potential mechanism for insulin resistance in the polycystic ovary syndrome. J Clin Invest 1995; 96(2):801–810.

    CAS  PubMed  Google Scholar 

  102. Corbould A, Kim YB, Youngren JF, Pender C, Kahn BB, Lee A et al. Insulin resistance in the skeletal muscle of women with PCOS involves intrinsic and acquired defects in insulin signaling. Am J Physiol Endocrinol Metab 2005; 288(5):E1047–E1054.

    CAS  PubMed  Google Scholar 

  103. Yamaguchi Y, Flier JS, Yokota A, Benecke H, Backer JM, Moller DE. Functional properties of two naturally occurring isoforms of the human insulin receptor in Chinese hamster ovary cells. Endocrinology 1991; 129(4):2058–2066.

    CAS  PubMed  Google Scholar 

  104. Ahmad F, Goldstein BJ. Purification, identification and subcellular distribution of three predominant protein-tyrosine phosphatase enzymes in skeletal muscle tissue. Biochim Biophys Acta 1995; 1248(1):57–69.

    PubMed  Google Scholar 

  105. Kharitonenkov A, Schnekenburger J, Chen Z, Knyazev P, Ali S, Zwick E et al. Adapter function of protein-tyrosine phosphatase 1D in insulin receptor/insulin receptor substrate-1 interaction. J Biol Chem 1995; 270(49):29189–29193.

    CAS  PubMed  Google Scholar 

  106. Cheng A, Dube N, Gu F, Tremblay ML. Coordinated action of protein tyrosine phosphatases in insulin signal transduction. Eur J Biochem 2002; 269(4):1050–1059.

    CAS  PubMed  Google Scholar 

  107. Bandyopadhyay D, Kusari A, Kenner KA, Liu F, Chernoff J, Gustafson TA et al. Protein-tyrosine phosphatase 1B complexes with the insulin receptor in vivo and is tyrosine-phosphorylated in the presence of insulin. J Biol Chem 1997; 272(3):1639–1645.

    CAS  PubMed  Google Scholar 

  108. Salmeen A, Andersen IN, Myers MP, Tonks NK, Barford D. Molecular basis for the dephosphorylation of the activation segment of the insulin receptor by protein tyrosine phosphatase 1B. Mol Cell 2000; 6(6):1401–1412.

    CAS  PubMed  Google Scholar 

  109. Li S, Depetris RS, Barford D, Chernoff J, Hubbard SR. Crystal structure of a complex between protein tyrosine phosphatase 1B and the insulin receptor tyrosine kinase. Structure (Camb) 2005; 13(11): 1643–1651.

    CAS  Google Scholar 

  110. Venable CL, Frevert ED, Kim YB, Fischer BM, Kamatkar S, Neel BG et al. Overexpression of protein-tyrosine phosphatase-1B in adipocytes inhibits insulin-stimulated phosphoinositide 3-kinase activity without altering glucose transport or Akt/Protein kinase B activation. J Biol Chem 2000; 275(24): 18318–18326.

    CAS  PubMed  Google Scholar 

  111. Egawa K, Maegawa H, Shimizu S, Morino K, Nishio Y, Bryer-Ash M et al. Protein-tyrosine phosphatase-1B negatively regulates insulin signaling in 16 myocytes and Fao hepatoma cells. J Biol Chem 2001; 276(13):10207–10211.

    CAS  PubMed  Google Scholar 

  112. Elchebly M, Payette P, Michaliszyn E, Cromlish W, Collins S, Loy AL et al. Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene. Science 1999; 283(5407):1544–1548.

    CAS  PubMed  Google Scholar 

  113. Zabolotny JM, Haj FG, Kim YB, Kim HJ, Shulman GI, Kim JK et al. Transgenic overexpression of protein-tyrosine phosphatase 1B in muscle causes insulin resistance, but overexpression with leukocyte cyte antigen-related phosphatase does not additively impair insulin action. J Biol Chem 2004; 279(23):24844–24851.

    CAS  PubMed  Google Scholar 

  114. Ahmad F, Goldstein BJ. Functional association between the insulin receptor and the transmembrane protein-tyrosine phosphatase LAR in intact cells. J Biol Chem 1997; 272(1):448–457.

    CAS  PubMed  Google Scholar 

  115. Li PM, Zhang WR, Goldstein BJ. Suppression of insulin receptor activation by overexpression of the protein-tyrosine phosphatase LAR in hepatoma cells. Cell Signal 1996; 8(7):467–473.

