Epigenetic Modification and Acetylation of Androgen Receptor Regulate Prostate Cellular Growth

  • Michael J. Powell
  • Shengwen Li
  • Michael P. Lisanti
  • Marja T. Nevalainen
  • Chenguang Wang
  • Richard G. Pestell
Part of the Current Clinical Oncology book series (CCO)

Keywords

Prostate Cancer Androgen Receptor Nuclear Receptor Nicotinamide Adenine Dinucleotide HDAC Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fu, M., Sauve, A. A., Liu, M., Jiao, X., Zhang, X., Powell, M., Yang, T., Gu, W., Avantaggiati, M. L., Pattabiraman, N., Pestell, T. G., Wang, C., Wang, F., Quong, A., and Pestell, R. G. Hormonal control of androgen receptor function through SIRT1. Mol Biol Cell, 26: 8122–8135, 2006.CrossRefGoogle Scholar
  2. 2.
    Yang, T., Fu, M., Pestell, R., and Sauve, A. A. SIRT1 and endocrine signaling. Trends Endocrinol Metab, 17: 186–191, 2006.PubMedCrossRefGoogle Scholar
  3. 3.
    Leader, J. E., Wang, C., Fu, M., and Pestell, R. G. Epigenetic regulation of nuclear steroid receptors. Biochem Pharmacol, 2006.Google Scholar
  4. 4.
    Bevan, C. L., Hoare, S., Claessens, F., Heery, D. M., and Parker, M.G. The AF1 and AF2 domains of the androgen receptor interact with distinct regions of SRC1. Mol Cell Biol, 19: 8383–8392, 1999.PubMedGoogle Scholar
  5. 5.
    Wang, L., Hsu, C. L., and Chang, C. Androgen receptor corepressors: an overview. Prostate, 63: 117–130, 2005.PubMedCrossRefGoogle Scholar
  6. 6.
    Eberharter, A. and Becker, P. B. ATP-dependent nucleosome remodelling: factors and functions. J Cell Sci, 117: 3707–3711, 2004.PubMedCrossRefGoogle Scholar
  7. 7.
    Chen, J., Kinyamu, H. K., and Archer, T. K. Changes in attitude, changes in latitude: nuclear receptors remodeling chromatin to regulate transcription. Mol Endocrinol, 20:1–13, 2006.PubMedCrossRefGoogle Scholar
  8. 8.
    Fu, M., Wang, C., Wang, J., Zafonte, B. T., Lisanti, M. P., and Pestell, R. G. Acetylation in hormone signaling and the cell cycle. Cytokine Growth Factor Rev, 13: 259–276, 2002.PubMedCrossRefGoogle Scholar
  9. 9.
    Wang, C., Fu, M., Angeletti, R. H., Siconolfi-Baez, L., Reutens, A. T., Albanese, C., Lisanti, M. P., Katzenellenbogen, B. S., Kato, S., Hopp, T., Fuqua, S. A., Lopez, G. N., Kushner, P. J., and Pestell, R. G. Direct acetylation of the estrogen receptor alpha hinge region by p300 regulates transactivation and hormone sensitivity. J Biol Chem, 276: 18375–18383, 2001.PubMedCrossRefGoogle Scholar
  10. 10.
    Fu, M., Wang, C., Reutens, A. T., Wang, J., Angeletti, R. H., Siconolfi-Baez, L., Ogryzko, V., Avantaggiati, M. L., and Pestell, R. G. p300 and p300/cAMP-response element-binding protein-associated factor acetylate the androgen receptor at sites governing hormone-dependent transactivation. J Biol Chem, 275: 20853–20860, 2000.PubMedCrossRefGoogle Scholar
  11. 11.
    Gaughan, L., Logan, I. R., Cook, S., Neal, D. E., and Robson, C. N. Tip60 and histone deacetylase 1 regulate androgen receptor activity through changes to the acetylation status of the receptor. J Biol Chem, 277: 25904–25913, 2002.PubMedCrossRefGoogle Scholar
  12. 12.
    Fu, M., Wang, C., Wang, J., Sakamaki, T., Di Vizio, D., Zhang, X., Albanese, C., Balk, S., Chang, C., Fan, S., Rosen, E., Palvimo, J. J., Janne, O. A., Muratoglu, S., Avantaggiati, M., and Pestell, R. G. Acetylation of the androgen receptor enhances coactivator binding and promotes prostate cancer cell growth. Mol Cell Biol, 23: 8563–8575, 2003.PubMedCrossRefGoogle Scholar
