Skip to main content

Part of the book series: Cancer Drug Discovery and Development™ ((CDD&D))

Summary

Germline DNA (e.g., blood, mouthwash) is the most readily accessible source of material for the identification of pharmacogenetic markers for therapy selection. However, the cancer genome is altered by many processes that could affect the expression of functional alleles in the tumor. Consequently the utility of the germline genome to predict the tumor genome is under question. Studies have suggested strong concordance between the germline and tumor genotype profiles for pharmacogenetic markers. However, genotype is only one factor involved in tumor response to chemotherapy and mechanisms such as chromosome amplification and loss, copy number variation, microsatellite instability, chromosome instability and epigenetic variation (methylation) need to be taken into account.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McLeod HL, Marsh S. Pharmacogenetics goes 3D. Nat Genet2005;37:794–795.

    Article  CAS  PubMed  Google Scholar 

  2. Kidd EA, Yu J, Li X et al. Variance in the expression of 5-fluorouracil pathway genes in colorectal cancer. Clin Cancer Res2005;11:2612–2619.

    Article  CAS  PubMed  Google Scholar 

  3. Yu J, Shannon WD, Watson MA et al. Gene expression profiling of the irinotecan pathway in colorectal cancer. Clin Cancer Res2005;11:2053–2062.

    Article  CAS  PubMed  Google Scholar 

  4. Ratain MJ. From bedside to bench to bedside to clinical practice: an odyssey with irinotecan. Clin Cancer Res2006;12:1658–1660.

    Article  PubMed  Google Scholar 

  5. Hoskins JM, Mcleod HL. Cancer pharmacogenetics: the move from pharmacokinetics to pharmacodynamics. Curr Pharmacogenomics2006;4:39–46.

    Article  CAS  Google Scholar 

  6. Widschwendter A, Muller HM, Fiegl H et al. DNA methylation in serum and tumors of cervical cancer patients. Clin Cancer Res2004;10:565–571.

    Article  CAS  PubMed  Google Scholar 

  7. Taback B, Giuliano AE, Lai R et al. Epigenetic analysis of body fluids and tumor tissues: application of a comprehensive molecular assessment for early-stage breast cancer patients. Ann NY Acad Sci2006;1075:211–221.

    Article  CAS  PubMed  Google Scholar 

  8. Meucci MA, Marsh S, Watters JW et al. CEPH individuals are representative of the European American population: implications for pharmacogenetics. Pharmacogenomics2005;6:59–63.

    Article  CAS  PubMed  Google Scholar 

  9. Feng WH, Hong G, Delecluse HJ et al. Lytic induction therapy for Epstein–Barr virus-positive B-cell lymphomas. J Virol2004;78:1893–1902.

    Article  CAS  PubMed  Google Scholar 

  10. Lengauer C, Kinzler KW, Vogelstein B. Genetic instability in colorectal cancers. Nature1997; 386:623–627.

    Article  CAS  PubMed  Google Scholar 

  11. Lenz HJ. The use and development of germline polymorphisms in clinical oncology. J Clin Oncol2004;22:2519–2521.

    Article  CAS  PubMed  Google Scholar 

  12. Savage SA, Chanock SJ. Using germline genetic variation to investigate and treat cancer. Drug Discov Today2004;9:610–618.

    Article  CAS  PubMed  Google Scholar 

  13. Becker I, Becker KF, Rohrl MH et al. Laser-assisted preparation of single cells from stained histological slides for gene analysis. Histochem Cell Biol1997;108:447–451.

    Article  CAS  PubMed  Google Scholar 

  14. Tomlinson IP, Lambros MB, Roylance RR. Loss of heterozygosity analysis: practically and conceptually flawed? Genes Chromosomes Cancer2002;34:349–353.

    Article  PubMed  Google Scholar 

  15. Pinzani P, Orlando C, Pazzagli M. Laser-assisted microdissection for real-time PCR sample preparation. Mol Aspects Med2006;27:140–159.

    Article  CAS  PubMed  Google Scholar 

  16. Becker I, Becker KF, Rohrl MH et al. Single-cell mutation analysis of tumors from stained histologic slides. Lab Invest1996;75:801–807.

    CAS  PubMed  Google Scholar 

  17. Paez JG, Janne PA, Lee JC et al. EGFR Mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science2004;304:1497–1500.

    Article  CAS  PubMed  Google Scholar 

  18. Pao W, Miller V, Zakowski M et al. EGF receptor gene mutations are common in lung cancers from “never smokers” and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc Natl Acad Sci USA2004;101:13306–13311.

    Article  CAS  PubMed  Google Scholar 

  19. Tavares AS, Costa J, de Carvalho A et al. Tumour ploidy and prognosis in carcinomas of the bladder and prostate. Br J Cancer1966;20:438–441.