    CAS  PubMed  Google Scholar 

  116. Kulas DT, Zhang WR, Goldstein BJ, Furlanetto RW, Mooney RA. Insulin receptor signaling is augmented by antisense inhibition of the protein tyrosine phosphatase LAR. J Biol Chem 1995; 270(6):2435–2438.

    CAS  PubMed  Google Scholar 

  117. Zabolotny JM, Kim YB, Peroni OD, Kim JK, Pani MA, Boss O et al. Overexpression of the LAR (leukocyte antigen-related) protein-tyrosine phosphatase in muscle causes insulin resistance. Proc Natl Acad Sci USA 2001; 98(9):5187–5192.

    CAS  PubMed  Google Scholar 

  118. Mander A, Hodgkinson CP, Sale GJ. Knock-down of LAR protein tyrosine phosphatase induces insulin resistance. FEBS Lett 2005; 579(14):3024–3028.

    CAS  PubMed  Google Scholar 

  119. Galic S, Klingler-Hoffmann M, Fodero-Tavoletti MT, Puryer MA, Meng TC, Tonks NK et al. Regulation of insulin receptor signaling by the protein tyrosine phosphatase TCPTP. Mol Cell Biol 2003; 23(6):2096–2108.

    CAS  PubMed  Google Scholar 

  120. Galic S, Hauser C, Kahn BB, Haj FG, Neel BG, Tonks NK et al. Coordinated regulation of insulin signaling by the protein tyrosine phosphatases PTPIB and TCPTP. Mol Cell Biol 2005; 25(2):819–829.

    CAS  PubMed  Google Scholar 

  121. Nakagawa Y, Aoki N, Aoyama K, Shimizu H, Shimano H, Yamada N et al. Receptor-type protein tyrosine phosphatase epsilon (PTPepsilonM) is a negative regulator of insulin signaling in primary hepatocytes and liver. Zoolog Sci 2005; 22(2):169–175.

    CAS  PubMed  Google Scholar 

  122. Ahmad F, Azevedo JL, Cortright R, Dohm GL, Goldstein BJ. Alterations in skeletal muscle protein-tyrosine phosphatase activity and expression in insulin-resistant human obesity and diabetes. J Clin Invest 1997; 100(2):449–458.

    CAS  PubMed  Google Scholar 

  123. Worm O, Vinten J, Staehr P, Henriksen JE, Handberg A, Beck-Nielsen H. Altered basal and insulin-stimulated phosphotyrosine phosphatase (PTPase) activity in skeletal muscle from NIDDM patients compared with control subjects. Diabetologia 1996; 39(10):1208–1214.

    CAS  PubMed  Google Scholar 

  124. Kusari J, Kenner KA, Suh KI, Hill DE, Henry RR. Skeletal muscle protein tyrosine phosphatase activity and tyrosine phosphatase IB protein content are associated with insulin action and resistance. J Clin Invest 1994; 93(3):1156–1162.

    CAS  PubMed  Google Scholar 

  125. Maddux BA, Chang YN, Accili D, McGuinness OP, Youngren JF, Goldfine ID. Overexpression of the insulin receptor inhibitor PC-1/ENPPI induces insulin resistance and hyperglycemia. Am J Physiol Endocrinol Metab 2006; 290(4):E746–E749.

    CAS  PubMed  Google Scholar 

  126. Maddux BA, Sbraccia P, Kumakura S, Sasson S, Youngren J, Fisher A et al. Membrane glycoprotein PC-1 and insulin resistance in non-insulin-dependent diabetes mellitus. Nature 1995; 373(6513): 448–451.

    CAS  PubMed  Google Scholar 

  127. Maddux BA, Goldfine ID. Membrane glycoprotein PC-1 inhibition of insulin receptor function occurs via direct interaction with the receptor alpha-subunit. Diabetes 2000; 49(1):13–19.

    CAS  PubMed  Google Scholar 

  128. Ottensmeyer FP, Beniac DR, Luo RZ, Yip CC. Mechanism of transmembrane signaling: Insulin binding and the insulin receptor. Biochemistry 2000; 39(40):12103–12112.

    CAS  PubMed  Google Scholar 

  129. Costanzo BV, Trischitta V, Di Paola R, Spampinato D, Pizzuti A, Vigneri R et al. The Q allele variant (GLN121) of membrane glycoprotein PC-1 interacts with the insulin receptor and inhibits insulin signaling more effectively than the common K allele variant (LYSI21). Diabetes 2001; 50(4):831–836.