  13. 13.
    Gong, J., Zhu, J., Goodman, O. B., Pestell, R. G., Schlegel, P. N., Nanus, D. M., and Shen, R. Activation of p300 histone acetyltransferase activity and acetylation of the androgen receptor by bombesin in prostate cancer cells. Oncogene, 25: 2011–2021, 2006.PubMedCrossRefGoogle Scholar
  14. 14.
    Polesskaya, A., Naguibneva, I., Duquet, A., Bengal, E., Robin, P., and Harel-Bellan, A. Interaction between acetylated MyoD and the bromodomain of CBP and/or p300. Mol Cell Biol, 21: 5312–5320, 2001.PubMedCrossRefGoogle Scholar
  15. 15.
    Fu, M., Wang, C., Wang, J., Sakamaki, T., Zhang, X., Yeung, Y.-G., Chang, C., Hopp, T., Fuqua, S. A. W., Jaffray, E., Hay, R. T., Palvimo, J. J., Jänne, O. A., and Pestell, R. G. The Androgen Receptor Acetylation governs transactivation and MEKK1-induced apoptosis without affecting in vitro sumoylation and transrepression function. Mol Cell Biol, 22: 3373–3388, 2002.PubMedCrossRefGoogle Scholar
  16. 16.
    Fu, M., Rao, M., Wu, K., Wang, C., Zhang, X., Hessien, M., Yeung, Y. G., Gioeli, D., Weber, M. J., and Pestell, R. G. The androgen receptor acetylation site regulates cAMP and AKT but not ERK-induced activity. J Biol Chem, 279: 29436–29449, 2004.PubMedCrossRefGoogle Scholar
  17. 17.
    Ananthaswamy, H. N., Ouhtit, A., Evans, R. L., Gorny, A., Khaskina, P., Sands, A. T., and Conti, C. J. Persistence of p53 mutations and resistance of keratinocytes to apoptosis are associated with the increased susceptibility of mice lacking the XPC gene to UV carcinogenesis. Oncogene, 18: 7395–7398, 1999.PubMedCrossRefGoogle Scholar
  18. 18.
    Debes, J. D., Sebo, T. J., Lohse, C. M., Murphy, L. M., Haugen de, A. L., and Tindall, D. J. p300 in prostate cancer proliferation and progression. Cancer Res, 63: 7638–7640, 2003.PubMedGoogle Scholar
  19. 19.
    Gregory, C. W., He, B., Johnson, R. T., Ford, O. H., Mohler, J. L., French, F. S., and Wilson, E. M. A mechanism for androgen receptor-mediated prostate cancer recurrence after androgen deprivation therapy. Cancer Res, 61: 4315–4319, 2001.PubMedGoogle Scholar
  20. 20.
    Metzger, E., Wissmann, M., Yin, N., Muller, J. M., Schneider, R., Peters, A. H., Gunther, T., Buettner, R., and Schule, R. LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription. Nature, 437: 436–439, 2005.PubMedGoogle Scholar
  21. 21.
    Shi, Y., Lan, F., Matson, C., Mulligan, P., Whetstine, J. R., Cole, P. A., Casero, R. A., and Shi, Y. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell, 119: 941–953, 2004.PubMedCrossRefGoogle Scholar
  22. 22.
    Fu, M., Rao, M., Bouras, T., Wang, C., Wu, K., Zhang, X., Li, Z., Yao, T.-P., and Pestell, R. G. Cyclin D1 inhibits PPARgamma-mediated adipogenesis through HDAC recruitment. J Biol Chem, 280: 16934–16941, 2005.PubMedCrossRefGoogle Scholar
  23. 23.
    Sauve, A. A. and Schramm, V. L. SIR2: the biochemical mechanism of NAD(+)-dependent protein deacetylation and ADP-ribosyl enzyme intermediates. Curr Med Chem, 11:807–826, 2004.PubMedCrossRefGoogle Scholar
  24. 24.
    Kruszewski, M. and Szumiel, I. Sirtuins (histone deacetylases III) in the cellular response to DNA damage—facts and hypotheses. DNA Repair (Amst), 4: 1306–1313, 2005.CrossRefGoogle Scholar
  25. 25.
    Tsukamoto, Y., Kato, J., and Ikeda, H. Silencing factors participate in DNA repair and recombination in Saccharomyces cerevisiae. Nature, 388: 900–903, 1997.PubMedCrossRefGoogle Scholar
  26. 26.