    Article  CAS  PubMed  Google Scholar 

  20. Rooney PH, Murray GI, Stevenson DA et al. Comparative genomic hybridization and chromosomal instability in solid tumours. Br J Cancer1999;80:862–873.

    Article  CAS  PubMed  Google Scholar 

  21. Rooney PH, Boonsong A, McKay JA et al. Colorectal cancer genomics: evidence for multiple genotypes which influence survival. Br J Cancer2001;85:1492–1498.

    Article  CAS  PubMed  Google Scholar 

  22. Staebler A, Karberg B, Behm J et al. Chromosomal losses of regions on 5q and lack of high-level amplifications at 8q24 are associated with favorable prognosis for ovarian serous carcinoma. Genes Chromosomes Cancer2006;45:905–917.

    Article  CAS  PubMed  Google Scholar 

  23. Ito C, Kumagai M, Manabe A et al. Hyperdiploid acute lymphoblastic leukemia with 51 to 65 chromosomes: a distinct biological entity with a marked propensity to undergo apoptosis. Blood1999;93: 315–320.

    CAS  PubMed  Google Scholar 

  24. Raimondi SC, Zhou Y, Mathew S et al. Reassessment of the prognostic significance of hypodiploidy in pediatric patients with acute lymphoblastic leukemia. Cancer2003;98:2715–2722.

    Article  PubMed  Google Scholar 

  25. Kaufman RJ, Brown PC, Schimke RT. Amplified dihydrofolate reductase genes in unstably methotrexate-resistant cells are associated with double minute chromosomes. Proc Natl Acad Sci USA1979;76:5669–5673.

    Article  CAS  PubMed  Google Scholar 

  26. Boonsong A, Marsh S, Rooney PH et al. Characterization of the topoisomerase I locus in human colorectal cancer. Cancer Genet Cytogenet2000;121:56–60.

    Article  CAS  PubMed  Google Scholar 

  27. McLeod HL, Keith WN. Variation in topoisomerase I gene copy number as a mechanism for intrinsic drug sensitivity. Br J Cancer1996;74:508–512.

    Article  CAS  PubMed  Google Scholar 

  28. Wang W, Marsh S, Cassidy J et al. Pharmacogenomic dissection of resistance to thymidylate synthase inhibitors. Cancer Res2001;61:5505–5510.

    CAS  PubMed  Google Scholar 

  29. Wang TL, Diaz LA, Jr., Romans K et al. Digital karyotyping identifies thymidylate synthase amplification as a mechanism of resistance to 5-fluorouracil in metastatic colorectal cancer patients. Proc Natl Acad Sci USA2004;101:3089–3094.

    Article  CAS  PubMed  Google Scholar 

  30. Cappuzzo F, Hirsch FR, Rossi E et al. Epidermal growth factor receptor gene and protein and gefitinib sensitivity in non-small-cell lung cancer. J Natl Cancer Inst2005;97:643–655.

    Article  CAS  PubMed  Google Scholar 

  31. Leyland-Jones B. Trastuzumab: hopes and realities. Lancet Oncol2002;3:137–144.

    Article  CAS  PubMed  Google Scholar 

  32. Redon R, Ishikawa S, Fitch KR et al. Global variation in copy number in the human genome. Nature2006;444:444–454.

    Article  CAS  PubMed  Google Scholar 

  33. Shianna KV, Willard HF. Human genomics: in search of normality. Nature2006;444:428–429.

    Article  CAS  PubMed  Google Scholar 

  34. Jo WS, Carethers JM. Chemotherapeutic implications in microsatellite unstable colorectal cancer. Cancer Biomark2006;2:51–60.

    CAS  PubMed  Google Scholar 

  35. Sinicrope FA, Rego RL, Halling KC et al. Thymidylate synthase expression in colon carcinomas with microsatellite instability. Clin Cancer Res2006;12:2738–2744.

    Article  CAS  PubMed  Google Scholar 

  36. Goel A, Nagasaka T, Arnold CN et al. The CpG island methylator phenotype and chromosomal instability are inversely correlated in sporadic colorectal cancer. Gastroenterology2007;132:127–138.

    Article  CAS  PubMed  Google Scholar 

  37. Swanton C, Tomlinson I, Downward J. Chromosomal instability, colorectal cancer and taxane resistance. Cell Cycle2006;5:818–823.

    Article  CAS  PubMed  Google Scholar 

  38. Stebbing J, Bower M, Syed N et al. Epigenetics: an emerging technology in the diagnosis and treatment of cancer. Pharmacogenomics2006;7:747–757.