    CAS  PubMed  Google Scholar 

  130. Dong H, Maddux BA, Altomonte J, Meseck M, Accili D, Terkeltaub R et al. Increased hepatic levels of the insulin receptor inhibitor, PC-1/NPP1, induce insulin resistance and glucose intolerance. Diabetes 2005; 54(2):367–372.

    CAS  PubMed  Google Scholar 

  131. Goldfine ID, Maddux BA, Youngren JF, Frittitta L, Trischitta V, Dohm GL. Membrane glycoprotein PC-1 and insulin resistance. Mol Cell Biochem 1998; 182(1–2):177–184.

    CAS  PubMed  Google Scholar 

  132. Youngren JF, Maddux BA, Sasson S, Sbraccia P, Tapscott EB, Swanson MS et al. Skeletal muscle content of membrane glycoprotein PC-1 in obesity. Relationship to muscle glucose transport. Diabetes 1996; 45(10):1324–1328.

    CAS  PubMed  Google Scholar 

  133. Abate N, Chandalia M, Satija P, Adams-Huet B, Grundy SM, Sandeep S et al. ENPP1/PC-1 K121Q polymorphism and genetic susceptibility to type 2 diabetes. Diabetes 2005; 54(4):1207–1213.

    CAS  PubMed  Google Scholar 

  134. Bacci S, Ludovico O, Prudente S, Zhang YY, Di Paola R, Mangiacotti D et al. The K121Q polymorphism of the ENPP1/PC-1 gene is associated with insulin resistance/atherogenic phenotypes, including earlier onset of type 2 diabetes and myocardial infarction. Diabetes 2005; 54(10):3021–3025.

    CAS  PubMed  Google Scholar 

  135. Meyre D, Bouatia-Naji N, Tounian A, Samson C, Lecoeur C, Vatin V et al. Variants of ENPP1 are associated with childhood and adult obesity and increase the risk of glucose intolerance and type 2 diabetes. Nat Genet 2005; 37(8):863–867.

    CAS  PubMed  Google Scholar 

  136. Yasukawa H, Sasaki A, Yoshimura A. Negative regulation of cytokine signaling pathways. Annu Rev Immunol 2000; 18:143–164.

    CAS  PubMed  Google Scholar 

  137. Emanuelli B, Peraldi P, Filloux C, Sawka-Verhelle D, Hilton D, Van Obberghen E. SOCS-3 is an insulin-induced negative regulator of insulin signaling. J Biol Chem 2000; 275(21):15985–15991.

    CAS  PubMed  Google Scholar 

  138. Mooney RA, Senn J, Cameron S, Inamdar N, Boivin LM, Shang Y et al. Suppressors of cytokine signaling-1 and-6 associate with and inhibit the insulin receptor: A potential mechanism for cytokine-mediated insulin resistance. J Biol Chem 2001; 276(28):25889–25893.

    CAS  PubMed  Google Scholar 

  139. Ueki K, Kondo T, Kahn CR. Suppressor of cytokine signaling 1 (SOCS-1) and SOCS-3 cause insulin resistance through inhibition of tyrosine phosphorylation of insulin receptor substrate proteins by discrete mechanisms. Mol Cell Biol 2004; 24(12):5434–5446.

    CAS  PubMed  Google Scholar 

  140. Ueki K, Kadowaki T, Kahn CR. Role of suppressors of cytokine signaling SOCS-1 and SOCS-3 in hepatic steatosis and the metabolic syndrome. Hepatol Res 2005;185–192.

    Google Scholar 

  141. Gual P, Marchand-Brustel Y, Tanti IF. Positive and negative regulation of insulin signaling through IRS-1 phosphorylation. Biochimie 2005; 87(1):99–109.

    CAS  PubMed  Google Scholar 

  142. Aguirre V, Werner ED, Giraud J, Lee YH, Shoelson SE, White MF. Phosphorylation of Ser307 in insulin receptor substrate-1 blocks interactions with the insulin receptor and inhibits insulin action. J Biol Chem 2002; 277(2):1531–1537.

    CAS  PubMed  Google Scholar 

  143. Lin Y, Itani SI, Kurowski TG, Dean DJ, Luo Z, Yaney GC et al. Inhibition of insulin signaling and glycogen synthesis by phorbol dibutyrate in rat skeletal muscle. Am J Physiol Endocrinol Metab 2001; 281(1):E8–E15.

