Skip to main content

Reversal of Immune Suppression in Sentinel Lymph Nodes

  • Chapter
  • First Online:
From Local Invasion to Metastatic Cancer

Part of the book series: Current Clinical Oncology ((CCO))

  • 915 Accesses

Abstract

Minimally invasive intraoperative lymphatic mapping and sentinel node biopsy (LM/SNB) has become the standard approach for staging the regional lymph nodes for early-stage melanoma and breast cancer and has potential applications in other malignancies. The procedure requires close collaboration of surgeon, pathologist, and nuclear medicine physician. The strength of LM/SNB is its accuracy of detecting occult lymph node metastases while the therapeutic value of early dissection of occult metastases is yet unproved. RT-PCR analyses of either fresh frozen or paraffin-embedded sections of the sentinel lymph nodes may be more sensitive than hematoxylin and eosin (H&E) or immunohistochemistry but lack the specificity compared to conventional methods and limits in the availability of tissue specimens make RT-PCR impractical for routine use. LM/SNB allows for focused analysis of the matched primary malignancy and sentinel node. Research from human melanoma specimens suggest the sentinel node (SN) has molecular properties pointing toward immune dysfunction of these lymph nodes as compared with adjacent non-SNs and that reversal of this dysfunction may be an effective method of enhancing the immune response to melanoma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cascinelli N, Morabito A, Santinami M, et al. Immediate or delayed dissection of regional nodes in patients with melanoma of the trunk: a randomized trial. Lancet 351: 793–796, 1998.

    Article  PubMed  CAS  Google Scholar 

  2. Morton DL, Wen DR, Wong J, et al. Technical details of intraoperative lymphatic mapping for early-stage melanoma. Arch Surg 127: 392–399, 1992.

    Article  PubMed  CAS  Google Scholar 

  3. Essner R, Bostick PJ, Glass EC, et al. Standardized probe-directed sentinel node dissection in melanoma. Surgery 127: 26–31, 2000.

    Article  PubMed  CAS  Google Scholar 

  4. Cochran AJ, Roberts A, Wen DR, et al. Update on lymphatic mapping and sentinel node biopsy in the management of patients with melanocytic tumours. Pathology 36: 478–484, 2004.

    Article  PubMed  Google Scholar 

  5. Gershenwald JE, Colome MI, Lee JE, et al. Patterns of recurrence following a negative sentinel lymph node biopsy in 243 patients with stage I or II melanoma. J Clin Oncol 16: 2253–2260, 1998.

    PubMed  CAS  Google Scholar 

  6. Hoon DSB, Bowker RJ, Cochran AJ. Suppressor cell activity in melanoma-draining lymph nodes. Cancer Res 47: 1529–1533, 1987.

    PubMed  CAS  Google Scholar 

  7. Cochran AJ, Pihi E, Wen D-R, Hoon DSB, Korn EL. Zoned immune suppression of lymph nodes draining malignant melanoma: histologic and immunohistologic studies. JNCI 78: 399–407, 1987.

    PubMed  CAS  Google Scholar 

  8. Hoon DSB, Korn EL, Cochran AJ. Variations in functional immunocompetence of human tumor-draining lymph nodes. Cancer Res 47: 1740–1744, 1987.

    PubMed  CAS  Google Scholar 

  9. Cochran AJ, Morton DL, Stern S, Lana AMA, Essner R, Wen DR. Sentinel lymph nodes show profound downregulation of antigen-presenting cells of the paracortex: implications for tumor biology and treatment. Mod Pathol 14: 604–608, 2001.

    Article  PubMed  CAS  Google Scholar 

  10. Steinman, RM. The dendritic cell system and its role in immunogenicity. Annu Rev Immunol 9: 271–280, 1991.

    Article  PubMed  CAS  Google Scholar 

  11. Geissmann F, Dien-Nosjean MC, Dezutter C, et al. Accumulation of immature Langerhans cells in human lymph node draining chronically inflammed skin. J Exp Med 196: 417–430, 2002.