    Article  CAS  PubMed  Google Scholar 

  39. Teodoridis JM, Hall J, Marsh S et al. CpG island methylation of DNA damage response genes in advanced ovarian cancer. Cancer Res2005;65:8961–8967.

    Article  CAS  PubMed  Google Scholar 

  40. Cheng Q, Cheng C, Crews KR et al. Epigenetic regulation of human gamma-glutamyl hydrolase activity in acute lymphoblastic leukemia cells. Am J Hum Genet2006;79:264–274.

    Article  CAS  PubMed  Google Scholar 

  41. Flanagan JM, Popendikyte V, Pozdniakovaite N et al. Intra- and interindividual epigenetic variation in human germ cells. Am J Hum Genet2006;79:67–84.

    Article  CAS  PubMed  Google Scholar 

  42. Rae JM, Cordero KE, Scheys JO et al. Genotyping for polymorphic drug metabolizing enzymes from paraffin-embedded and immunohistochemically stained tumor samples. Pharmacogenetics2003;13:501–507.

    Article  CAS  PubMed  Google Scholar 

  43. Goetz MP, Rae JM, Suman VJ et al. Pharmacogenetics of tamoxifen biotransformation is associated with clinical outcomes of efficacy and hot flashes. J Clin Oncol2005;23:9312–9318.

    Article  CAS  PubMed  Google Scholar 

  44. Schneider BP, Skaar TC, Sledge GW et al. Analysis of angiogenesis genes from paraffin-embedded breast tumor and lymph nodes. Breast Cancer Res Treat2006;96:209–215.

    Article  CAS  PubMed  Google Scholar 

  45. Mort R, Mo L, McEwan C et al. Lack of involvement of nucleotide excision repair gene polymorphisms in colorectal cancer. Br J Cancer2003;89:333–337.

    Article  CAS  PubMed  Google Scholar 

  46. Marsh S, Mallon MA, Goodfellow P et al. Concordance of pharmacogenetic markers in germline and colorectal tumor DNA. Pharmacogenomics2005;6:873–877.

    Article  CAS  PubMed  Google Scholar 

  47. Marsh S. Thymidylate synthase pharmacogenetics. Invest New Drugs2005;23:533–537.

    Article  CAS  PubMed  Google Scholar 

  48. Kawakami K. Thymidylate synthase gene in pharmacogenetics. current Pharmacogenomics2004;2:137–147.

    Article  CAS  Google Scholar 

  49. Kolesar JM, Pritchard SC, Kerr KM et al. Evaluation of NQO1 gene expression and variant allele in human NSCLC tumors and matched normal lung tissue. Int J Oncol2002;21:1119–1124.

    CAS  PubMed  Google Scholar 

  50. Cheng Q, Yang W, Raimondi SC et al. Karyotypic abnormalities create discordance of germline genotype and cancer cell phenotypes. Nat Genet2005;37:878–882.

    Article  CAS  PubMed  Google Scholar 

  51. Takahashi K, Kohno T, Matsumoto S et al. Clonal and parallel evolution of primary lung cancers and their metastases revealed by molecular dissection of cancer cells. Clin Cancer Res2007;13:111–120.

    Article  CAS  PubMed  Google Scholar 

  52. Findlay MP, Cunningham D, Morgan G et al. Lack of correlation between thymidylate synthase levels in primary colorectal tumours and subsequent response to chemotherapy. Br J Cancer1997; 75:903–909.

    Article  CAS  PubMed  Google Scholar 

  53. Marsh S, McKay JA, Curran S et al. Primary colorectal tumour is not an accurate predictor of thymidylate synthase in lymph node metastasis. Oncol Rep2002;9:231–234.

    CAS  PubMed  Google Scholar 

  54. Fuchs IB, Siemer I, Buhler H et al. Epidermal growth factor receptor changes during breast cancer metastasis. Anticancer Res2006;26:4397–4401.

    CAS  PubMed  Google Scholar 

  55. Lorincz T, Toth J, Badalian G et al. HER-2/neu genotype of breast cancer may change in bone metastasis. Pathol Oncol Res2006;12:149–152.

    Article  CAS  PubMed  Google Scholar 

  56. Gong Y, Booser DJ, Sneige N. Comparison of HER-2 status determined by fluorescence in situ hybridization in primary and metastatic breast carcinoma. Cancer2005;103:1763–1769.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author is supported by UO1 GM63340 and R21 CA113491.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Marsh, S. (2008). Concordance Between Tumor and Germline DNA. In: Innocenti, F. (eds) Genomics and Pharmacogenomics in Anticancer Drug Development and Clinical Response. Cancer Drug Discovery and Development™. Humana Press. https://doi.org/10.1007/978-1-60327-088-5_7

Download citation

Publish with us

Policies and ethics