    CAS  PubMed  Google Scholar 

  144. Strack V, Hennige AM, Krutzfeldt J, Bossenmaier B, Klein HH, Kellerer M et al. Serine residues 994 and 1023/25 are important for insulin receptor kinase inhibition by protein kinase C isoforms beta2 and theta. Diabetologia 2000; 43(4):443–449.

    CAS  PubMed  Google Scholar 

  145. Bossenmaier B, Mosthaf L, Mischak H, Ullrich A, Haring HU. Protein kinase C isoforms beta 1 and beta 2 inhibit the tyrosine kinase activity of the insulin receptor. Diabetologia 1997; 40(7): 863–866.

    CAS  PubMed  Google Scholar 

  146. Kellerer M, Mushack J, Seffer E, Mischak H, Ullrich A, Haring HU. Protein kinase C isoforms alpha, delta and theta require insulin receptor substrate-1 to inhibit the tyrosine kinase activity of the insulin receptor in human kidney embryonic cells (HEK 293 cells). Diabetologia 1998; 41(7):833–838.

    CAS  PubMed  Google Scholar 

  147. Feener EP, Backer JM, King GL, Wilden PA, Sun XJ, Kahn CR et al. Insulin stimulates serine and tyrosine phosphorylation in the juxtamembrane region of the insulin receptor. J Biol Chem 1993; 268(15): 11256–11264.

    CAS  PubMed  Google Scholar 

  148. Liu F, Roth RA. Identification of serines-1035/1037 in the kinase domain of the insulin receptor as protein kinase C alpha mediated phosphorylation sites. FEBS Lett 1994; 352(3):389–392.

    CAS  PubMed  Google Scholar 

  149. Al Hasani H, Eisermann B, Tennagels N, Magg C, Passlack W, Koenen M et al. Identification of Ser-1275 and Ser-1309 as autophosphorylation sites of the insulin receptor. FEBS Lett 1997; 400(1):65–70.

    CAS  PubMed  Google Scholar 

  150. Bossenmaier B, Strack V, Stoyanov B, Krutzfeldt J, Beck A, Lehmann R et al. Serine residues 1177/78/82 of the insulin receptor are required for substrate phosphorylation but not autophosphorylation. Diabetes 2000; 49(6):889–895.

    CAS  PubMed  Google Scholar 

  151. Chin IE, Dickens M, Tavare JM, Roth RA. Overexpression of protein kinase C isoenzymes alpha, beta I, gamma, and epsilon in cells overexpressing the insulin receptor: Effects on receptor phosphorylation and signaling. J Biol Chem 1993; 268(9):6338–6347.

    CAS  PubMed  Google Scholar 

  152. Koshio O, Akanuma Y, Kasuga M. Identification of a phosphorylation site of the rat insulin receptor catalyzed by protein kinase C in an intact cell. FEBS Lett 1989; 254(1–2):22–24.

    CAS  PubMed  Google Scholar 

  153. Ahn J, Donner DB, Rosen OM. Interaction of the human insulin receptor tyrosine kinase from the baculovirus expression system with protein kinase C in a cell-free system. J Biol Chem 1993; 268(10):7571–7576.

    CAS  PubMed  Google Scholar 

  154. Schmitz-Peiffer C. Protein kinase C and lipid-induced insulin resistance in skeletal muscle. Ann NY Acad Sci 2002; 967:146–157.

    CAS  PubMed  Google Scholar 

  155. Pillay TS, Xiao S, Keranen L, Olefsky JM. Regulation of the insulin receptor by protein kinase C isoenzymes: Preferential interaction with beta isoenzymes and interaction with the catalytic domain of betaII. Cell Signal 2004; 16(1):97–104.

    CAS  PubMed  Google Scholar 

  156. Hulver MW, Dohm GL. The molecular mechanism linking muscle fat accumulation to insulin resistance. Proc Nutr Soc 2004; 63(2):375–380.

    CAS  PubMed  Google Scholar 

  157. Itani SI, Zhou Q, Pories WJ, MacDonald KG, Dohm GL. Involvement of protein kinase C in human skeletal muscle insulin resistance and obesity. Diabetes 2000; 49(8): 1353–1358.

    CAS  PubMed  Google Scholar 

  158. Zhou Q, Dolan PL, Dohm GL. Dephosphorylation increases insulin-stimulated receptor kinase activity in skeletal muscle of obese Zucker rats. Mol Cell Biochem 1999; 194(1–2):209–216.