    Article  PubMed  CAS  Google Scholar 

  12. Sallusto F, Lanzavecchia A. Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. J Exp Med 179: 1109–1115, 1990.

    Article  Google Scholar 

  13. Essner R, Rhoades K, McBride W, Morton DL, Economou JS. Differential effects of granulocyte macrophage colony-stimulating factor on tumor necrosis factor and interleukin-1 production in human moncytes. J Clin Lab Immunol 32: 161–166, 1990.

    PubMed  CAS  Google Scholar 

  14. Nemunaitis J, Rabinowe SN, Singer JW, et al. Recombinant human granulocyte-macrophage colony-stimulating factor after autologous bone marrow transplantation for lymphoid malignancy: Pooled results of a randomized, double-blind, placebo controlled trial. N Engl J Med 324: 1773–1777, 1991.

    Article  PubMed  CAS  Google Scholar 

  15. Jermal A, Murray T, Samuels A, Ghafoor A, Ward E, Thun MJ. Cancer Statistics, 2003. CA Cancer J Clin 53: 5–26, 2003.

    Article  Google Scholar 

  16. Bostick P, Essner R, Sarantou T, et al. Intraoperative lymphatic mapping for early-stage melanoma of the head and neck. Am J Surg 174: 536–539, 1997.

    Article  PubMed  CAS  Google Scholar 

  17. Essner R, Kadison A, Wanek L, Morton LA. Lessons learned from 1185 sentinel lymphadenectomy for early stage melanoma. J Am Coll Surg, in press.

    Google Scholar 

  18. Bleicher R, Essner R, Foshag LJ, Wanek L, Morton DL. Role of sentinel lymphadenectomy in thin cutaneous melanomas. J Clin Oncol 21: 1326–1336, 2003.

    Article  PubMed  Google Scholar 

  19. Essner R, Rose DM, Kojima M, Huynh Y, Turner RR, Morton DL. Predicting the natural history of melanoma after tumor-negative sentinel lymph node dissection. Proc Am Soc Clin Oncol 20: 350a, 2001.

    Google Scholar 

  20. Tsujitani S, Furukawa T, Tamada R, Okamura T, Yasumoto K, Sugimachi K. Langerhans cells and prognosis in patients with gastric carcinoma. Cancer 59: 501–505, 1987.

    Article  PubMed  CAS  Google Scholar 

  21. Tsujitani S, Kakeji Y, Maehara Y, Sugimachi K, Kaibara N. Dendritic cells prevent lymph node metastasis in patients with gastric cancer. In Vivo 7: 233–237, 1993.

    PubMed  CAS  Google Scholar 

  22. Zeid NA, Muller HK. S100 positive dendritic cells in human lung tumors associated with cell differentiation and enhanced survival. Pathology 25: 338–343, 1993.

    Article  PubMed  CAS  Google Scholar 

  23. Ambe K, Mori M, Enjoji M. S-100 protein-positive dendritic cells in colorectal adenocarcinomas. Distribution and relation to the clinical prognosis. Cancer 63: 496–503, 1989.

    CAS  Google Scholar 

  24. Schroder S, Schwarz W, Rehpenning W, Loning T, Bocker W. Dendritic/Langerhans cells and prognosis in patients with papillary thyroid carcinomas. Immunocytochemical study of 106 thyroid neoplasms correlated to follow-up data. Am J Clin Pathol 89: 295–300, 1988.

    PubMed  CAS  Google Scholar 

  25. Caux C, Ait-Yahia S, Chemin K, et al. Dendritic cell biology and regulation of dendritic cell trafficking by chemokines. Springer Semin Immunopathol 22: 345–369, 2000.

    Article  PubMed  CAS  Google Scholar 

  26. Pure E, Inaba K, Crowley MT, et al. Antigen processing by epidermal Langerhans cells correlates with the level of biosynthesis of major histocompatibility complex class II molecules and expression of invariant chain. J Exp Med 172: 1459–1465, 1990.

    Article  PubMed  CAS  Google Scholar 

  27. Kaplan E, Walsh G, Guido LS, et al. Novel responses of human skin to intradermal recombinant granulocyte/macrophage-colony-stimulating factor: Langerhans cell recruitment, keratinocyte growth, and enhanced wound healing. J Exp Med 175: 1717–1728, 1992.

    Article  PubMed  CAS  Google Scholar 

  28. Stene MA, Babajanians M, Bhuta S, Cochran AJ. Quantitative alterations in cutaneous Langerhans cells during the evolution of malignant melanoma of the skin. J Invest Dermatol 91: 125–128, 1988.

    Article  PubMed  CAS  Google Scholar 

  29. Stitt A, Dubsky P, Bachertner-Hofmann T, et al. Dendritic cell-based vaccination of solid cancers. J Clin Oncol 21: 135–142, 2003.

    Article  Google Scholar 

  30. Hirao M, Onai N, Hiroishi K, et al. CC chemokine receptor-7 on dendritic cells is induced after interaction with apoptotic tumor cells: critical role in migration from the tumor site to draining lymph nodes. Cancer Res 60: 2209–2217, 2000.

    PubMed  CAS  Google Scholar 

  31. Chamberlain RS, Carroll MW, Bronte V, et al. Costimulation enhances the active immunotherapy effect of recombinant anticancer vaccines. Cancer Res 56: 2832–2836, 1996.

    PubMed  CAS  Google Scholar 

  32. Albert ML, Santer B, Bhardwaj N. Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTL. Nature 392: 86–89, 1998.

    Article  PubMed  CAS  Google Scholar 

  33. Dieu M-C, Vanbervliet B, Vicari A, et al. Selective recruitment of immature and mature dendritic cells by distinct chemokines expressed in different anatomic sites. J Exp Med 188: 373–386, 1998.

    Article  PubMed  CAS  Google Scholar 

  34. Boezkowski D, Nair SK, Snyder D, Gilboa E. Dendritic cells pulsed with RNA are potent Ag presenting cells in vitro and in vivo. J Exp Med 184: 465–477, 1996.

    Article  Google Scholar 

  35. Chang AE, Sumdak VK, Bishop DK, Nickoloff BJ, Mulligan RC, Mule JJ. Adoptive immunotherapy of cancer with activated lymph node cells primed in vivo with autologous tumor cells transduced with GM-CSF gene. Hum Gene Ther 7: 773–792, 1996.

    Article  PubMed  CAS  Google Scholar 

  36. Guo Y, Wu M, Chen H, et al. Effective tumor vaccine generated by fusion of hepatoma cells with activated B-cells. Science 263: 518–520, 1994.

    Article  PubMed  CAS  Google Scholar 

  37. Mayordomo JI, Zurina T, Storkus WJ, et al. Bone marrow-derived dendritic cells pulsed with synthetic tumor peptides elicit protective and therapeutic antitumor immunity. Nat Med 1: 1297–1302, 1995.

    Article  PubMed  CAS  Google Scholar 

  38. Inaba K, Inaba M, Romani N, et al. Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J Exp Med 176: 1693–1702, 1992.

    Article  PubMed  CAS  Google Scholar 

  39. Winzler C, Rovers P, Reseigno M, et al. Maturation stages of mouse dendritic cells in growth factor dependent long-term cultures. J Exp Med 185: 317–378, 1997.

    Article  PubMed  CAS  Google Scholar 

  40. Shu S, Chou T, Rosenberg SA. Generation from tumor-bearing mice of lymphocytes with in-vivo therapeutic efficacy. J Immunol 139: 295–304, 1987.

    PubMed  CAS  Google Scholar 

  41. Larsen CP, Ritchie SC, Hendrix R, et al. Regulation of immunostimulatory function and costimulatory molecule (B7-1 and B7-2) expression on murine dendritic cells. J Immunol 152: 5208–5214, 1994.

    PubMed  CAS  Google Scholar 

  42. Igietseme JU, Ananaba GA, Bolier J, et al. Suppression of endogenous IL-10 gene expression in dendritic cells enhances antigen presentation for specific Th1 induction: potential for cellular vaccine development. J Immunol 164: 4212–4219, 2000.

    PubMed  CAS  Google Scholar 

  43. Enk CD, Sredni D, Blauvelt A, Katz SI. Induction of IL-10 gene expression in human keratinocytes by UVB exposure in vivo and in vitro. J Immunol 154: 4851–4856, 1995.

    PubMed  CAS  Google Scholar 

  44. Munn DH, Sharma, MD, Lee JR, el al. Potential regulatory function of human dendritic cells expressing indoleamine 2,3-dioxygenase. Science 297: 1867–1870, 2002.

    Article  PubMed  CAS  Google Scholar 

  45. Widner B, Weiss G, Fuch, D. Tryptophan degredation to control T-cell responsiveness. Immunol Today 21: 250, 2000.

    Article  PubMed  CAS  Google Scholar 

  46. Morse MA, Nair S, Fernandez-Casal M, et al. Preoperative mobilization of circulating dendritic cells by flt 3 ligand administration to patients with metastatic colon cancer. J Clin Oncol 18: 3879–3882, 2000.

    Google Scholar 

  47. Frumento G, Rotondo R, Tonetti M, et al. Tryptophan-derived catabolites are responsible for inhibition of T and natural killer cell proliferation induced by indoleamine 2,3-dioxygenase. J Exp Med 196: 459–468, 2002.

    Article  PubMed  CAS  Google Scholar 

  48. Chachoua A, Oratz R, Hoogmoed, et al. Monocyte activation following systemic administration of granulocyte-macrophage colony-stimulating factor. J Immunother Emphasis Tumor Immunol 15: 217–224, 1994.

    Article  PubMed  CAS  Google Scholar 

  49. Fischer HG, Opel B, Reske K, et al. Granulocyte-macrophage colony stimulating factor-cultured bone marrow derived macrophages reveal accessory cell function and synthesis of MHC class II determinants in absence of external stimuli. Eur J Immunol 18: 1151–1160, 1987.

    Article  Google Scholar 

  50. Spitler LE, Grossbard ML, Ernstoff M, et al. Adjuvant therapy of stage III and IV malignant melanoma using granulocyte-macrophage colony stimulating factor. J Clin Oncol 18: 1614–1621, 2000.

    PubMed  CAS  Google Scholar 

  51. Armitage JO. Emerging applications of recombinant human granulocye-macrophage colony-stimulating factor. Blood 92: 4491–4508, 1998.

    PubMed  CAS  Google Scholar 

  52. Essner R, Bostick P, Glass EC, et al. Standardized probe directed sentinel node dissection in melanoma. Surgery 127: 26–31, 2000.

    Article  PubMed  CAS  Google Scholar 

  53. Bottomly K. T cells and dendritic cells get intimate. Science 283: 1124–1129, 1999.

    Article  PubMed  CAS  Google Scholar 

  54. Eshima D, Fauconnier T, Eshima L, Thornback JR. Radiopharmaceuticals for lymphoscintigraphy: including dosimetry and radiation considerations. Semin Nucl Med 30(1): 25–32, 2000.

    Google Scholar 

  55. Bustin SA. Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J Mol Endocrinol 25: 169–193, 2000.

    Article  PubMed  CAS  Google Scholar 

  56. Das H, Koizumi T, Sugimoto T, Chakraborty S, Ichimura T, Hasegawa K, Nishimura R. Quantitation of Fas and Fas ligand gene expression in human ovarian, cervical and endometrial carcinomas using real-time quantitative RT-PCR. Br J Cancer 82: 1682–1688, 2000.

    Article  PubMed  CAS  Google Scholar 

  57. Koopmans M, Monroe SS, Coffield LM, et al. Optimization of extraction and PCR amplification of RNA extracts from paraffin-embedded tissue in different fixatives. J Virol Methods 43: 189–204, 1993.

    Article  PubMed  CAS  Google Scholar 

  58. Orlando C, Pinzani P, Pazzagli M. Developments in quantitative PCR. Clin Chem Lab Med 36: 255–269, 1998.

    Article  PubMed  CAS  Google Scholar 

  59. Morishima C, Gretch DR. Clinical use of hepatitis C virus test for diagnosis and monitoring during therapy. Clin Liver Dis 3: 717–740, 1999.

    Article  PubMed  CAS  Google Scholar 

  60. Heid CA, Stevens J, Livak KJ, Williams PM. Real time quantitative PCR. Genome Res 6: 986–994, 1996.

    Article  PubMed  CAS  Google Scholar 

  61. Stock W, Estrov Z. Studies of minimal residual disease in acute lymphocytic leukemia. Hem/Onc Clin N Am 14: 1289–1305, 2000.

    CAS  Google Scholar 

  62. Heid CA, Stevens J, Livak KJ, Williams PM. Real Time Quantitative PCR. Genome Res 6: 986–994, 1996.

    Article  PubMed  CAS  Google Scholar 

  63. Dakhama A, Macek V, Hogg JC, et al. Amplification of human β-actin gene by the reverse transcriptase-polymerase chain reaction: implications for paraffin-embedded material. J Histochem Cytochem 44: 1205–1207, 1996.

    Article  PubMed  CAS  Google Scholar 

  64. Cairns MT, Church S, Johnstone PG, et al. Paraffin-embedded tissue as a source for RNA for gene expression analysis in oral malignancy. Oral Dis 3: 157–161, 1997.

    Article  PubMed  CAS  Google Scholar 

  65. Palmieri G, Ascierto PA, Cossu A, et al. Detection of occult melanoma cells in paraffin-embedded histologically negative sentinel lymph node using a reverse trasncriptase polymerase chain reaction assay. J Clin Oncol 19: 1437–1443, 2001.

    PubMed  CAS  Google Scholar 

  66. Paraffin Block RNA Isolation, Cat # 1902, Ambion, Inc—Technical Manual Version 9909: 1–6.

    Google Scholar 

  67. Taylor MW, Feng G. Relationship between interferon-γ, indoleamine 2,3-dioxygenase, and tryptophan catabolism. FASEB J 5: 2516–2522, 1991.

    PubMed  CAS  Google Scholar 

  68. Munn DH, Zhou M, Attwood JT, et al. Prevention of allogeneic fetal rejection by tryptophan catabolism. Science 281: 1991–1993, 1998.

    Article  Google Scholar 

  69. Perou CM, Sorlie T, Eisen MB, et al. Gene expression patterns of breast tumours. Nature 406: 747–752, 2000.

    Article  PubMed  CAS  Google Scholar 

  70. Hedenfalt I, Duggan D, Chen Y, et al. Gene-expresson profiles in the hereditary breast cancer. N Engl J Med 344: 539–548, 2001.

    Article  Google Scholar 

  71. van’t Veer LJ, Dai H, van de Vijver MJ, et al. Gene expression profiling predicts clinical outcome of breat cancer. Nature 415: 530–536, 2002.

    Article  Google Scholar 

  72. Van de Vijver MJ, Yudong DH, van’t Veer LJ, et al. A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 347: 1999–2009, 2002.

    Article  PubMed  Google Scholar 

  73. Chachoua A, Oratz R, Liebes L, et al. Phase Ib trial of granulocyte-macrophage colony-stimulating factor combined wth murine monoclonal antibody R24 in patients with metastatic melanoma. J Immunother Emphasis Tumor Immunol 16: 132–141, 1994.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Essner, R. (2009). Reversal of Immune Suppression in Sentinel Lymph Nodes. In: Leong, S. (eds) From Local Invasion to Metastatic Cancer. Current Clinical Oncology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-087-8_35

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-087-8_35

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-086-1

  • Online ISBN: 978-1-60327-087-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics