Role of the Folate-Pathway and the Thymidylate Synthase Genes in Pediatric Acute Lymphoblastic Leukemia Treatment Response

  • Lea Cunningham
  • Richard Aplenc
Part of the Cancer Drug Discovery and Development™ book series (CDD&D)


Acute lymphoblastic leukemia (ALL) is the most common childhood cancer with a cure rate of approximately 80%. However, despite the generally favorable outcome of ALL treatment, some children relapse or experience severe treatment side effects. Recent research efforts have focused on understanding the patient genetic characteristics that underlie treatment response. To date, several studies have demonstrated that polymorphic genetic variation in genes in the folic acid cycle are associated with altered risks of ALL relapse or treatment toxicity. This chapter summarizes and reviews these results with a particular focus on the methylene tetrahydrofolate and thymidylate synthase genes. While providing intriguing data that germline genetic variation may determine ALL treatment response, adequately powered prospective trials are necessary to translate these findings into clinical practice.

Key Words

Acute lymphoblastic leukemia pharmacogenetics single nucleotide polymorphisms outcome English folate pathway methotrexate 


  1. 1.
    Pui CH, Sandlund JT, Pei D et al. Improved outcome for children with acute lymphoblastic leukemia: results of Total Therapy Study XIIIB at St Jude Children's Research Hospital. Blood 2004;104: 2690–2696.CrossRefPubMedGoogle Scholar
  2. 2.
    Goyette P, Sumner JS, Milos R et al. Human methylenetetrahydrofolate reductase: isolation of cDNA mapping and mutation identification. Nat Genet 1994;7:551.CrossRefPubMedGoogle Scholar
  3. 3.
    Botto LD, Yang Q. 5,10-Methylenetetrahydrofolate reductase gene variants and congenital anomalies: a HuGE review. Am J Epidemiol 2000;151:862–877.PubMedGoogle Scholar
  4. 4.
    Robien K, Ulrich CM. 5,10-Methylenetetrahydrofolate reductase polymorphisms and leukemia risk: a HuGE minireview. Am J Epidemiol 2003;157:571–582.CrossRefPubMedGoogle Scholar
  5. 5.
    Krajinovic M, Lemieux-Blanchard E, Chiasson S et al. Role of polymorphisms in MTHFR and MTHFD1 genes in the outcome of childhood acute lymphoblastic leukemia. Pharmacogenomics J 2004;4:66–72.CrossRefPubMedGoogle Scholar
  6. 6.
    Aplenc R, Thompson J, Han P et al. Methylenetetrahydrofolate reductase polymorphisms and therapy response in pediatric acute lymphoblastic leukemia. Cancer Res 2005;65:2482–2487.CrossRefPubMedGoogle Scholar
  7. 7.
    Kishi S, Griener J, Cheng C et al. Homocysteine, pharmacogenetics, and neurotoxicity in children with leukemia. J Clin Oncol 2003;21:3084–3091.CrossRefPubMedGoogle Scholar
  8. 8.
    Jazbec J, Kitanovski L, Aplenc R et al. No evidence of association of methylenetetrahydrofolate reductase polymorphism with occurrence of second neoplasms after treatment of childhood leukemia. Leuk Lymphoma 2005;46:893–897.CrossRefPubMedGoogle Scholar
  9. 9.
    Chiusolo P, Reddiconto G, Casorelli I et al. Preponderance of methylenetetrahydrofolate reductase C677T homozygosity among leukemia patients intolerant to methotrexate. Ann Oncol 2002;13: 1915–1918.CrossRefPubMedGoogle Scholar
  10. 10.
    Ulrich CM, Yasui Y, Storb R et al. Pharmacogenetics of methotrexate: toxicity among marrow transplantation patients varies with the methylenetetrahydrofolate reductase C677T polymorphism. Blood 2001;98:231–234.CrossRefPubMedGoogle Scholar
  11. 11.
    Costea I, Moghrabi A, Laverdiere C et al. Folate cycle gene variants and chemotherapy toxicity in pediatric patients with acute lymphoblastic leukemia. Haematologica 2006.Google Scholar
  12. 12.
    Shimasaki N, Mori T, Samejima H et al. Effects of methylenetetrahydrofolate reductase and reduced folate carrier 1 polymorphisms on high-dose methotrexate-induced toxicities in children with acute lymphoblastic leukemia or lymphoma.J Pediatr Hematol Oncol 2006;28:64–68.CrossRefPubMedGoogle Scholar
  13. 13.
    Hol FA, van der Put NM, Geurds MP et al. Molecular genetic analysis of the gene encoding the trifunctional enzyme MTHFD (methylenetetrahydrofolate-dehydrogenase, methenyltetrahydrofolate-cyclohydrolase, formyltetrahydrofolate synthetase) in patients with neural tube defects. Clin Genet 1998;53:119–125.CrossRefPubMedGoogle Scholar
  14. 14.
    Kaneda S, Nalbantoglu J, Takeishi K et al. Structural and functional analysis of the human thymidylate synthase gene. J Biol Chem 1990;265:20277–20284.PubMedGoogle Scholar
  15. 15.
    Marsh S, Collie-Duguid ES, Li T et al. Ethnic variation in the thymidylate synthase enhancer region polymorphism among Caucasian and Asian populations. Genomics 1999;58:310–312.CrossRefPubMedGoogle Scholar
  16. 16.
    Mandola MV, Stoehlmacher J, Zhang W et al. A 6 bp polymorphism in the thymidylate synthase gene causes message instability and is associated with decreased intratumoral TS mRNA levels. Pharmacogenetics 2004;14:319–327.Google Scholar
  17. 17.
    Krajinovic M, Costea I, Chiasson S. Polymorphism of the thymidylate synthase gene and outcome of acute lymphoblastic leukaemia. Lancet 2002;359:1033–1034.CrossRefPubMedGoogle Scholar
  18. 18.
    Krajinovic M, Costea I, Primeau M et al. Combining several polymorphisms of thymidylate synthase gene for pharmacogenetic analysis. Pharmacogenomics J 2005;5:374–380.CrossRefPubMedGoogle Scholar
  19. 19.
    Costea I, Moghrabi A, Krajinovic M. The influence of cyclin D1 (CCND1) 870 A>G polymorphism and CCND1-thymidylate synthase (TS) gene–gene interaction on the outcome of childhood acute lymphoblastic leukaemia. Pharmacogenetics 2003;13:577–580.CrossRefPubMedGoogle Scholar
  20. 20.
    Rocha JC, Cheng C, Liu W et al. Pharmacogenetics of outcome in children with acute lymphoblastic leukemia. Blood 2005;105:4752–4758.CrossRefPubMedGoogle Scholar
  21. 21.
    Lauten M, Asgedom G, Welte K et al. Thymidylate synthase gene polymorphism and its association with relapse in childhood B-cell precursor acute lymphoblastic leukemia. Haematologica 2003;88:353–354.PubMedGoogle Scholar
  22. 22.
    Relling MV, Yang W, Das S et al. Pharmacogenetic risk factors for osteonecrosis of the hip among children with leukemia. J Clin Oncol 2004;22:3930–3936.CrossRefPubMedGoogle Scholar
  23. 23.
    Rady PL, Szucs S, Matalon RK et al. Genetic polymorphism (G80A) of reduced folate carrier gene in ethnic populations. Mol Genet Metab 2001;73:285–286.CrossRefPubMedGoogle Scholar
  24. 24.
    Laverdiere C, Chiasson S, Costea I et al. Polymorphism G80A in the reduced folate carrier gene and its relationship to methotrexate plasma levels and outcome of childhood acute lymphoblastic leukemia. Blood 2002;100:3832–3834.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Lea Cunningham
    • 1
  • Richard Aplenc
    • 1
  1. 1.Department of PediatricsChildren’s Hospital of PhiladelphiaPhiladelphiaCanada

Personalised recommendations