    CAS  PubMed  Google Scholar 

  159. Reynoso R, Salgado LM, Calderon V. High levels of palmitic acid lead to insulin resistance due to changes in the level of phosphorylation of the insulin receptor and insulin receptor substrate-1. Mol Cell Biochem 2003; 246(1–2):155–162.

    CAS  PubMed  Google Scholar 

  160. Itani SI, Ruderman NB, Schmieder F, Boden G. Lipid-induced insulin resistance in human muscle is associated with changes in diacylglycerol, protein kinase C, and IkappaB-alpha. Diabetes 2002; 51(7):2005–2011.

    CAS  PubMed  Google Scholar 

  161. Griffin ME, Marcucci MJ, Cline GW, Bell K, Barucci N, Lee D et al. Free fatty acid-induced insulin resistance is associated with activation of protein kinase C theta and alterations in the insulin signaling cascade. Diabetes 1999; 48(6):1270–1274.

    CAS  PubMed  Google Scholar 

  162. Kellerer M, Haring HU. Pathogenesis of insulin resistance: modulation of the insulin signal at receptor level. Diabetes Res Clin Pract 1995; 28(suppl):S173–S177.

    CAS  PubMed  Google Scholar 

  163. Kroder G, Bossenmaier B, Kellerer M, Capp E, Stoyanov B, Muhlhofer A et al. Tumor necrosis factor-alpha-and hyperglycemia-induced insulin resistance: Evidence for different mechanisms and different effects on insulin signaling. J Clin Invest 1996; 97(6):1471–1477.

    CAS  PubMed  Google Scholar 

  164. Nguyen MT, Satoh H, Favelyukis S, Babendure JL, Imamura T, Sbodio JI et al. JNK and tumor necrosis factor-alpha mediate free fatty acid-induced insulin resistance in 3T3-L1 adipocytes. J Biol Chem 2005; 280(42):35361–35371.

    CAS  PubMed  Google Scholar 

  165. Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-alpha: Direct role in obesity-linked insulin resistance. Science 1993; 259(5091):87–91.

    CAS  PubMed  Google Scholar 

  166. Kern PA, Ranganathan S, Li C, Wood L, Ranganathan G. Adipose tissue tumor necrosis factor and interleukin-6 expression in human obesity and insulin resistance. Am J Physiol Endocrinol Metab 2001; 280(5):E745–E751.

    CAS  PubMed  Google Scholar 

  167. de Alvaro C, Teruel T, Hernandez R, Lorenzo M. Tumor necrosis factor alpha produces insulin resistance in skeletal muscle by activation of inhibitor kappaB kinase in a p38 MAPK-dependent manner. J Biol Chem 2004; 279(17):17070–17078.

    PubMed  Google Scholar 

  168. Tzeng TF, Liu IM, Cheng JT. Activation of opioid mu-receptors by loperamide to improve interleukin-6-induced inhibition of insulin signals in myoblast C2C12 cells. Diabetologia 2005; 48(7): 1386–1392.

    CAS  PubMed  Google Scholar 

  169. Weigert C, Hennige AM, Lehmann R, Brodbeck K, Baumgartner F, Schauble M et al. Direct crosstalk of interleukin-6 and insulin signal transduction via insulin receptor substrate-1 in skeletal muscle cells. J Biol Chem 2006; 281(11):7060–7067.

    CAS  PubMed  Google Scholar 

  170. Wells L, Hart GW. O-GlcNAc turns twenty: Functional implications for post-translational modification of nuclear and cytosolic proteins with a sugar. FEBS Lett 2003; 546(1):154–158.

    CAS  PubMed  Google Scholar 

  171. D’ Alessandris C, Andreozzi F, Federici M, Cardellini M, Brunetti A, Ranalli M et al. Increased O-glycosylation of insulin signaling proteins results in their impaired activation and enhanced susceptibility to apoptosis in pancreatic beta-cells. FASEB J 2004; 18(9):959–961.

    PubMed  Google Scholar 

  172. Lubas WA, Frank DW, Krause M, Hanover JA. O-Linked GlcNAc transferase is a conserved nucleocytoplasmic protein containing tetratricopeptide repeats. J Biol Chem 1997; 272(14):9316–9324.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Youngren, J.F. (2008). Insulin Resistance and Inhibitors of the Insulin Receptor Tyrosine Kinase. In: Hansen, B.C., Bray, G.A. (eds) The Metabolic Syndrome. Contemporary Endocrinology. Humana Press. https://doi.org/10.1007/978-1-60327-116-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-116-5_15

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-738-9

  • Online ISBN: 978-1-60327-116-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics