Advertisement

Epigenetic Gene Silencing in Prostate Cancer

  • Srinivasan Yegnasubramanian
  • William G. Nelson
Part of the Current Clinical Oncology book series (CCO)

Keywords

Prostate Cancer Methylation Pattern Epigenetic Gene Silence GSTP1 Expression Proliferative Inflammatory Atrophy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Feinberg, A. P., Cui, H., and Ohlsson, R. DNA methylation and genomic imprinting: insights from cancer into epigenetic mechanisms. Semin Cancer Biol, 12: 389–398, 2002.PubMedCrossRefGoogle Scholar
  2. 2.
    Onyango, P., Jiang, S., Uejima, H., Shamblott, M. J., Gearhart, J. D., Cui, H., and Feinberg, A. P. Monoallelic expression and methylation of imprinted genes in human and mouse embryonic germ cell lineages. Proc Natl Acad Sci USA, 99: 10599–10604, 2002.PubMedCrossRefGoogle Scholar
  3. 3.
    Tilghman, S. M. The sins of the fathers and mothers: genomic imprinting in mammalian development. Cell, 96: 185–193, 1999.PubMedCrossRefGoogle Scholar
  4. 4.
    Norris, D. P., Brockdorff, N., and Rastan, S. Methylation status of CpG-rich islands on active and inactive mouse X chromosomes. Mamm Genome, 1: 78–83, 1991.PubMedCrossRefGoogle Scholar
  5. 5.
    Challita, P. M., Skelton, D., el-Khoueiry, A., Yu, X. J., Weinberg, K., and Kohn, D. B. Multiple modifications in cis elements of the long terminal repeat of retroviral vectors lead to increased expression and decreased DNA methylation in embryonic carcinoma cells. J Virol, 69: 748–755, 1995.PubMedGoogle Scholar
  6. 6.
    Shinar, D., Yoffe, O., Shani, M., and Yaffe, D. Regulated expression of muscle-specific genes introduced into mouse embryonal stem cells: inverse correlation with DNA methylation. Differentiation, 41: 116–126, 1989.PubMedCrossRefGoogle Scholar
  7. 7.
    Chapman, V., Forrester, L., Sanford, J., Hastie, N., and Rossant, J. Cell lineage-specific undermethylation of mouse repetitive DNA. Nature, 307: 284–286, 1984.PubMedCrossRefGoogle Scholar
  8. 8.
    Tolberg, M. E., Funderburk, S. J., Klisak, I., and Smith, S. S. Structural organization and DNA methylation patterning within the mouse L1 family. J Biol Chem, 262: 11167–11175, 1987.PubMedGoogle Scholar
  9. 9.
    Razin, A. and Riggs, A. D. DNA methylation and gene function. Science, 210: 604–610, 1980.PubMedCrossRefGoogle Scholar
  10. 10.
    Siegfried, Z. and Cedar, H. DNA methylation: a molecular lock. Curr Biol, 7: R305–307, 1997.PubMedCrossRefGoogle Scholar
  11. 11.
    Siegfried, Z., Eden, S., Mendelsohn, M., Feng, X., Tsuberi, B. Z., and Cedar, H. DNA methylation represses transcription in vivo. Nat Genet, 22: 203–206, 1999.PubMedCrossRefGoogle Scholar
  12. 12.
    Santos, F., Hendrich, B., Reik, W., and Dean, W. Dynamic reprogramming of DNA methylation in the early mouse embryo. Dev Biol, 241: 172–182, 2002.PubMedCrossRefGoogle Scholar
  13. 13.
    Rainier, S., Johnson, L. A., Dobry, C. J., Ping, A. J., Grundy, P. E., and Feinberg, A. P. Relaxation of imprinted genes in human cancer. Nature, 362: 747–749, 1993.PubMedCrossRefGoogle Scholar
  14. 14.
    Jarrard, D. F., Bussemakers, M. J., Bova, G. S., and Isaacs, W. B. Regional loss of imprinting of the insulin-like growth factor II gene occurs in human prostate tissues. Clin Cancer Res, 1: 1471–1478, 1995.PubMedGoogle Scholar
  15. 15.
    Steenman, M. J., Rainier, S., Dobry, C. J., Grundy, P., Horon, I. L., and Feinberg, A. P. Loss of imprinting of IGF2 is linked to reduced expression and abnormal methylation of H19 in Wilms’ tumour. Nat Genet, 7: 433–439, 1994.PubMedCrossRefGoogle Scholar
  16. 16.
    Cui, H., Onyango, P., Brandenburg, S., Wu, Y., Hsieh, C. L., and Feinberg, A. P. Loss of imprinting in colorectal cancer linked to hypomethylation of H19 and IGF2. Cancer Res, 62: 6442–6446, 2002.PubMedGoogle Scholar
  17. 17.
    Li, E. Chromatin modification and epigenetic reprogramming in mammalian development. Nat Rev Genet , 3: 662–673, 2002.PubMedCrossRefGoogle Scholar
  18. 18.
    Barr, M. L. and Bertram, E. G. A morphological distinction between neurons of the male and female. Nature, 163: 676–677, 1949.PubMedCrossRefGoogle Scholar
  19. 19.
    Ohno, S., Kaplan, W. D., and Kinosita, R. Formation of the sex chromatin by a single X-chromosome in liver cells of Rattus norvegicus. Exp Cell Res, 18: 415–418, 1959.PubMedCrossRefGoogle Scholar
  20. 20.
    Lyon, M. F. Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature, 190: 372–373, 1961.PubMedCrossRefGoogle Scholar
  21. 21.
    Bender, J. Cytosine methylation of repeated sequences in eukaryotes: the role of DNA pairing. Trends Biochem Sci, 23: 252–256, 1998.PubMedCrossRefGoogle Scholar
  22. 22.
    Ushijima, T., Morimura, K., Hosoya, Y., Okonogi, H., Tatematsu, M., Sugimura, T., and Nagao, M. Establishment of methylation-sensitive-representational difference analysis and isolation of hypo- and hypermethylated genomic fragments in mouse liver tumors. Proc Natl Acad Sci USA, 94: 2284–2289, 1997.PubMedCrossRefGoogle Scholar
  23. 23.
    Suzuki, K., Suzuki, I., Leodolter, A., Alonso, S., Horiuchi, S., Yamashita, K., and Perucho, M. Global DNA demethylation in gastrointestinal cancer is age dependent and precedes genomic damage. Cancer Cell, 9: 199–207, 2006.PubMedCrossRefGoogle Scholar
  24. 24.
    Rodriguez, J., Frigola, J., Vendrell, E., Risques, R. A., Fraga, M. F., Morales, C., Moreno, V., Esteller, M., Capella, G., Ribas, M., and Peinado, M. A. Chromosomal instability correlates with genome-wide DNA demethylation in human primary colorectal cancers. Cancer Res, 66: 8462–9468, 2006.PubMedCrossRefGoogle Scholar
  25. 25.
    Bird, A. P. CpG-rich islands and the function of DNA methylation. Nature, 321: 209–213, 1986.PubMedCrossRefGoogle Scholar
  26. 26.
    Cross, S. H., Charlton, J. A., Nan, X., and Bird, A. P. Purification of CpG islands using a methylated DNA binding column. Nat Genet, 6: 236–244, 1994.PubMedCrossRefGoogle Scholar
  27. 27.
    Song, F., Smith, J. F., Kimura, M. T., Morrow, A. D., Matsuyama, T., Nagase, H., and Held, W. A. Association of tissue-specific differentially methylated regions (TDMs) with differential gene expression. Proc Natl Acad Sci USA, 102: 3336–3341, 2005.PubMedCrossRefGoogle Scholar
  28. 28.
    Feinberg, A. P., Gehrke, C. W., Kuo, K. C., and Ehrlich, M. Reduced genomic 5-methylcytosine content in human colonic neoplasia. Cancer Res, 48: 1159–1161,1988.Google Scholar
  29. 29.
    Goelz, S. E., Vogelstein, B., Hamilton, S. R., and Feinberg, A. P. Hypomethylation of DNA from benign and malignant human colon neoplasms. Science, 228: 187–190, 1985.PubMedCrossRefGoogle Scholar
  30. 30.
    Feinberg, A. P. and Vogelstein, B. Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature, 301: 89–92, 1983.PubMedCrossRefGoogle Scholar
  31. 31.
    Feinberg, A. P. and Vogelstein, B. Hypomethylation of ras oncogenes in primary human cancers. Biochem Biophys Res Commun, 111: 47–54, 1983.PubMedCrossRefGoogle Scholar
  32. 32.
    Bedford, M. T. and van Helden, P. D. Hypomethylation of DNA in pathological conditions of the human prostate. Cancer Res, 47: 5274–5276, 1987.PubMedGoogle Scholar
  33. 33.
    Gama-Sosa, M. A., Slagel, V. A., Trewyn, R. W., Oxenhandler, R., Kuo, K. C., Gehrke, C. W., and Ehrlich, M. The 5-methylcytosine content of DNA from human tumors. Nucleic Acids Res, 11: 6883–6894, 1983.PubMedCrossRefGoogle Scholar
  34. 34.
    Feinberg, A. P. and Tycko, B. The history of cancer epigenetics. Nat Rev Cancer, 4: 143–153, 2004.PubMedCrossRefGoogle Scholar
  35. 35.
    Cadieux, B., Ching, T. T., Vandenberg, S. R., and Costello, J. F. Genome-wide hypomethylation in human glioblastomas associated with specific copy number alteration, methylenetetrahydrofolate reductase allele status, and increased proliferation. Cancer Res, 66: 8469–8476, 2006.PubMedCrossRefGoogle Scholar
  36. 36.
    Lee, W. H., Morton, R. A., Epstein, J. I., Brooks, J. D., Campbell, P. A., Bova, G. S., Hsieh, W. S., Isaacs, W. B., and Nelson, W. G. Cytidine methylation of regulatory sequences near the pi-class glutathione S-transferase gene accompanies human prostatic carcinogenesis. Proc Natl Acad Sci USA, 91: 11733–11737, 1994.PubMedCrossRefGoogle Scholar
  37. 37.
    Esteller, M., Corn, P. G., Baylin, S. B., and Herman, J. G. A gene hypermethylation profile of human cancer. Cancer Res, 61: 3225–3229, 2001.PubMedGoogle Scholar
  38. 38.
    Jones, P. A. and Laird, P. W. Cancer epigenetics comes of age. Nat Genet, 21: 163–167, 1999.PubMedCrossRefGoogle Scholar
  39. 39.
    Ehrlich, M. DNA methylation in cancer: too much, but also too little. Oncogene, 21: 5400–5413, 2002.PubMedCrossRefGoogle Scholar
  40. 40.
    Holst, C. R., Nuovo, G. J., Esteller, M., Chew, K., Baylin, S. B., Herman, J. G., and Tlsty, T. D. Methylation of p16(INK4a) promoters occurs in vivo in histologically normal human mammary epithelia. Cancer Res, 63: 1596–1601, 2003.PubMedGoogle Scholar
  41. 41.
    Myohanen, S. K., Baylin, S. B., and Herman, J. G. Hypermethylation can selectively silence individual p16ink4A alleles in neoplasia. Cancer Res, 58: 591–593, 1998.PubMedGoogle Scholar
  42. 42.
    Lin, X. and Nelson, W. G. Methyl-CpG-binding domain protein-2 mediates transcriptional repression associated with hypermethylated GSTP1 CpG islands in MCF-7 breast cancer cells. Cancer Res, 63: 498–504, 2003.PubMedGoogle Scholar
  43. 43.
    David, G. L., Yegnasubramanian, S., Kumar, A., Marchi, V. L., de Marzo, A. M., Lin, X., and Nelson, W. G. MDR1 promoter hypermethylation in MCF-7 human breast cancer cells: changes in chromatin structure induced by treatment with 5-aza-cytidine. Cancer Biol Ther, 3: 540–548, 2004.PubMedGoogle Scholar
  44. 44.
    Pradhan, S., Bacolla, A., Wells, R. D., and Roberts, R. J. Recombinant human DNA (cytosine-5) methyltransferase. I. Expression, purification, and comparison of de novo and maintenance methylation. J Biol Chem, 274: 33002–33010, 1999.PubMedCrossRefGoogle Scholar
  45. 45.
    Gowher, H. and Jeltsch, A. Enzymatic properties of recombinant Dnmt3a DNA methyltransferase from mouse: the enzyme modifies DNA in a non-processive manner and also methylates non-CpG [correction of non-CpA] sites. J Mol Biol, 309: 1201–1208, 2001.PubMedCrossRefGoogle Scholar
  46. 46.
    Okano, M., Xie, S., and Li, E. Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nat Genet, 19: 219–220, 1998.PubMedCrossRefGoogle Scholar
  47. 47.
    Jeltsch, A. Beyond Watson and Crick: DNA methylation and molecular enzymology of DNA methyltransferases. Chembiochem, 3: 274–293, 2002.PubMedCrossRefGoogle Scholar
  48. 48.
    Okano, M., Bell, D. W., Haber, D. A., and Li, E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell, 99: 247–257, 1999.PubMedCrossRefGoogle Scholar
  49. 49.
    Rhee, I., Jair, K. W., Yen, R. W., Lengauer, C., Herman, J. G., Kinzler, K. W., Vogelstein, B., Baylin, S. B., and Schuebel, K. E. CpG methylation is maintained in human cancer cells lacking DNMT1. Nature, 404: 1003–1007, 2000.PubMedCrossRefGoogle Scholar
  50. 50.
    Rhee, I., Bachman, K. E., Park, B. H., Jair, K. W., Yen, R. W., Schuebel, K. E., Cui, H., Feinberg, A. P., Lengauer, C., Kinzler, K. W., Baylin, S. B., and Vogelstein, B. DNMT1 and DNMT3b cooperate to silence genes in human cancer cells. Nature, 416: 552–556, 2002.PubMedCrossRefGoogle Scholar
  51. 51.
    Graff, J. R., Herman, J. G., Myohanen, S., Baylin, S. B., and Vertino, P. M. Mapping patterns of CpG island methylation in normal and neoplastic cells implicates both upstream and downstream regions in de novo methylation. J Biol Chem, 272: 22322–22329, 1997.PubMedCrossRefGoogle Scholar
  52. 52.
    Vertino, P. M., Yen, R. W., Gao, J., and Baylin, S. B. de novo methylation of CpG island sequences in human fibroblasts overexpressing DNA (cytosine-5-)-methyltransferase. Mol Cell Biol, 16: 4555–4565, 1996.PubMedGoogle Scholar
  53. 53.
    Feltus, F. A., Lee, E. K., Costello, J. F., Plass, C., and Vertino, P. M. Predicting aberrant CpG island methylation. Proc Natl Acad Sci USA, 100: 12253–12258, 2003.PubMedCrossRefGoogle Scholar
  54. 54.
    Bakin, A. V. and Curran, T. Role of DNA 5-methylcytosine transferase in cell transformation by fos. Science, 283: 387–390, 1999.PubMedCrossRefGoogle Scholar
  55. 55.
    Laird, P. W., Jackson-Grusby, L., Fazeli, A., Dickinson, S. L., Jung, W. E., Li, E., Weinberg, R. A., and Jaenisch, R. Suppression of intestinal neoplasia by DNA hypomethylation. Cell, 81: 197–205, 1995.PubMedCrossRefGoogle Scholar
  56. 56.
    Eads, C. A., Nickel, A. E., and Laird, P. W. Complete genetic suppression of polyp formation and reduction of CpG-island hypermethylation in Apc(Min/+) Dnmt1-hypomorphic mice. Cancer Res, 62: 1296–1299, 2002.PubMedGoogle Scholar
  57. 57.
    Belinsky, S. A., Klinge, D. M., Stidley, C. A., Issa, J. P., Herman, J. G., March, T. H., and Baylin, S. B. Inhibition of DNA methylation and histone deacetylation prevents murine lung cancer. Cancer Res, 63: 7089–7093, 2003.PubMedGoogle Scholar
  58. 58.
    Eden, A., Gaudet, F., Waghmare, A., and Jaenisch, R. Chromosomal instability and tumors promoted by DNA hypomethylation. Science , 300: 455, 2003.Google Scholar
  59. 59.
    Gaudet, F., Hodgson, J. G., Eden, A., Jackson-Grusby, L., Dausman, J., Gray, J. W., Leonhardt, H., and Jaenisch, R. Induction of tumors in mice by genomic hypomethylation. Science, 300: 489–492, 2003.PubMedCrossRefGoogle Scholar
  60. 60.
    McCabe, M. T., Davis, J. N., and Day, M. L. Regulation of DNA methyltransferase 1 by the pRb/E2F1 pathway. Cancer Res, 65: 3624–3632, 2005.PubMedCrossRefGoogle Scholar
  61. 61.
    Eads, C. A., Danenberg, K. D., Kawakami, K., Saltz, L. B., Danenberg, P. V., and Laird, P. W. CpG island hypermethylation in human colorectal tumors is not associated with DNA methyltransferase overexpression. Cancer Res, 59: 2302–2306, 1999.PubMedGoogle Scholar
  62. 62.
    Agoston, A. T., Argani, P., Yegnasubramanian, S., de Marzo, A. M., Ansari-Lari, M. A., Hicks, J. L., Davidson, N. E., and Nelson, W. G. Increased protein stability causes DNA methyltransferase 1 dysregulation in breast cancer. J Biol Chem, 280:18302–18310, 2005.PubMedCrossRefGoogle Scholar
  63. 63.
    Lande-Diner, L. and Cedar, H. Silence of the genes—mechanisms of long-term repression. Nat Rev Genet, 6: 648–654, 2005.PubMedCrossRefGoogle Scholar
  64. 64.
    Klose, R. J. and Bird, A. P. Genomic DNA methylation: the mark and its mediators. Trends Biochem Sci, 31: 89–97, 2006.PubMedCrossRefGoogle Scholar
  65. 65.
    Roloff, T. C., Ropers, H. H., and Nuber, U. A. Comparative study of methyl-CpG-binding domain proteins. BMC Genomics, 4: 1, 2003.Google Scholar
  66. 66.
    Prokhortchouk, A., Hendrich, B., Jorgensen, H., Ruzov, A., Wilm, M., Georgiev, G., Bird, A., and Prokhortchouk, E. The p120 catenin partner Kaiso is a DNA methylation-dependent transcriptional repressor. Genes Dev, 15: 1613–1618, 2001.PubMedCrossRefGoogle Scholar
  67. 67.
    Filion, G. J., Zhenilo, S., Salozhin, S., Yamada, D., Prokhortchouk, E., and Defossez, P. A. A family of human zinc finger proteins that bind methylated DNA and repress transcription. Mol Cell Biol, 26: 169–181, 2006.PubMedCrossRefGoogle Scholar
  68. 68.
    Daniel, J. M., Spring, C. M., Crawford, H. C., Reynolds, A. B., and Baig, A. The p120(ctn)-binding partner Kaiso is a bi-modal DNA-binding protein that recognizes both a sequence-specific consensus and methylated CpG dinucleotides. Nucleic Acids Res, 30: 2911–2919, 2002.PubMedCrossRefGoogle Scholar
  69. 69.
    Bird, A. P. and Wolffe, A. P. Methylation-induced repression—belts, braces, and chromatin. Cell, 99: 451–454, 1999.PubMedCrossRefGoogle Scholar
  70. 70.
    Shi, Y., Lan, F., Matson, C., Mulligan, P., Whetstine, J. R., Cole, P. A., and Casero, R. A. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell, 119: 941–953, 2004.PubMedCrossRefGoogle Scholar
  71. 71.
    Klose, R. J., Yamane, K., Bae, Y., Zhang, D., Erdjument-Bromage, H., Tempst, P., Wong, J., and Zhang, Y. The transcriptional repressor JHDM3A demethylates trimethyl histone H3 lysine 9 and lysine 36. Nature, 442: 312–316, 2006.PubMedCrossRefGoogle Scholar
  72. 72.
    Yamane, K., Toumazou, C., Tsukada, Y., Erdjument-Bromage, H., Tempst, P., Wong, J., and Zhang, Y. JHDM2A, a JmjC-containing H3K9 demethylase, facilitates transcription activation by androgen receptor. Cell , 125: 483–495, 2006.PubMedCrossRefGoogle Scholar
  73. 73.
    Tsukada, Y., Fang, J., Erdjument-Bromage, H., Warren, M. E., Borchers, C. H., Tempst, P., and Zhang, Y. Histone demethylation by a family of JmjC domain-containing proteins. Nature, 439: 811–816, 2006.PubMedCrossRefGoogle Scholar
  74. 74.
    Zhang, K. and Dent, S. Y. Histone modifying enzymes and cancer: going beyond histones. J Cell Biochem, 96: 1137–1148, 2005.PubMedCrossRefGoogle Scholar
  75. 75.
    Jones, P. L., Veenstra, G. J., Wade, P. A., Vermaak, D., Kass, S. U., Landsberger, N., Strouboulis, J., and Wolffe, A. P. Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat Genet, 19: 187–191, 1998.PubMedCrossRefGoogle Scholar
  76. 76.
    Feng, Q. and Zhang, Y. The MeCP1 complex represses transcription through preferential binding, remodeling, and deacetylating methylated nucleosomes. Genes Dev, 15: 827–832, 2001.PubMedGoogle Scholar
  77. 77.
    Sarraf, S. A. and Stancheva, I. Methyl-CpG binding protein MBD1 couples histone H3 methylation at lysine 9 by SETDB1 to DNA replication and chromatin assembly. Mol Cell, 15: 595–605, 2004.PubMedCrossRefGoogle Scholar
  78. 78.
    Li, H., Rauch, T., Chen, Z. X., Szabo, P. E., Riggs, A. D., and Pfeifer, G. P. The histone methyltransferase SETDB1 and the DNA methyltransferase DNMT3A interact directly and localize to promoters silenced in cancer cells. J Biol Chem, 281: 19489–19500, 2006.PubMedCrossRefGoogle Scholar
  79. 79.
    Yoon, H. G., Chan, D. W., Reynolds, A. B., Qin, J., and Wong, J. N-CoR mediates DNA methylation-dependent repression through a methyl CpG binding protein Kaiso. Mol Cell, 12: 723–734, 2003.PubMedCrossRefGoogle Scholar
  80. 80.
    Hendrich, B., Guy, J., Ramsahoye, B., Wilson, V. A., and Bird, A. Closely related proteins MBD2 and MBD3 play distinctive but interacting roles in mouse development. Genes Dev, 15: 710–723, 2001.PubMedCrossRefGoogle Scholar
  81. 81.
    Bakker, J., Lin, X., and Nelson, W. G. Methyl-CpG binding domain protein 2 represses transcription from hypermethylated pi-class glutathione S-transferase gene promoters in hepatocellular carcinoma cells. J Biol Chem, 277: 22573–22580, 2002.PubMedCrossRefGoogle Scholar
  82. 82.
    Li, E., Bestor, T. H., and Jaenisch, R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell, 69: 915–926, 1992.PubMedCrossRefGoogle Scholar
  83. 83.
    Guy, J., Hendrich, B., Holmes, M., Martin, J. E., and Bird, A. A mouse Mecp2-null mutation causes neurological symptoms that mimic Rett syndrome. Nat Genet, 27: 322–326, 2001.PubMedCrossRefGoogle Scholar
  84. 84.
    Klose, R. J., Sarraf, S. A., Schmiedeberg, L., McDermott, S. M., Stancheva, I., and Bird, A. P. DNA binding selectivity of MeCP2 due to a requirement for A/T sequences adjacent to methyl-CpG. Mol Cell, 19: 667–678, 2005.PubMedCrossRefGoogle Scholar
  85. 85.
    Gibbons, R. J. Histone modifying and chromatin remodelling enzymes in cancer and dysplastic syndromes. Hum Mol Genet, 14 Spec No 1: R85–92, 2005.Google Scholar
  86. 86.
    Keshet, I., Schlesinger, Y., Farkash, S., Rand, E., Hecht, M., Segal, E., Pikarski, E., Young, R. A., Niveleau, A., Cedar, H., and Simon, I. Evidence for an instructive mechanism of de novo methylation in cancer cells. Nat Genet, 38: 149–153, 2006.PubMedCrossRefGoogle Scholar
  87. 87.
    Vire, E., Brenner, C., Deplus, R., Blanchon, L., Fraga, M., Didelot, C., Morey, L., Van Eynde, A., Bernard, D., Vanderwinden, J. M., Bollen, M., Esteller, M., Di Croce, L., de Launoit, Y., and Fuks, F. The Polycomb group protein EZH2 directly controls DNA methylation. Nature, 439: 871–874, 2006.PubMedCrossRefGoogle Scholar
  88. 88.
    Nelson, W. G., de Marzo, A. M., and Isaacs, W. B. Prostate cancer. N Engl J Med, 349: 366–381, 2003.PubMedCrossRefGoogle Scholar
  89. 89.
    Tomlins, S. A., Rhodes, D. R., Perner, S., Dhanasekaran, S. M., Mehra, R., Sun, X. W., Varambally, S., Cao, X., Tchinda, J., Kuefer, R., Lee, C., Montie, J. E., Shah, R. B., Pienta, K. J., Rubin, M. A., and Chinnaiyan, A. M. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science, 310: 644–648, 2005.PubMedCrossRefGoogle Scholar
  90. 90.
    Lin, X., Tascilar, M., Lee, W. H., Vles, W. J., Lee, B. H., Veeraswamy, R., Asgari, K., Freije, D., van Rees, B., Gage, W. R., Bova, G. S., Isaacs, W. B., Brooks, J. D., DeWeese, T. L., de Marzo, A. M., and Nelson, W. G. GSTP1 CpG island hypermethylation is responsible for the absence of GSTP1 expression in human prostate cancer cells. Am J Pathol, 159: 1815–1826, 2001.PubMedGoogle Scholar
  91. 91.
    Henderson, C. J., Smith, A. G., Ure, J., Brown, K., Bacon, E. J., and Wolf, C. R. Increased skin tumorigenesis in mice lacking pi class glutathione S-transferases. Proc Natl Acad Sci USA, 95: 5275–5280, 1998.PubMedCrossRefGoogle Scholar
  92. 92.
    Nelson, C. P., Kidd, L. C., Sauvageot, J., Isaacs, W. B., de Marzo, A. M., Groopman, J. D., Nelson, W. G., and Kensler, T. W. Protection against 2-hydroxyamino-1-methyl-6-phenylimidazo[4,5-b]pyridine cytotoxicity and DNA adduct formation in human prostate by glutathione S-transferase P1. Cancer Res, 61: 103–109, 2001.PubMedGoogle Scholar
  93. 93.
    Shirai, T., Sano, M., Tamano, S., Takahashi, S., Hirose, M., Futakuchi, M., Hasegawa, R., Imaida, K., Matsumoto, K., Wakabayashi, K., Sugimura, T., and Ito, N. The prostate: a target for carcinogenicity of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) derived from cooked foods. Cancer Res, 57: 195–198, 1997.PubMedGoogle Scholar
  94. 94.
    Stuart, G. R., Holcroft, J., de Boer, J. G., and Glickman, B. W. Prostate mutations in rats induced by the suspected human carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine. Cancer Res, 60: 266–268, 2000.PubMedGoogle Scholar
  95. 95.
    de Marzo, A. M., Marchi, V. L., Epstein, J. I., and Nelson, W. G. Proliferative inflammatory atrophy of the prostate: implications for prostatic carcinogenesis. Am J Pathol, 155: 1985–1992, 1999.PubMedGoogle Scholar
  96. 96.
    Parsons, J. K., Nelson, C. P., Gage, W. R., Nelson, W. G., Kensler, T. W., and de Marzo, A. M. GSTA1 expression in normal, preneoplastic, and neoplastic human prostate tissue. Prostate, 49: 30–37, 2001.PubMedCrossRefGoogle Scholar
  97. 97.
    Zha, S., Gage, W. R., Sauvageot, J., Saria, E. A., Putzi, M. J., Ewing, C. M., Faith, D. A., Nelson, W. G., de Marzo, A. M., and Isaacs, W. B. Cyclooxygenase-2 is up-regulated in proliferative inflammatory atrophy of the prostate, but not in prostate carcinoma. Cancer Res, 61: 8617–8623, 2001.PubMedGoogle Scholar
  98. 98.
    DeMarzo, A. M., Nelson, W. G., Isaacs, W. B., and Epstein, J. I. Pathological and molecular aspects of prostate cancer. Lancet, 361: 955–964, 2003.PubMedCrossRefGoogle Scholar
  99. 99.
    Nakayama, M., Bennett, C. J., Hicks, J. L., Epstein, J. I., Platz, E. A., Nelson, W. G., and de Marzo, A. M. Hypermethylation of the human glutathione S-transferase-pi gene (GSTP1) CpG island is present in a subset of proliferative inflammatory atrophy lesions but not in normal or hyperplastic epithelium of the prostate: a detailed study using laser-capture microdissection. Am J Pathol , 163: 923–933, 2003.PubMedGoogle Scholar
  100. 100.
    Brooks, J. D., Weinstein, M., Lin, X., Sun, Y., Pin, S. S., Bova, G. S., Epstein, J. I., Isaacs, W. B., and Nelson, W. G. CG island methylation changes near the GSTP1 gene in prostatic intraepithelial neoplasia. Cancer Epidemiol Biomarkers Prev, 7: 531–536, 1998.PubMedGoogle Scholar
  101. 101.
    DeWeese, T. L. and Nelson, W. G. Inadequate “caretaker” gene function and human cancer development. Methods Mol Biol, 222: 249–268, 2003.PubMedGoogle Scholar
  102. 102.
    Hmadcha, A., Bedoya, F. J., Sobrino, F., and Pintado, E. Methylation-dependent gene silencing induced by interleukin 1beta via nitric oxide production. J Exp Med, 190: 1595–1604, 1999.PubMedCrossRefGoogle Scholar
  103. 103.
    Bastian, P. J., Yegnasubramanian, S., Palapattu, G. S., Rogers, C. G., Lin, X., de Marzo, A. M., and Nelson, W. G. Molecular biomarker in prostate cancer: the role of CpG island hypermethylation. Eur Urol, 46: 698–708, 2004.PubMedCrossRefGoogle Scholar
  104. 104.
    Yegnasubramanian, S., Kowalski, J., Gonzalgo, M. L., Zahurak, M., Piantadosi, S., Walsh, P. C., Bova, G. S., de Marzo, A. M., Isaacs, W. B., and Nelson, W. G. Hypermethylation of CpG islands in primary and metastatic human prostate cancer. Cancer Res, 64: 1975–1986, 2004.PubMedCrossRefGoogle Scholar
  105. 105.
    Santourlidis, S., Florl, A., Ackermann, R., Wirtz, H. C., and Schulz, W. A. High frequency of alterations in DNA methylation in adenocarcinoma of the prostate. Prostate, 39: 166–174, 1999.PubMedCrossRefGoogle Scholar
  106. 106.
    Florl, A. R., Steinhoff, C., Muller, M., Seifert, H. H., Hader, C., Engers, R., Ackermann, R., and Schulz, W. A. Coordinate hypermethylation at specific genes in prostate carcinoma precedes LINE-1 hypomethylation. Br J Cancer, 91: 985–994, 2004.PubMedGoogle Scholar
  107. 107.
    Schulz, W. A., Elo, J. P., Florl, A. R., Pennanen, S., Santourlidis, S., Engers, R., Buchardt, M., Seifert, H. H., and Visakorpi, T. Genomewide DNA hypomethylation is associated with alterations on chromosome 8 in prostate carcinoma. Genes Chromosomes Cancer, 35: 58–65, 2002.PubMedCrossRefGoogle Scholar
  108. 108.
    Varambally, S., Dhanasekaran, S. M., Zhou, M., Barrette, T. R., Kumar-Sinha, C., Sanda, M. G., Ghosh, D., Pienta, K. J., Sewalt, R. G., Otte, A. P., Rubin, M. A., and Chinnaiyan, A. M. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature, 419: 624–629, 2002.PubMedCrossRefGoogle Scholar
  109. 109.
    Chen, H., Toyooka, S., Gazdar, A. F., and Hsieh, J. T. Epigenetic regulation of a novel tumor suppressor gene (hDAB2IP) in prostate cancer cell lines. J Biol Chem, 278: 3121–3130, 2003.PubMedCrossRefGoogle Scholar
  110. 110.
    Chen, H., Tu, S. W., and Hsieh, J. T. Down-regulation of human DAB2IP gene expression mediated by polycomb Ezh2 complex and histone deacetylase in prostate cancer. J Biol Chem, 280: 22437–22444, 2005.PubMedCrossRefGoogle Scholar
  111. 111.
    Bracken, A. P., Pasini, D., Capra, M., Prosperini, E., Colli, E., and Helin, K. EZH2 is downstream of the pRB-E2F pathway, essential for proliferation and amplified in cancer. EMBO J, 22: 5323–5335, 2003.PubMedCrossRefGoogle Scholar
  112. 112.
    Soh, S., Kattan, M. W., Berkman, S., Wheeler, T. M., and Scardino, P. T. Has there been a recent shift in the pathological features and prognosis of patients treated with radical prostatectomy? J Urol, 157: 2212–2218, 1997.PubMedCrossRefGoogle Scholar
  113. 113.
    Thompson, I. M., Pauler, D. K., Goodman, P. J., Tangen, C. M., Lucia, M. S., Parnes, H. L., Minasian, L. M., Ford, L. G., Lippman, S. M., Crawford, E. D., Crowley, J. J., and Coltman, C. A., Jr. Prevalence of prostate cancer among men with a prostate-specific antigen level < or = 4.0 ng per milliliter. N Engl J Med, 350: 2239–2246, 2004.PubMedCrossRefGoogle Scholar
  114. 114.
    Thompson, I. M., Goodman, P. J., Tangen, C. M., Lucia, M. S., Miller, G. J., Ford, L. G., Lieber, M. M., Cespedes, R. D., Atkins, J. N., Lippman, S. M., Carlin, S. M., Ryan, A., Szczepanek, C. M., Crowley, J. J., and Coltman, C. A., Jr. The influence of finasteride on the development of prostate cancer. N Engl J Med, 349: 215–224, 2003.PubMedCrossRefGoogle Scholar
  115. 115.
    Makhlouf, A. A., Krupski, T. L., Kunkle, D., and Theodorescu, D. The effect of sampling more cores on the predictive accuracy of pathological grade and tumour distribution in the prostate biopsy. BJU Int, 93: 271–274, 2004.PubMedCrossRefGoogle Scholar
  116. 116.
    de la Taille, A., Antiphon, P., Salomon, L., Cherfan, M., Porcher, R., Hoznek, A., Saint, F., Vordos, D., Cicco, A., Yiou, R., Zafrani, E. S., Chopin, D., and Abbou, C. C. Prospective evaluation of a 21-sample needle biopsy procedure designed to improve the prostate cancer detection rate. Urology, 61: 1181–1186, 2003.CrossRefGoogle Scholar
  117. 117.
    Sakr, W. A., Grignon, D. J., Crissman, J. D., Heilbrun, L. K., Cassin, B. J., Pontes, J. J., and Haas, G. P. High grade prostatic intraepithelial neoplasia (HGPIN) and prostatic adenocarcinoma between the ages of 20–69: an autopsy study of 249 cases. In Vivo, 8: 439–443, 1994.PubMedGoogle Scholar
  118. 118.
    Albertsen, P. C. What is the value of screening for prostate cancer in the US? Nat Clin Pract Oncol, 2: 536–537, 2005.PubMedCrossRefGoogle Scholar
  119. 119.
    Sidransky, D. Emerging molecular markers of cancer. Nat Rev Cancer, 2: 210–219, 2002.PubMedCrossRefGoogle Scholar
  120. 120.
    Laird, P. W. The power and the promise of DNA methylation markers. Nat Rev Cancer, 3: 253–266, 2003.PubMedCrossRefGoogle Scholar
  121. 121.
    Bastian, P. J., Palapattu, G. S., Lin, X., Yegnasubramanian, S., Mangold, L. A., Trock, B., Eisenberger, M. A., Partin, A. W., and Nelson, W. G. Preoperative serum DNA GSTP1 CpG island hypermethylation and the risk of early prostate-specific antigen recurrence following radical prostatectomy. Clin Cancer Res, 11: 4037–4043, 2005.PubMedCrossRefGoogle Scholar
  122. 122.
    Singer, J., Roberts-Ems, J., and Riggs, A. D. Methylation of mouse liver DNA studied by means of the restriction enzymes msp I and hpa II. Science, 203: 1019–1021, 1979.PubMedCrossRefGoogle Scholar
  123. 123.
    Bird, A. P. and Southern, E. M. Use of restriction enzymes to study eukaryotic DNA methylation: I. The methylation pattern in ribosomal DNA from Xenopus laevis. J Mol Biol, 118: 27–47, 1978.Google Scholar
  124. 124.
    Pollack, Y., Stein, R., Razin, A., and Cedar, H. Methylation of foreign DNA sequences in eukaryotic cells. Proc Natl Acad Sci USA, 77: 6463–6467, 1980.PubMedCrossRefGoogle Scholar
  125. 125.
    Singer-Sam, J., Grant, M., LeBon, J. M., Okuyama, K., Chapman, V., Monk, M., and Riggs, A. D. Use of a HpaII-polymerase chain reaction assay to study DNA methylation in the Pgk-1 CpG island of mouse embryos at the time of X-chromosome inactivation. Mol Cell Biol, 10: 4987–4989, 1990.PubMedGoogle Scholar
  126. 126.
    Singer-Sam, J., LeBon, J. M., Tanguay, R. L., and Riggs, A. D. A quantitative HpaII-PCR assay to measure methylation of DNA from a small number of cells. Nucleic Acids Res, 18: 687, 1990.PubMedCrossRefGoogle Scholar
  127. 127.
    Hatada, I., Kato, A., Morita, S., Obata, Y., Nagaoka, K., Sakurada, A., Sato, M., Horii, A., Tsujimoto, A., and Matsubara, K. A microarray-based method for detecting methylated loci. J Hum Genet , 47: 448–451, 2002.PubMedCrossRefGoogle Scholar
  128. 128.
    Nygren, A. O., Ameziane, N., Duarte, H. M., Vijzelaar, R. N., Waisfisz, Q., Hess, C. J., Schouten, J. P., and Errami, A. Methylation-specific MLPA (MS-MLPA): simultaneous detection of CpG methylation and copy number changes of up to 40 sequences. Nucleic Acids Res, 33: e128, 2005.PubMedCrossRefGoogle Scholar
  129. 129.
    Hu, M., Yao, J., Cai, L., Bachman, K. E., van den Brule, F., Velculescu, V., and Polyak, K. Distinct epigenetic changes in the stromal cells of breast cancers. Nat Genet, 37: 899–905, 2005.PubMedCrossRefGoogle Scholar
  130. 130.
    Schumacher, A., Kapranov, P., Kaminsky, Z., Flanagan, J., Assadzadeh, A., Yau, P., Virtanen, C., Winegarden, N., Cheng, J., Gingeras, T., and Petronis, A. Microarray-based DNA methylation profiling: technology and applications. Nucleic Acids Res, 34: 528–542, 2006.PubMedCrossRefGoogle Scholar
  131. 131.
    Lippman, Z., Gendrel, A. V., Colot, V., and Martienssen, R. Profiling DNA methylation patterns using genomic tiling microarrays. Nat Methods, 2: 219–224, 2005.PubMedCrossRefGoogle Scholar
  132. 132.
    Wang, R. Y., Gehrke, C. W., and Ehrlich, M. Comparison of bisulfite modification of 5-methyldeoxycytidine and deoxycytidine residues. Nucleic Acids Res, 8: 4777–4790, 1980.PubMedCrossRefGoogle Scholar
  133. 133.
    Clark, S. J., Harrison, J., Paul, C. L., and Frommer, M. High sensitivity mapping of methylated cytosines. Nucleic Acids Res, 22: 2990–2997, 1994.PubMedCrossRefGoogle Scholar
  134. 134.
    Frommer, M., McDonald, L. E., Millar, D. S., Collis, C. M., Watt, F., Grigg, G. W., Molloy, P. L., and Paul, C. L. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci USA, 89: 1827–1831, 1992.PubMedCrossRefGoogle Scholar
  135. 135.
    Herman, J. G., Graff, J. R., Myohanen, S., Nelkin, B. D., and Baylin, S. B. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci USA, 93: 9821–9826, 1996.PubMedCrossRefGoogle Scholar
  136. 136.
    Eads, C. A., Danenberg, K. D., Kawakami, K., Saltz, L. B., Blake, C., Shibata, D., Danenberg, P. V., and Laird, P. W. MethyLight: a high-throughput assay to measure DNA methylation. Nucleic Acids Res, 28: E32, 2000.PubMedCrossRefGoogle Scholar
  137. 137.
    Cottrell, S. E., Distler, J., Goodman, N. S., Mooney, S. H., Kluth, A., Olek, A., Schwope, I., Tetzner, R., Ziebarth, H., and Berlin, K. A real-time PCR assay for DNA-methylation using methylation-specific blockers. Nucleic Acids Res, 32: e10, 2004.PubMedCrossRefGoogle Scholar
  138. 138.
    Thomassin, H., Kress, C., and Grange, T. MethylQuant: a sensitive method for quantifying methylation of specific cytosines within the genome. Nucleic Acids Res, 32: e168, 2004.PubMedCrossRefGoogle Scholar
  139. 139.
    Xiong, Z. and Laird, P. W. COBRA: a sensitive and quantitative DNA methylation assay. Nucleic Acids Res, 25: 2532–2534, 1997.PubMedCrossRefGoogle Scholar
  140. 140.
    Gonzalgo, M. L. and Jones, P. A. Rapid quantitation of methylation differences at specific sites using methylation-sensitive single nucleotide primer extension (Ms-SNuPE). Nucleic Acids Res, 25: 2529–2531, 1997.PubMedCrossRefGoogle Scholar
  141. 141.
    Uhlmann, K., Brinckmann, A., Toliat, M. R., Ritter, H., and Nurnberg, P. Evaluation of a potential epigenetic biomarker by quantitative methyl-single nucleotide polymorphism analysis. Electrophoresis, 23: 4072–4079, 2002.PubMedCrossRefGoogle Scholar
  142. 142.
    Huang, T. H., Perry, M. R., and Laux, D. E. Methylation profiling of CpG islands in human breast cancer cells. Hum Mol Genet, 8: 459–470, 1999.PubMedCrossRefGoogle Scholar
  143. 143.
    Adorjan, P., Distler, J., Lipscher, E., Model, F., Muller, J., Pelet, C., Braun, A., Florl, A. R., Gutig, D., Grabs, G., Howe, A., Kursar, M., Lesche, R., Leu, E., Lewin, A., Maier, S., Muller, V., Otto, T., Scholz, C., Schulz, W. A., Seifert, H. H., Schwope, I., Ziebarth, H., Berlin, K., Piepenbrock, C., and Olek, A. Tumour class prediction and discovery by microarray-based DNA methylation analysis. Nucleic Acids Res, 30: e21, 2002.PubMedCrossRefGoogle Scholar
  144. 144.
    Gitan, R. S., Shi, H., Chen, C. M., Yan, P. S., and Huang, T. H. Methylation-specific oligonucleotide microarray: a new potential for high-throughput methylation analysis. Genome Res, 12: 158–164, 2002.PubMedCrossRefGoogle Scholar
  145. 145.
    Bibikova, M., Lin, Z., Zhou, L., Chudin, E., Garcia, E. W., Wu, B., Doucet, D., Thomas, N. J., Wang, Y., Vollmer, E., Goldmann, T., Seifart, C., Jiang, W., Barker, D. L., Chee, M. S., Floros, J., and Fan, J. B. High-throughput DNA methylation profiling using universal bead arrays. Genome Res, 16: 383–393, 2006.PubMedCrossRefGoogle Scholar
  146. 146.
    Ehrich, M., Nelson, M. R., Stanssens, P., Zabeau, M., Liloglou, T., Xinarianos, G., Cantor, C. R., Field, J. K., and van den Boom, D. Quantitative high-throughput analysis of DNA methylation patterns by base-specific cleavage and mass spectrometry. Proc Natl Acad Sci USA, 102: 15785–15790, 2005.PubMedCrossRefGoogle Scholar
  147. 147.
    Brock, G. J., Huang, T. H., Chen, C. M., and Johnson, K. J. A novel technique for the identification of CpG islands exhibiting altered methylation patterns (ICEAMP). Nucleic Acids Res, 29: E123, 2001.PubMedCrossRefGoogle Scholar
  148. 148.
    Shiraishi, M., Chuu, Y. H., and Sekiya, T. Isolation of DNA fragments associated with methylated CpG islands in human adenocarcinomas of the lung using a methylated DNA binding column and denaturing gradient gel electrophoresis. Proc Natl Acad Sci USA, 96: 2913–2918, 1999.PubMedCrossRefGoogle Scholar
  149. 149.
    Rauch, T. and Pfeifer, G. P. Methylated-CpG island recovery assay: a new technique for the rapid detection of methylated-CpG islands in cancer. Lab Invest, 85: 1172–1180,2005.Google Scholar
  150. 150.
    Weber, M., Davies, J. J., Wittig, D., Oakeley, E. J., Haase, M., Lam, W. L., and Schubeler, D. Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat Genet, 37: 853–862, 2005.PubMedCrossRefGoogle Scholar
  151. 151.
    Gebhard, C., Schwarzfischer, L., Pham, T. H., Andreesen, R., Mackensen, A., and Rehli, M. Rapid and sensitive detection of CpG-methylation using methyl-binding (MB)-PCR. Nucleic Acids Res, 34: e82, 2006.Google Scholar
  152. 152.
    Yegnasubramanian, S., Lin, X., Haffner, M. C., DeMarzo, A. M., and Nelson, W. G. Combination of methylated-DNA precipitation and methylation-sensitive restriction enzymes (COMPARE-MS) for the rapid, sensitive and quantitative detection of DNA methylation. Nucleic Acids Res, 34: e19, 2006.PubMedCrossRefGoogle Scholar
  153. 153.
    Rauch, T., Li, H., Wu, X., and Pfeifer, G. P. MIRA-assisted microarray analysis, a new technology for the determination of DNA methylation patterns, identifies frequent methylation of homeodomain-containing genes in lung cancer cells. Cancer Res, 66: 7939–7947, 2006.PubMedCrossRefGoogle Scholar
  154. 154.
    Gebhard, C., Schwarzfischer, L., Pham, T. H., Schilling, E., Klug, M., Andreesen, R., and Rehli, M. Genome-wide profiling of CpG methylation identifies novel targets of aberrant hypermethylation in myeloid leukemia. Cancer Res, 66: 6118–6128, 2006.PubMedCrossRefGoogle Scholar
  155. 155.
    Zhang, X., Yazaki, J., Sundaresan, A., Cokus, S., Chan, S. W., Chen, H., Henderson, I. R., Shinn, P., Pellegrini, M., Jacobsen, S. E., and Ecker, J. R. Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis. Cell, 126(6): 1189–201, 2006.PubMedCrossRefGoogle Scholar
  156. 156.
    Millar, D. S., Ow, K. K., Paul, C. L., Russell, P. J., Molloy, P. L., and Clark, S. J. Detailed methylation analysis of the glutathione S-transferase pi (GSTP1) gene in prostate cancer. Oncogene, 18: 1313–1324, 1999.PubMedCrossRefGoogle Scholar
  157. 157.
    Millar, D. S., Paul, C. L., Molloy, P. L., and Clark, S. J. A distinct sequence (ATAAA)n separates methylated and unmethylated domains at the 5′-end of the GSTP1 CpG island. J Biol Chem, 275: 24893–24899, 2000.PubMedCrossRefGoogle Scholar
  158. 158.
    Harden, S. V., Guo, Z., Epstein, J. I., and Sidransky, D. Quantitative GSTP1 methylation clearly distinguishes benign prostatic tissue and limited prostate adenocarcinoma. J Urol, 169: 1138–1142, 2003.PubMedCrossRefGoogle Scholar
  159. 159.
    Gonzalgo, M. L., Pavlovich, C. P., Lee, S. M., and Nelson, W. G. Prostate cancer detection by GSTP1 methylation analysis of postbiopsy urine specimens. Clin Cancer Res, 9: 2673–2677, 2003.PubMedGoogle Scholar
  160. 160.
    Gonzalgo, M. L., Nakayama, M., Lee, S. M., de Marzo, A. M., and Nelson, W. G. Detection of GSTP1 methylation in prostatic secretions using combinatorial MSP analysis. Urology, 63(2): 414–8, 2004.Google Scholar
  161. 161.
    Jeronimo, C., Henrique, R., Hoque, M. O., Ribeiro, F. R., Oliveira, J., Fonseca, D., Teixeira, M. R., Lopes, C., and Sidransky, D. Quantitative RARbeta2 hypermethylation: a promising prostate cancer marker. Clin Cancer Res, 10: 4010–4014, 2004.PubMedCrossRefGoogle Scholar
  162. 162.
    Liu, L., Yoon, J. H., Dammann, R., and Pfeifer, G. P. Frequent hypermethylation of the RASSF1A gene in prostate cancer. Oncogene, 21: 6835–6840, 2002.PubMedCrossRefGoogle Scholar
  163. 163.
    Zhang, J., Liu, L., and Pfeifer, G. P. Methylation of the retinoid response gene TIG1 in prostate cancer correlates with methylation of the retinoic acid receptor beta gene. Oncogene, 23: 2241–2249, 2004.PubMedCrossRefGoogle Scholar
  164. 164.
    Zhu, X., Leav, I., Leung, Y. K., Wu, M., Liu, Q., Gao, Y., McNeal, J. E., and Ho, S. M. Dynamic regulation of estrogen receptor-beta expression by DNA methylation during prostate cancer development and metastasis. Am J Pathol, 164: 2003–2012, 2004.PubMedGoogle Scholar
  165. 165.
    Nelson, J. B., Chan-Tack, K., Hedican, S. P., Magnuson, S. R., Opgenorth, T. J., Bova, G. S., and Simons, J. W. Endothelin-1 production and decreased endothelin B receptor expression in advanced prostate cancer. Cancer Res, 56: 663–668, 1996.PubMedGoogle Scholar
  166. 166.
    Nelson, J. B., Hedican, S. P., George, D. J., Reddi, A. H., Piantadosi, S., Eisenberger, M. A., and Simons, J. W. Identification of endothelin-1 in the pathophysiology of metastatic adenocarcinoma of the prostate. Nat Med, 1: 944–949, 1995.PubMedCrossRefGoogle Scholar
  167. 167.
    Nelson, J. B., Lee, W. H., Nguyen, S. H., Jarrard, D. F., Brooks, J. D., Magnuson, S. R., Opgenorth, T. J., Nelson, W. G., and Bova, G. S. Methylation of the 5′ CpG island of the endothelin B receptor gene is common in human prostate cancer. Cancer Res, 57: 35–37, 1997.PubMedGoogle Scholar
  168. 168.
    Nelson, J., Bagnato, A., Battistini, B., and Nisen, P. The endothelin axis: emerging role in cancer. Nat Rev Cancer, 3: 110–116, 2003.PubMedCrossRefGoogle Scholar
  169. 169.
    Guise, T. A., Yin, J. J., and Mohammad, K. S. Role of endothelin-1 in osteoblastic bone metastases. Cancer, 97: 779–784, 2003.PubMedCrossRefGoogle Scholar
  170. 170.
    Yin, J. J., Mohammad, K. S., Kakonen, S. M., Harris, S., Wu-Wong, J. R., Wessale, J. L., Padley, R. J., Garrett, I. R., Chirgwin, J. M., and Guise, T. A. A causal role for endothelin-1 in the pathogenesis of osteoblastic bone metastases. Proc Natl Acad Sci USA, 100: 10954–10959, 2003.PubMedCrossRefGoogle Scholar
  171. 171.
    Carducci, M. A., Nelson, J. B., Bowling, M. K., Rogers, T., Eisenberger, M. A., Sinibaldi, V., Donehower, R., Leahy, T. L., Carr, R. A., Isaacson, J. D., Janus, T. J., Andre, A., Hosmane, B. S., and Padley, R. J. Atrasentan, an endothelin-receptor antagonist for refractoryadenocarcinomas: safety and pharmacokinetics. J Clin Oncol, 20: 2171–2180, 2002.PubMedCrossRefGoogle Scholar
  172. 172.
    Carducci, M. A., Padley, R. J., Breul, J., Vogelzang, N. J., Zonnenberg, B. A., Daliani, D. D., Schulman, C. C., Nabulsi, A. A., Humerickhouse, R. A., Weinberg, M. A., Schmitt, J. L., and Nelson, J. B. Effect of endothelin-A receptor blockade with atrasentan on tumor progression in men with hormone-refractory prostate cancer: a randomized, phase II, placebo-controlled trial. J Clin Oncol, 21: 679–689, 2003.PubMedCrossRefGoogle Scholar
  173. 173.
    Kaminskas, E., Farrell, A., Abraham, S., Baird, A., Hsieh, L. S., Lee, S. L., Leighton, J. K., Patel, H., Rahman, A., Sridhara, R., Wang, Y. C., and Pazdur, R. Approval summary: azacitidine for treatment of myelodysplastic syndrome subtypes. Clin Cancer Res, 11: 3604–3608, 2005.PubMedCrossRefGoogle Scholar
  174. 174.
    Jones, P. A. and Taylor, S. M. Cellular differentiation, cytidine analogs and DNA methylation. Cell, 20: 85–93, 1980.PubMedCrossRefGoogle Scholar
  175. 175.
    Cheng, J. C., Matsen, C. B., Gonzales, F. A., Ye, W., Greer, S., Marquez, V. E., Jones, P. A., and Selker, E. U. Inhibition of DNA methylation and reactivation of silenced genes by zebularine. J Natl Cancer Inst, 95: 399–409, 2003.PubMedCrossRefGoogle Scholar
  176. 176.
    Lin, X., Asgari, K., Putzi, M. J., Gage, W. R., Yu, X., Cornblatt, B. S., Kumar, A., Piantadosi, S., DeWeese, T. L., de Marzo, A. M., and Nelson, W. G. Reversal of GSTP1 CpG island hypermethylation and reactivation of pi-class glutathione S-transferase (GSTP1) expression in human prostate cancer cells by treatment with procainamide. Cancer Res, 61: 8611–8616, 2001.PubMedGoogle Scholar
  177. 177.
    Segura-Pacheco, B., Trejo-Becerril, C., Perez-Cardenas, E., Taja-Chayeb, L., Mariscal, I., Chavez, A., Acuna, C., Salazar, A. M., Lizano, M., and Duenas-Gonzalez, A. Reactivation of tumor suppressor genes by the cardiovascular drugs hydralazine and procainamide and their potential use in cancer therapy. Clin Cancer Res, 9: 1596–1603,2003.Google Scholar
  178. 178.
    Santini, V., Kantarjian, H. M., and Issa, J. P. Changes in DNA methylation in neoplasia: pathophysiology and therapeutic implications. Ann Intern Med, 134: 573–586, 2001.PubMedGoogle Scholar
  179. 179.
    Juttermann, R., Li, E., and Jaenisch, R. Toxicity of 5-aza-2′-deoxycytidine to mammalian cells is mediated primarily by covalent trapping of DNA methyltransferase rather than DNA demethylation. Proc Natl Acad Sci USA, 91: 11797–11801, 1994.PubMedCrossRefGoogle Scholar
  180. 180.
    Yang, A. S., Doshi, K. D., Choi, S. W., Mason, J. B., Mannari, R. K., Gharybian, V., Luna, R., Rashid, A., Shen, L., Estecio, M. R., Kantarjian, H. M., Garcia-Manero, G., and Issa, J. P. DNA methylation changes after 5-aza-2′-deoxycytidine therapy in patients with leukemia. Cancer Res, 66: 5495–5503, 2006.PubMedCrossRefGoogle Scholar
  181. 181.
    Thibault, A., Figg, W. D., Bergan, R. C., Lush, R. M., Myers, C. E., Tompkins, A., Reed, E., and Samid, D. A phase II study of 5-aza-2′deoxycytidine (decitabine) in hormone independent metastatic (D2) prostate cancer. Tumori, 84: 87–89, 1998.PubMedGoogle Scholar
  182. 182.
    McCabe, M. T., Low, J. A., Daignault, S., Imperiale, M. J., Wojno, K. J., and Day, M. L. Inhibition of DNA methyltransferase activity prevents tumorigenesis in a mouse model of prostate cancer. Cancer Res, 66: 385–392, 2006.PubMedCrossRefGoogle Scholar
  183. 183.
    Jackson-Grusby, L., Laird, P. W., Magge, S. N., Moeller, B. J., and Jaenisch, R. Mutagenicity of 5-aza-2′-deoxycytidine is mediated by the mammalian DNA methyltransferase. Proc Natl Acad Sci USA, 94: 4681–4685, 1997.PubMedCrossRefGoogle Scholar
  184. 184.
    Scheinbart, L. S., Johnson, M. A., Gross, L. A., Edelstein, S. R., and Richardson, B. C. Procainamide inhibits DNA methyltransferase in a human T cell line. J Rheumatol, 18: 530–534, 1991.PubMedGoogle Scholar
  185. 185.
    Cornacchia, E., Golbus, J., Maybaum, J., Strahler, J., Hanash, S., and Richardson, B. Hydralazine and procainamide inhibit T cell DNA methylation and induce autoreactivity. J Immunol, 140: 2197–2200, 1988.PubMedGoogle Scholar
  186. 186.
    Lee, B. H., Yegnasubramanian, S., Lin, X., and Nelson, W. G. Procainamide is a specific inhibitor of DNA methyltransferase 1. J Biol Chem, 280: 40749–40756, 2005.PubMedCrossRefGoogle Scholar
  187. 187.
    Quddus, J., Johnson, K. J., Gavalchin, J., Amento, E. P., Chrisp, C. E., Yung, R. L., and Richardson, B. C. Treating activated CD4+ T cells with either of two distinct DNA methyltransferase inhibitors, 5-azacytidine or procainamide, is sufficient to cause a lupus-like disease in syngeneic mice. J Clin Invest, 92: 38–53, 1993.PubMedCrossRefGoogle Scholar
  188. 188.
    Kelly, W. K., Richon, V. M., O’Connor, O., Curley, T., MacGregor-Curtelli, B., Tong, W., Klang, M., Schwartz, L., Richardson, S., Rosa, E., Drobnjak, M., Cordon-Cordo, C., Chiao, J. H., Rifkind, R., Marks, P. A., and Scher, H. Phase I clinical trial of histone deacetylase inhibitor: suberoylanilide hydroxamic acid administered intravenously. Clin Cancer Res, 9: 3578–3588, 2003.PubMedGoogle Scholar
  189. 189.
    Carducci, M. A., Gilbert, J., Bowling, M. K., Noe, D., Eisenberger, M. A., Sinibaldi, V., Zabelina, Y., Chen, T. L., Grochow, L. B., and Donehower, R. C. A Phase I clinical and pharmacological evaluation of sodium phenylbutyrate on an 120-h infusion schedule. Clin Cancer Res, 7: 3047–3055, 2001.PubMedGoogle Scholar
  190. 190.
    Carducci, M. A., Nelson, J. B., Chan-Tack, K. M., Ayyagari, S. R., Sweatt, W. H., Campbell, P. A., Nelson, W. G., and Simons, J. W. Phenylbutyrate induces apoptosis in human prostate cancer and is more potent than phenylacetate. Clin Cancer Res, 2: 379–387, 1996.PubMedGoogle Scholar
  191. 191.
    Gilbert, J., Baker, S. D., Bowling, M. K., Grochow, L., Figg, W. D., Zabelina, Y., Donehower, R. C., and Carducci, M. A. A phase I dose escalation and bioavailability study of oral sodium phenylbutyrate in patients with refractory solid tumor malignancies. Clin Cancer Res, 7: 2292–2300, 2001.PubMedGoogle Scholar
  192. 192.
    Rokhlin, O. W., Glover, R. B., Guseva, N. V., Taghiyev, A. F., Kohlgraf, K. G., and Cohen, M. B. Mechanisms of cell death induced by histone deacetylase inhibitors in androgen receptor-positive prostate cancer cells. Mol Cancer Res, 4: 113–123, 2006.PubMedCrossRefGoogle Scholar
  193. 193.
    Qian, D. Z., Kato, Y., Shabbeer, S., Wei, Y., Verheul, H. M., Salumbides, B., Sanni, T., Atadja, P., and Pili, R. Targeting tumor angiogenesis with histone deacetylase inhibitors: the hydroxamic acid derivative LBH589. Clin Cancer Res, 12: 634–642, 2006.PubMedCrossRefGoogle Scholar
  194. 194.
    Camphausen, K., Scott, T., Sproull, M., and Tofilon, P. J. Enhancement of xenograft tumor radiosensitivity by the histone deacetylase inhibitor MS-275 and correlation with histone hyperacetylation. Clin Cancer Res, 10: 6066–6071, 2004.PubMedCrossRefGoogle Scholar
  195. 195.
    Fronsdal, K. and Saatcioglu, F. Histone deacetylase inhibitors differentially mediate apoptosis in prostate cancer cells. Prostate, 62: 299–306, 2005.PubMedCrossRefGoogle Scholar
  196. 196.
    Qian, D. Z., Wang, X., Kachhap, S. K., Kato, Y., Wei, Y., Zhang, L., Atadja, P., and Pili, R. The histone deacetylase inhibitor NVP-LAQ824 inhibits angiogenesis and has a greater antitumor effect in combination with the vascular endothelial growth factor receptor tyrosine kinase inhibitor PTK787/ZK222584. Cancer Res, 64: 6626–6634, 2004.PubMedCrossRefGoogle Scholar
  197. 197.
    Camphausen, K., Burgan, W., Cerra, M., Oswald, K. A., Trepel, J. B., Lee, M. J., and Tofilon, P. J. Enhanced radiation-induced cell killing and prolongation of gammaH2AX foci expression by the histone deacetylase inhibitor MS-275. Cancer Res, 64: 316–321, 2004.PubMedCrossRefGoogle Scholar
  198. 198.
    Rashid, S. F., Moore, J. S., Walker, E., Driver, P. M., Engel, J., Edwards, C. E., Brown, G., Uskokovic, M. R., and Campbell, M. J. Synergistic growth inhibition of prostate cancer cells by 1 alpha,25 Dihydroxyvitamin D(3) and its 19-nor-hexafluoride analogs in combination with either sodium butyrate or trichostatin A. Oncogene, 20: 1860–1872, 2001.PubMedCrossRefGoogle Scholar
  199. 199.
    Butler, L. M., Webb, Y., Agus, D. B., Higgins, B., Tolentino, T. R., Kutko, M. C., LaQuaglia, M. P., Drobnjak, M., Cordon-Cardo, C., Scher, H. I., Breslow, R., Richon, V. M., Rifkind, R. A., and Marks, P. A. Inhibition of transformed cell growth and induction of cellular differentiation by pyroxamide, an inhibitor of histone deacetylase. Clin Cancer Res, 7: 962–970, 2001.PubMedGoogle Scholar
  200. 200.
    Butler, L. M., Agus, D. B., Scher, H. I., Higgins, B., Rose, A., Cordon-Cardo, C., Thaler, H. T., Rifkind, R. A., Marks, P. A., and Richon, V. M. Suberoylanilide hydroxamic acid, an inhibitor of histone deacetylase, suppresses the growth of prostate cancer cells in vitro and in vivo. Cancer Res, 60: 5165–5170, 2000.PubMedGoogle Scholar
  201. 201.
    Cameron, E. E., Bachman, K. E., Myohanen, S., Herman, J. G., and Baylin, S. B. Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat Genet, 21: 103–107, 1999.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press 2008

Authors and Affiliations

  • Srinivasan Yegnasubramanian
  • William G. Nelson

There are no affiliations available

Personalised recommendations