Androgen Receptor in Prostate Cancer Progression

  • Hiroshi Miyamoto
  • Saleh Altuwaijri
  • Chawnshang Chang
Part of the Current Clinical Oncology book series (CCO)

Keywords

Prostate Cancer Androgen Receptor Prostate Cancer Cell Androgen Deprivation Therapy LNCaP Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Miyamoto, H., Messing, E. M., and Chang, C. (2004) Androgen deprivation therapy for prostate cancer: current status and future prospects. Prostate 61, 332–353.PubMedCrossRefGoogle Scholar
  2. 2.
    Chang, C., Kokontis, J., and Liao, S. (1988) Molecular cloning of human and rat complementary DNA encoding androgen receptors. Science 240, 324–326.PubMedCrossRefGoogle Scholar
  3. 3.
    Heinlein, C. A. and Chang, C. (2004) Androgen receptor in prostate cancer. Endocr. Rev. 25, 276–308.PubMedCrossRefGoogle Scholar
  4. 4.
    Heinlein, C. A. and Chang, C. (2002) Androgen receptor (AR) coregulators: an overview. Endocr. Rev. 23, 175–200.PubMedCrossRefGoogle Scholar
  5. 5.
    He, B., Kemppainen, J. A., Voegel, J. J., Gronemeyer, H., and Wilson, E. M. (1999) Activation function 2 in the human androgen receptor ligand binding domain mediates interdomain communication with NH2-terminal domain. J. Biol. Chem. 274, 37219–37225.PubMedCrossRefGoogle Scholar
  6. 6.
    Ikonen, T., Palvimo, J. J., and Jänne, O. A. (1997) Interaction between the amino- and carboxyl-terminal regions of the rat androgen receptor modulates transcriptional activity and is influenced by nuclear receptor coactivators. J. Biol. Chem. 272, 29821–29828.PubMedCrossRefGoogle Scholar
  7. 7.
    Rahman, M., Miyamoto, H., and Chang, C. (2004) Androgen receptor coregulators in prostate cancer: mechanisms and clinical implications. Clin. Cancer Res. 10, 2208–2219.PubMedCrossRefGoogle Scholar
  8. 8.
    Wang, Y., Hayward, S., Cao, M., Thayer, K., and Cunha, G. (2001) Cell differentiation lineage in the prostate. Differentiation 68, 270–279.PubMedCrossRefGoogle Scholar
  9. 9.
    Bonkhoff, H. and Remberger, K. (1996) Differentiation pathways and histogenetic aspects of normal and abnormal prostatic growth: a stem cell model. Prostate 28, 98–106.PubMedCrossRefGoogle Scholar
  10. 10.
    Mirosevich, J., Bentel, J. M., Zeps, N., Redmond, S. L., D’Antuono, M. F., and Dawkins, H. J. S. (1999) Androgen receptor expression of proliferating basal and luminal cells in adult murine ventral prostate. J. Endocrinol. 162, 341–350.PubMedCrossRefGoogle Scholar
  11. 11.
    Tokar, E. J., Ancrill, B. B., Cunha, G. R., and Webber, M. M. (2005) Stem/progenitor and intermediate cell types and the origin of human prostate cancer. Differentiation 73, 463–473.PubMedCrossRefGoogle Scholar
  12. 12.
    Quinn, D. I., Henshall, S. M., and Sutherland, R. L. (2005) Molecular markers of prostate cancer outcome. Eur. J. Cancer 41, 858–887.PubMedCrossRefGoogle Scholar
  13. 13.
    de Launoit, Y., Veilleux, R., Dufour, M., Simard, J., and Labrie, F. (1991) Characteristics of the biphasic action of androgens and of the potent antiproliferative effects of the new pure antiestrogen EM-139 on cell cycle kinetic parameters in LNCaP human prostatic cancer cells. Cancer Res. 51, 5165–5170.PubMedGoogle Scholar
  14. 14.
    Hofman, K., Swinnen, J. V., Verhoeven, G., and Heyns, W. (2001) E2F activity is biphasically regulated by androgens in LNCaP cells. Biochem. Biophys. Res. Commun. 283, 97–101.PubMedCrossRefGoogle Scholar
  15. 15.
    Sánchez, I. and Dynlacht, B. D. (2005) New insights into cyclins, CDKs, and cell cycle control. Semin. Cell Dev. Biol. 16, 311–321.PubMedCrossRefGoogle Scholar
  16. 16.
    Zhu, L. (2005) Tumor suppressor retinoblastoma protein Rb: a transcriptional regulator. Eur. J. Cancer 41, 2415–2427.PubMedCrossRefGoogle Scholar
  17. 17.
    Kubota, Y., Fujinami, K., Uemura, H., Dobashi, Y., Miyamoto, H., Iwasaki, Y., Kitamura, H., and Shuin, T. (1995) Retinoblastoma gene mutations in primary prostate cancer. Prostate 27, 314–320.PubMedCrossRefGoogle Scholar
  18. 18.
    Coqueret, O. (2003) New roles for p21 and p27 cell-cycle inhibitors: a function for each cell compartment? Trends Cell Biol. 13, 65–70.PubMedCrossRefGoogle Scholar
  19. 19.
    Guo, Y., Sklar, N., Borkowski, A., and Kyprianou, N. (1997) Loss of the cyclin-dependent kinase inhibitor p27 (kip1) protein in human prostate cancer correlates with tumor grade. Clin. Cancer Res. 3, 2269–2274.PubMedGoogle Scholar
  20. 20.
    Li, D. M. and Sun, H. (1998) PTEN/MMAC1/TEP1 suppresses the tumorigenicity and induces G1 cell cycle arrest in human glioblastoma cells. Proc. Natl. Acad. Sci. U.S.A. 95, 15406–15411.PubMedCrossRefGoogle Scholar
  21. 21.
    Lin, H.-K., Hu, Y.-C., Lee, D. K., and Chang, C. (2004) Regulation of androgen receptor signaling by PTEN (phosphatase and tensin homolog deleted on chromosome 10) tumor suppressor through distinct mechanisms in prostate cancer cells. Mol. Endocrinol. 18, 2409–2423.PubMedCrossRefGoogle Scholar
  22. 22.
    Gao, X., Chen, Y. Q., Wu, N., Grignon, D. J., Sakr, W., Porter, A. T., and Honn, K. V. (1995) Somatic mutations of the WAF1/CIP1 gene in primary prostate cancer. Oncogene 11, 1395–1398.PubMedGoogle Scholar
  23. 23.
    Rocco, J. W. and Sidransky, D. (2001) p16 (MTS-1/CDKN2/INK4a) in cancer progression. Exp. Cell Res. 264, 42–55.PubMedCrossRefGoogle Scholar
  24. 24.
    Lee, C. T., Capodieci, P., Osman, I., Fazari, M., Ferrara, J., Scher, H. I., and Cordon-Cardo, C. (1999) Overexpression of the cyclin-dependent kinase inhibitor p16 is associated with tumor recurrence in human prostate cancer. Clin. Cancer Res. 5,977–983.Google Scholar
  25. 25.
    Herman, J. G., Merlo, A., Mao, L., Lapidus, R. G., Issa, J. P., Davidson, N. E., Sidransky, D., and Baylin, S. B. (1995) Inactivation of the CDKN2/p16/MTS1 gene is frequently associated with aberrant DNA methylation in all common human cancers. Cancer Res. 55, 4525–4530.PubMedGoogle Scholar
  26. 26.
    Jenkins, R. B., Qian, J., Lieber, M. M., and Bostwick, D. G. (1997) Detection of c-myc oncogene amplification and chromosomal anomalies in metastatic prostatic carcinoma by fluorescence in situ hybridization. Cancer Res. 57, 524–531.PubMedGoogle Scholar
  27. 27.
    Fleming, W. H., Hamel, A., MacDonald, R., Ramsey, E., Pettigrew, N. M., Johnston, B., Dodd, J. G., and Matusik, R. J. (1986) Expression of c-myc protooncogene in human prostatic carcinoma and benign prostatic hyperplasia. Cancer Res. 46, 1535–1538.PubMedGoogle Scholar
  28. 28.
    Stewart, Z. A. and Pietenpol, J. A. (2001) p53 signaling and cell cycle checkpoints. Chem. Res. Toxicol. 14, 243–263.PubMedCrossRefGoogle Scholar
  29. 29.
    Kubota, Y., Shuin, T., Uemura, H., Fujinami, K., Miyamoto, H., Torigoe, S., Dobashi, Y., Kitamura, H., Iwasaki, Y., Danenberg, K., and Danenberg, P. V. (1995) Tumor suppressor gene p53 mutations in human prostate cancer. Prostate 27, 18–24.PubMedCrossRefGoogle Scholar
  30. 30.
    Coultas, L. and Strasser, A. (2003) The role of the Bcl-2 protein family in cancer. Semin. Cancer Biol. 13, 115–123.PubMedCrossRefGoogle Scholar
  31. 31.
    Raffo, A. J., Perlman, H., Chen, M. W., Day, M. L., Stretman, J. S., and Buttyan, R. (1995) Overexpression of bcl-2 protects prostate cancer cells from apoptosis in vitro and confers resistance to androgen depletion in vivo. Cancer Res. 55, 4438–4445.PubMedGoogle Scholar
  32. 32.
    Lu, S., Tsai, S. Y., and Tsai, M.-J. (1997) Regulation of androgen-dependent prostate cancer cell growth: androgen regulation of CDK2, CDK4, and CKI p16 genes. Cancer Res. 57, 4111–4116.Google Scholar
  33. 33.
    Chen, Y., Martinez, L. A., LaCava, M., Coghlan, L., and Conti, C. J. (1998) Increased cell growth and tumorigenicity in human prostate LNCaP cells by overexpression to cyclin D1. Oncogene 16, 1913–1920.PubMedCrossRefGoogle Scholar
  34. 34.
    Gregory, C. W., Johnson, R. T. J., Presnell, S. C., Mohler, J. L., and French, F. C. (2001) Androgen receptor regulation of G1 cyclin and cyclin-dependent kinase function in the CWR human prostate cancer xenograft. J. Androl. 22, 537–548.PubMedGoogle Scholar
  35. 35.
    Mad’arová, J., Lukešová, M., Hlobilková, A., Strnad, M., Vojtešek, B., Lenobel, R., Hajdúch, M., Murray, P. G., Perera, S., and Kolár, Z. (2002) Synthetic inhibitors of CDKs induce different responses in androgen sensitive and androgen insensitive prostatic cancer cell lines. Mol. Pathol. 55, 227–234.PubMedCrossRefGoogle Scholar
  36. 36.
    Knillová, J., Bouchal, J., Hlobilková, A., Strnad, M., and Kolár, Z. (2004) Synergistic effects of the cyclin-dependent kinase (CDK) inhibitor olomoucine and androgen-antagonist bicalutamide on prostatic cancer cell lines. Neoplasia 51, 358–367.Google Scholar
  37. 37.
    Ye, D., Mendelson, J., and Fan, Z. (1999) Androgen and epidermal growth factor down-regulate cyclin-dependent kinase inhibitor p27^Kip1 and costimulate proliferation of MDA PCa 2a and MDA PCa 2b prostate cancer cells. Clin. Cancer Res. 5, 2171–2177.PubMedGoogle Scholar
  38. 38.
    Tsihlias, J., Zhang, W., Bhattacharya, N., Flanagan, M., Klotz, L., and Slingerland, J. (2000) Involvement of p27^Kip1 in G1 arrest by high dose 5α-dihydrotestosterone in LNCaP human prostate cancer cells. Oncogene 19, 670–679.PubMedCrossRefGoogle Scholar
  39. 39.
    Agus, D. B., Cordon-Cardo, C., Fox, W., Drobnjak, M., Koff, A., Golde, D. W., and Scher, H. I. (1999) Prostate cancer cell cycle regulators: response to androgen withdrawal and development of androgen independence. J. Natl. Cancer Inst. 91, 1869–1876.PubMedCrossRefGoogle Scholar
  40. 40.
    Kokontis, J. M., Hay, N., and Liao, S. (1998) Progression of LNCaP prostate tumor cells during androgen deprivation: hormone-independent growth, repression of proliferation by androgen, and role for p27^Kip1 in androgen-induced cell cycle arrest. Mol. Endocrinol. 12, 941–953.PubMedCrossRefGoogle Scholar
  41. 41.
    Lu, S., Liu, M., Epner, D. E., Tsai, S. Y., and Tsai, M.-J. (1999) Androgen regulation of the cyclin-dependent kinase inhibitor p21 gene through an androgen response element in the proximal promoter. Mol. Endocrinol. 13, 376–384.PubMedCrossRefGoogle Scholar
  42. 42.
    Lu, S., Tsai, S. Y., and Tsai, M.-J. (1999) Molecular mechanisms of androgen-independent growth of human prostate cancer LNCaP-AI cells. Endocrinology 140, 5054–5059.PubMedCrossRefGoogle Scholar
  43. 43.
    Wang, L. G., Ossowski, L., and Ferrari, A. C. (2001) Overexpressed androgen receptor linked to p21^WAF1 silencing may be responsible for androgen independence and resistance to apoptosis of a prostate cancer cell line. Cancer Res. 61, 7544–7551.PubMedGoogle Scholar
  44. 44.
    Hååg, P., Bektic, J., Bartsch, G., Klocker, H., and Eder, I. E. (2005) Androgen receptor down regulation by small interference RNA induces cell growth inhibition in androgen sensitive as well as in androgen independent prostate cancer cells. J. Steroid Biochem. Mol. Biol. 96, 251–258.PubMedCrossRefGoogle Scholar
  45. 45.
    Kokontis, J., Takakura, K., Hay, N., and Liao, S. (1994) Increased androgen receptor activity and altered c-myc expression in prostate cancer cells after long-term androgen deprivation. Cancer Res. 54, 1566–1573.PubMedGoogle Scholar
  46. 46.
    Foury, O., Nicolas, B., Joly-Pharaboz, M. O., and André, J. (1998) Control of the proliferation of prostate cancer cells by an androgen and two antiandrogens. Cell specific sets of responses. J. Steroid Biochem. Mol. Biol. 66, 235–240.PubMedCrossRefGoogle Scholar
  47. 47.
    Zhou, J.-R., Yu, L., Zerbini, L. F., Libermann, T. A., and Blackburn, G. L. (2004) Progression to androgen-independent LNCaP human prostate tumors: cellular and molecular alterations. Int. J. Cancer 110, 800–806.PubMedCrossRefGoogle Scholar
  48. 48.
    Miyamoto, H., Rahman, M. M., and Chang, C. (2004) Molecular basis for the antiandrogen withdrawal syndrome. J. Cell. Biochem. 91, 3–12.PubMedCrossRefGoogle Scholar
  49. 49.
    Wang, Y., Shao, C., Shi, C.-H., Zhang, L., Yue, H.-H., Wang, P.-F., Yang, B., Zhang, Y.-T., Liu, F., Qin, W.-J., Wang, H., and Shao, G.-X. (2005) Change of the cell cycle after flutamide treatment in prostate cancer cells and its molecular mechanism. Asian J. Androl. 7, 375–380.PubMedCrossRefGoogle Scholar
  50. 50.
    Yeh, S., Miyamoto, H., Nishimura, K., Kang, H., Ludlow, J., Hsiao, P., Wang, C., Su, C., and Chang, C. (1998) Retinoblastoma, a tumor suppressor, is a coactivator for the androgen receptor in human prostate cancer DU145 cells. Biochem. Biophys. Res. Commun. 248, 361–367.PubMedCrossRefGoogle Scholar
  51. 51.
    Wang, X., Deng, H., Basu, I., and Zhu, L. (2004) Induction of androgen receptor-dependent apoptosis in prostate cancer cells by the retinoblastoma protein. Cancer Res. 64, 1377–1385.PubMedCrossRefGoogle Scholar
  52. 52.
    Meredith, J. E., Winitz, S., McArthur Lewis, J., Hess, S., Ren, X.-D., Renshaw, M. W., and Schwartz, M. A. (1996) The regulation of growth and intracellular signaling by integrins. Endocr. Rev. 17, 207–220.PubMedCrossRefGoogle Scholar
  53. 53.
    Bonaccorsi, L., Carloni, V., Muratori, M., Salvadori, A., Giannini, A., Carini, M., Serio, M., Forti, G., and Baldi, E. (2000) Androgen receptor expression in prostate carcinoma cells suppresses α6β4 integrin-mediated invasive phenotype. Endocrinology 141, 3172–3182.PubMedCrossRefGoogle Scholar
  54. 54.
    Nakagawa, O., Akashi, T., Hayakawa, Y., Junicho, A., Koizumi, K., Fujiuchi, Y., Furuya, Y., Matsuda, T., Fuse, H., and Saiki, I. (2004) Differential expression of integrin subunits in DU-145/AR prostate cancer cells. Oncol. Rep. 12, 837–841.Google Scholar
  55. 55.
    Evangelou, A., Letarte, M., Marks, A., and Brown, T. J. (2002) Androgen modulation of adhesion and antiadhesion molecules in PC-3 prostate cancer cells expressing androgen receptor. Endocrinology 143, 3897–3904.PubMedCrossRefGoogle Scholar
  56. 56.
    Davis, T. L., Cress, A. E., Dalkin, B. L., and Nagle, R. B. (2001) Unique expression pattern of the α6β4 integrin α6β4 and laminin-5 in human prostate carcinoma. Prostate 46, 240–248.PubMedCrossRefGoogle Scholar
  57. 57.
    Gambaletta, D., Marchetti, A., Benedetti, L., Mercurio, A. M., Sacchi, A., and Falcioni, R. (2000) Cooperative signaling between α6β4 integrin and ErbB-2 receptor is required to promote phosphatidylinositol 3-kinase-dependent invasion. J. Biol. Chem. 275,10604–10610.Google Scholar
  58. 58.
    Bonaccorsi, L., Carloni, V., Muratori, M., Formigli, L., Zecchi, S., Forti, G., and Baldi, E. (2004) EGF receptor (EGFR) signaling promoting invasion id disrupted in androgen-sensitive prostate cancer cells by an interaction between EGFR and androgen receptor (AR). Int. J. Cancer 112, 78–86.PubMedCrossRefGoogle Scholar
  59. 59.
    Di Lorenzo, G., Tortora, G., D’Armiento, F. P., De Rosa, G., Staibano, S., Autorino, R., D’Armiento, M, De Laurentiis, M., De Placido, S., Catalano, G., Bianco, A. R., and Ciardiello, F. (2002) Expression of epidermal growth factor receptor correlates with disease relapse and progression to androgen-independence in human prostate cancer. Clin. Cancer Res. 8, 3438–3444.PubMedGoogle Scholar
  60. 60.
    Wood, M., Fudge, K., Mohler, J. L., Frost, A. R., Garcia, F., Wang, M., and Stearns, M. E. (1997) In situ hybridization studies of metalloproteinases 2 and 9 and TIMP-1 and TIMP-2 expression in human prostate cancer. Clin. Exp. Metastasis 15, 246–258.PubMedCrossRefGoogle Scholar
  61. 61.
    Sauer, C. G., Kappeler, A., Späth, M., Kaden, J. J., Michel, M. S., Mayer, D., Bleyl, U., and Grobholz, R. (2004) Expression and activity of matrix metalloproteinases-2 and -9 in serum, core needle biopsies and tissue specimens of prostate cancer patients. Virchows Arch. 444, 518–526.PubMedCrossRefGoogle Scholar
  62. 62.
    Dong, Z., Nemeth, J. A., Cher, M. L., Palmer, K. C., Bright, R. C., and Fridman, R. (2001) Differential regulation of matrix metalloproteinase-9, tissue inhibitor of metalloproteinase-1 (TIMP-1) and TIMP–2 expression in co-cultures of prostate cancer and stromal cells. Int. J. Cancer 93, 507–515.PubMedCrossRefGoogle Scholar
  63. 63.
    Wilson, M. J., Sellers, R. G., Wiehr, C., Melamud, O., Pei, D., and Peehl, D. M. (2002) Expression of matrix metalloproteinase-2 and -9 and their inhibitors, tissue inhibitor of metalloproteinase-1 and -2, in primary cultures of human prostatic stromal and epithelial cells. J. Cell. Physiol. 191, 208–216.PubMedCrossRefGoogle Scholar
  64. 64.
    Klein, R. D., Maliner-Jongewaard, M. S., Udayakumar, T. S., Boyd, J. L., Nagle, R. B., and Bowden, G. T. (1999) Promatrilysin expression is induced by fibroblast growth factors in the prostatic carcinoma cell line LNCaP but not in normal primary prostate epithelial cells. Prostate 41, 215–223.PubMedCrossRefGoogle Scholar
  65. 65.
    Quax, P. H. A., de Bart, A. C. W., Schalken, J. A., and Verheijen, J. H. (1997) Plasminogen activator and matrix metalloproteinase production and extracellular matrix degradation by rat prostate cancer cells in vitro: correlation with metastatic behavior in vivo. Prostate 32, 196–204.PubMedCrossRefGoogle Scholar
  66. 66.
    Schneikert, J., Peterziel, H., Defossez, P. A., Klocker, H., Launoit, Y., and Cato, A. C. (1996) Androgen receptor-Ets protein interaction is a novel mechanism for steroid hormone-mediated down-modulation of matrix metalloproteinase expression. J. Biol. Chem. 271, 23907–23913.PubMedCrossRefGoogle Scholar
  67. 67.
    Liao, X., Thrasher, J. B., Pelling, J., Holzbeierlein, J., Sang, Q.-X. A., and Li, B. (2003) Androgen stimulates matrix metalloproteinase-2 expression in human prostate cancer. Endocrinology 144, 1656–1663.PubMedCrossRefGoogle Scholar
  68. 68.
    Vayalil, P. K., Mittal, A., and Katiyar, S. K. (2004) Proanthocyanidins from grape seeds inhibit expression of matrix metalloproteinases in human prostate carcinoma cells, which is associated with the inhibition of activation of MAPK and NFκB. Carcinogenesis 25, 987–995.PubMedCrossRefGoogle Scholar
  69. 69.
    Lokeshwar, B. L. (1999) MMP inhibition in prostate cancer. Ann. N. Y. Acad. Sci. 878, 271–289.PubMedCrossRefGoogle Scholar
  70. 70.
    Powell, W. C., Domann, F. E., Jr., Mitchen, J. M., Matrisian, L. M., Nagle, R. B., and Bowden, G. T. (1996) Matrilysin expression in the involuting rat ventral prostate. Prostate 29, 159–168.PubMedCrossRefGoogle Scholar
  71. 71.
    Nelson, J. B., Hedican, S. P., George, D. J., Reddi, A. H., Piantadosi, S., Eisenberger, M. A., and Simons, J. W. (1995) Identification of endothelin-1 in the pathophysiology of metastatic adenocarcinoma of the prostate. Nat. Med. 1, 944–949.PubMedCrossRefGoogle Scholar
  72. 72.
    Granchi, S., Brocchi, S., Bonaccorsi, L., Baldi, E., Vinci, M. C., Forti, G., Serio, M., and Maggi, M. (2001) Endothelin-1 production by prostate cancer cell lines is up-regulated by factors involved in cancer progression and down-regulated by androgens. Prostate 49, 267–277.PubMedCrossRefGoogle Scholar
  73. 73.
    Padley, R. J., Dixon, D. B., and Wu-Wong, J. R. (2002) Effect of castration on endothelin receptors. Clin. Sci. 103, 442S–445S.PubMedGoogle Scholar
  74. 74.
    Aprikian, A. G., Han, K., Guy, L., Landry, F., Begin, L. R., and Chevalier, S. (1998) Neuroendocrine differentiation and the bombesin/gastrin releasing peptide family of neuropeptides in the progression of human prostate cancer. Prostate Suppl 8, 52–61.Google Scholar
  75. 75.
    Papandreou, C. N., Usami, B., Geng, Y. P., Bogenrieder, T., Freeman, R. H., Wilk, S., Finstad, C. L., Reuter, V. E., Powell, C. T., Scheinberg, D., Magill, C., Scher, H. I., Albino, A. P., and Nanus, D. M. (1998) Neutral endopeptidase 24.11 loss in metastatic human prostate cancer contributes to androgen-independent progression. Nat. Med. 4, 50–57.PubMedCrossRefGoogle Scholar
  76. 76.
    Shen, R., Sumitomo, M., Dai, J., Hardy, D. O., Navarro, D., Usami, B., Papandreou, C. N., Hersh, L. B., Shipp, M. A., Freedman, L. P., and Nanus, D. M. (2000) Identification and characterization of two androgen responsive regions in the human neutral endopeptidase gene. Mol. Cell. Endocrinol. 25, 131–142.CrossRefGoogle Scholar
  77. 77.
    Stewart, R. J., Panigrahy, D., Flynn, E., and Folkman, J. (2001) Vascular endothelial growth factor expression and tumor angiogenesis are regulated by androgens in hormone responsive prostate carcinoma: evidence for androgen dependent destabilization of vascular endothelial growth factor transcripts. J. Urol. 165, 688–693.PubMedCrossRefGoogle Scholar
  78. 78.
    Li, J., Wang, E., Rinaldo, F., and Datta, K. (2005) Upregulation of VEGF-C by androgen depletion: the involvement of IGF-IR-FOXO pathway. Oncogene 24, 5510–5520.PubMedCrossRefGoogle Scholar
  79. 79.
    Cheng, L., Zhang, S., Sweeney, C. J., Kao, C., Gardner, T. A., and Eble, J. N. (2004) Androgen withdrawal inhibits tumor growth and is associated with decrease in angiogenesis and VEGF expression in androgen-independent CWR22Rv1 human prostate cancer model. Anticancer Res. 24, 2135–2140.PubMedGoogle Scholar
  80. 80.
    Boddy, J. L., Fox, S. B., Han, C., Campo, L., Turley, H., Kanga, S., Malone, P. R., and Harris, A. L. (2005) Endothelial growth factor and hypoxia sensing via hypoxia-inducible factros HIF-1a, HIF-2a, and the prolyl hydroxylases in human prostate cancer. Clin. Cancer Res. 11, 7658–7663.PubMedCrossRefGoogle Scholar
  81. 81.
    Kwabi-Addo, B., Ozen, M., and Ittmann, M. (2004) The role of fibroblast growth factors and their receptors in prostate cancer. Endocr. Relat. Cancer 11, 709–724.PubMedCrossRefGoogle Scholar
  82. 82.
    Rosini, P., Bonaccorsi, L., Baldi, E., Chiasserini, C., Forti, G., De Chiara, G., Lucibello, M., Mongiat, M., Iozzo, R. V., Garaci, E., Cozzolino, F., and Torcia, M. G. (2002) Androgen receptor expression induces FGF2, FGF-binding protein production, and FGF2 release in prostate carcinoma cells: role of FGF2 in growth, survival, and androgen receptor down-modulation. Prostate 53, 310–321.PubMedCrossRefGoogle Scholar
  83. 83.
    Blanchère, M., Saunier, E., Mestayer, C., Broshuis, M., and Mowszowicz, I. (2002) Alterations of expression and regulation of transforming growth factor β in human cancer prostate cell lines. J. Steroid Biochem. Mol. Biol. 82, 297–304.PubMedCrossRefGoogle Scholar
  84. 84.
    Pandini, G., Mineo, R., Frasca, F., Roberts, C. T., Jr., Marcelli, M., Vigneri, R., and Belfiore, A. (2005) Androgens up-regulate the insulin-like growth factor-I receptor in prostate cancer cells. Cancer Res. 65, 1849–1857.PubMedCrossRefGoogle Scholar
  85. 85.
    Knudsen, B. S., Lucas, J. M., Fazli, L., Hawley, S., Falcon, S., Coleman, I. M., Martin, D. B., Xu, C., True, L. D., Gleave, M. E., Nelson, P. S., and Ayala, G. E. (2005) Regulation of hepatocyte activator inhibitor-1 expression by androgen and oncogenic transformation in the prostate. Am. J. Pathol. 167, 255–266.PubMedGoogle Scholar
  86. 86.
    Li, L., Yang, G., Ebara, S., Satoh, T., Nasu, Y., Timme, T. L., Ren, C., Wang, J., Tahir, S. A., and Thompson, T. C. (2001) Caveolin-1 mediates testosterone-stimulated survival/clonal growth and promotes metastatic activities in prostate cancer cells. Cancer Res. 61,4386–4392.Google Scholar
  87. 87.
    Jain, A., Lam, A., Vivanco, I., Carey, M. F., and Reiter, R. E. (2002) Identification of an androgen-dependent enhancer within the prostate stem cell antigen gene. Mol. Endocrinol. 16, 2323–2337.PubMedCrossRefGoogle Scholar
  88. 88.
    Pruthi, R. S., Derksen, E., and Gaston, K. (2003) Cyclooxygenase-2 as a potential target in the prevention and treatment of genitourinary tumors: a review. J. Urol. 169, 2352–2359.PubMedCrossRefGoogle Scholar
  89. 89.
    Gupta, S., Srivastava, M., Ahmad, N., Bostwick, D. G., and Mukhtar, H. (2000) Over-expression of cyclooxygenase-2 in human prostate adenocarcinoma. Prostate 42, 73–78.PubMedCrossRefGoogle Scholar
  90. 90.
    Kirschenbaum, A., Klausner, A. P., Lee, R., Unger, P., Yao, S., Liu, X. H., and Levine, A. C. (2000) Expression of cyclooxygenase-1 and cyclooxygenase-2 in the human prostate. Urology 56, 671–676.PubMedCrossRefGoogle Scholar
  91. 91.
    Madaan, S., Abel, P. D., Chaudhary, K. S., Hewitt, R., Stott, M. A., Stamp, G. W., and Lalani, E. N. (2000) Cytoplasmic induction and over-expression of cyclooxygenase-2 in human prostate cancer: implications for prevention and treatment. BJU Int. 86, 736–741.PubMedCrossRefGoogle Scholar
  92. 92.
    Yoshimura, R., Sano, H., Masuda, C., Kawamura, M., Tsubouchi, Y., Chargui, J., Yoshimura, N., Hla, T., and Wada, S. (2000) Expression of cyclooxygenase-2 in prostate carcinoma. Cancer 89, 589–596.PubMedCrossRefGoogle Scholar
  93. 93.
    Zha, S., Gage, W. R., Sauvageot, J., Saria, E. A., Putzi, M. J., Ewing, C. M., Faith, D. A., Nelson, W. G., De Marzo, A. M., and Isaacs, W. B. (2001) Cyclooxygenase-2 is up-regulated in proliferative inflammatory atrophy of the prostate, but not in prostate carcinoma. Cancer Res. 61, 8617–8623.PubMedGoogle Scholar
  94. 94.
    Litvinov, I. V., De Marzo, A. M., and Isaacs, J. T. (2003) Is the Achilles’ heel for prostate cancer therapy a gain of function in androgen receptor signaling? J. Clin. Endocrinol. Metab. 88, 2972–2982.PubMedCrossRefGoogle Scholar
  95. 95.
    Gupta, S., Adhami, V. M., Subbarayan, M., MacLennan, G. T., Lewin, J. S., Hanfeli, U. O., Fu, P., and Mukhtar, H. (2004) Suppression of prostate carcinogenesis by dietary supplementation of celecoxib in transgenic adenocarcinoma of the mouse prostate model. Cancer Res. 64, 3334–3343.PubMedCrossRefGoogle Scholar
  96. 96.
    Fujita, H., Koshida, K., Keller, E. T, Takahashi, Y., Yoshimoto, T., Namiki, M., and Mizokami, A. (2002) Cyclooxygenase-2 promotes prostate cancer progression. Prostate 53, 232–240.PubMedCrossRefGoogle Scholar
  97. 97.
    Miyamoto, H., Altuwaijri, S., Cai, Y., Messing, E. M., and Chang, C. (2005) Inhibition of the Akt, cyclooxygenase-2, and matrix metalloproteinase-9 pathways in combination with androgen deprivation therapy: potential therapeutic approaches for prostate cancer. Mol. Carcinogen. 44, 1–10.CrossRefGoogle Scholar

Copyright information

© Humana Press 2008

Authors and Affiliations

  • Hiroshi Miyamoto
  • Saleh Altuwaijri
  • Chawnshang Chang

There are no affiliations available

Personalised recommendations