    Valencia, M., Bentele, M., Vaze, M. B., Herrmann, G., Kraus, E., Lee, S. E., Schar, P., and Haber, J. E. NEJ1 controls non-homologous end joining in Saccharomyces cerevisiae. Nature, 414: 666–669, 2001.PubMedCrossRefGoogle Scholar
  27. 27.
    Frank-Vaillant, M. and Marcand, S. NHEJ regulation by mating type is exercised through a novel protein, Lif2p, essential to the ligase IV pathway. Genes Dev, 15: 3005–3012, 2001.PubMedCrossRefGoogle Scholar
  28. 28.
    Jazayeri, A., McAinsh, A. D., and Jackson, S. P. Saccharomyces cerevisiae Sin3p facilitates DNA double-strand break repair. Proc Natl Acad Sci USA, 101: 1644–1649, 2004.PubMedCrossRefGoogle Scholar
  29. 29.
    Tissenbaum, H. A. and Guarente, L. Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature, 410: 227–230, 2001.PubMedCrossRefGoogle Scholar
  30. 30.
    Al-Regaiey, K. A., Masternak, M. M., Bonkowski, M., Sun, L., and Bartke, A. Long-lived growth hormone receptor knockout mice: interaction of reduced insulin-like growth factor i/insulin signaling and caloric restriction. Endocrinology, 146: 851–860, 2005.PubMedCrossRefGoogle Scholar
  31. 31.
    Rodgers, J. T., Lerin, C., Haas, W., Gygi, S. P., Spiegelman, B. M., and Puigserver, P. Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature, 434: 113–118, 2005.PubMedCrossRefGoogle Scholar
  32. 32.
    Grinspoon, S., Corcoran, C., Lee, K., Burrows, B., Hubbard, J., Katznelson, L., Walsh, M., Guccione, A., Cannan, J., Heller, H., Basgoz, N., and Klibanski, A. Loss of lean body and muscle mass correlates with androgen levels in hypogonadal men with acquired immunodeficiency syndrome and wasting. J Clin Endocrinol Metab, 81: 4051–4058, 1996.PubMedCrossRefGoogle Scholar
  33. 33.
    Schroeder, E. T., Terk, M., and Sattler, F. R. Androgen therapy improves muscle mass and strength but not muscle quality: results from two studies. Am J Physiol Endocrinol Metab, 285: E16–24, 2003.Google Scholar
  34. 34.
    Altenberg, B. and Greulich, K. O. Genes of glycolysis are ubiquitously overexpressed in 24 cancer classes. Genomics, 84: 1014–1020, 2004.PubMedCrossRefGoogle Scholar
  35. 35.
    Chowdhury, S. K., Gemin, A., and Singh, G. High activity of mitochondrial glycerophosphate dehydrogenase and glycerophosphate-dependent ROS production in prostate cancer cell lines. Biochem Biophys Res Commun, 2005.Google Scholar
  36. 36.
    Baron, A., Migita, T., Tang, D., and Loda, M. Fatty acid synthase: a metabolic oncogene in prostate cancer? J Cell Biochem, 91: 47–53, 2004.PubMedCrossRefGoogle Scholar
  37. 37.
    Rossi, S., Graner, E., Febbo, P., Weinstein, L., Bhattacharya, N., Onody, T., Bubley, G., Balk, S., and Loda, M. Fatty acid synthase expression defines distinct molecular signatures in prostate cancer. Mol Cancer Res, 1: 707–715, 2003.PubMedGoogle Scholar
  38. 38.
    Seligson, D. B., Horvath, S., Shi, T., Yu, H., Tse, S., Grunstein, M., and Kurdistani, S. K. Global histone modification patterns predict risk of prostate cancer recurrence. Nature, 435: 1262–1266, 2005.PubMedCrossRefGoogle Scholar
  39. 39.
    Vaquero, A., Scher, M., Lee, D., Erdjument-Bromage, H., Tempst, P., and Reinberg, D. Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatin. Mol Cell, 16: 93–105, 2004.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press 2008

Authors and Affiliations

  • Michael J. Powell
  • Shengwen Li
  • Michael P. Lisanti
  • Marja T. Nevalainen
  • Chenguang Wang
  • Richard G. Pestell

There are no affiliations available

Personalised recommendations