New Perspectives in Prediction of Clinical Outcome of Prostate Cancer

TMPRSS2–ETS Gene Fusion in Prostate Cancer
  • Mark A. Rubin
Part of the Current Clinical Oncology book series (CCO)

Keywords

Prostate Cancer Chronic Myeloid Leukemia Prostate Cancer Sample TMPRSS2 Expression Radical Prostatectomy Series 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tomlins SA, Rhodes DR, Perner S, et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 2005;310(5748):644–8.PubMedCrossRefGoogle Scholar
  2. 2.
    Perner S, Demichelis F, Beroukhim R, et al. TMPRSS2:ERG fusion-associated deletions provide insight into the heterogeneity of prostate cancer. Cancer Res 2006;66(17):8337–41.PubMedCrossRefGoogle Scholar
  3. 3.
    Tomlins SA, Mehra R, Rhodes DR, et al. TMPRSS2:ETV4 gene fusions define a third molecular subtype of prostate cancer. Cancer Res 2006;66(7):3396–400.PubMedCrossRefGoogle Scholar
  4. 4.
    Perner S, Mosquera JM, Demichelis F, et al. TMPRSS2-ERG fusion prostate cancer: an early molecular event associated with invasion. Am J Surg Pathol 2007;31(6):882–8.PubMedCrossRefGoogle Scholar
  5. 5.
    Mosquera JM, Perner S, Demichelis F, et al. Morphological features of TMPRSS2–ERG gene fusion prostate cancer. J Pathol 2007.Google Scholar
  6. 6.
    Demichelis F, Fall K, Perner S, et al. TMPRSS2:ERG gene fusion associated with lethal prostate cancer in a watchful waiting cohort. Oncogene 2007.Google Scholar
  7. 7.
    Wang J, Cai Y, Ren C, Ittmann M. Expression of variant TMPRSS2/ERG fusion messenger RNAs is associated with aggressive prostate cancer. Cancer Res 2006;66(17):8347–51.PubMedCrossRefGoogle Scholar
  8. 8.
    Rubin MA, Chinnaiyan AM. Bioinformatics approach leads to the discovery of the TMPRSS2:ETS gene fusion in prostate cancer. Lab Invest 2006.Google Scholar
  9. 9.
    Sharrocks AD. The ETS-domain transcription factor family. Nat Rev Mol Cell Biol 2001;2(11):827–37.PubMedCrossRefGoogle Scholar
  10. 10.
    Arvand A, Denny CT. Biology of EWS/ETS fusions in Ewing’s family tumors. Oncogene 2001;20(40):5747–54.PubMedCrossRefGoogle Scholar
  11. 11.
    Sementchenko VI, Watson DK. Ets target genes: past, present and future. Oncogene 2000;19(55):6533–48.PubMedCrossRefGoogle Scholar
  12. 12.
    Gavrilov D, Kenzior O, Evans M, Calaluce R, Folk WR. Expression of urokinase plasminogen activator and receptor in conjunction with the ets family and AP-1 complex transcription factors in high grade prostate cancers. Eur J Cancer 2001;37(8):1033–40.PubMedCrossRefGoogle Scholar
  13. 13.
    Petrovics G, Liu A, Shaheduzzaman S, et al. Frequent overexpression of ETS-related gene-1 (ERG1) in prostate cancer transcriptome. Oncogene 2005;24(23):3847–52.PubMedCrossRefGoogle Scholar
  14. 14.
    Dhanasekaran SM, Barrette TR, Ghosh D, et al. Delineation of prognostic biomarkers in prostate cancer. Nature 2001;412(6849):822–6.PubMedCrossRefGoogle Scholar
  15. 15.
    Lin B, Ferguson C, White JT, et al. Prostate-localized and androgen-regulated expression of the membrane-bound serine protease TMPRSS2. Cancer Res 1999;59(17):4180–4.PubMedGoogle Scholar
  16. 16.
    Vaarala MH, Porvari K, Kyllonen A, Lukkarinen O, Vihko P. The TMPRSS2 gene encoding transmembrane serine protease is overexpressed in a majority of prostate cancer patients: detection of mutated TMPRSS2 form in a case of aggressive disease. Int J Cancer 2001;94(5):705–10.PubMedCrossRefGoogle Scholar
  17. 17.
    Afar DE, Vivanco I, Hubert RS, et al. Catalytic cleavage of the androgen-regulated TMPRSS2 protease results in its secretion by prostate and prostate cancer epithelia. Cancer Res 2001;61(4):1686–92.PubMedGoogle Scholar
  18. 18.
    Kim TS, Heinlein C, Hackman RC, Nelson PS. Phenotypic analysis of mice lacking the Tmprss2-encoded protease. Mol Cell Biol 2006;26(3):965–75.PubMedCrossRefGoogle Scholar
  19. 19.
    Yoshimoto M, Joshua AM, Chilton-Macneill S, et al. Three-color FISH analysis of TMPRSS2/ERG fusions in prostate cancer indicates that genomic microdeletion of chromosome 21 is associated with rearrangement. Neoplasia 2006;8(6):465–9.PubMedCrossRefGoogle Scholar
  20. 20.
    Soller MJ, Isaksson M, Elfving P, Soller W, Lundgren R, Panagopoulos I. Confirmation of the high frequency of the TMPRSS2/ERG fusion gene in prostate cancer. Genes Chromosomes Cancer 2006.Google Scholar
  21. 21.
    Korenchuk S, Lehr JE, L MC et al. VCaP, a cell-based model system of human prostate cancer. In Vivo 2001;15(2):163–8.PubMedGoogle Scholar
  22. 22.
    Pear WS, Miller JP, Xu L, et al. Efficient and rapid induction of a chronic myelogenous leukemia-like myeloproliferative disease in mice receiving P210 bcr/abl-transduced bone marrow. Blood 1998;92(10):3780–92.PubMedGoogle Scholar
  23. 23.
    Huettner CS, Zhang P, Van Etten RA, Tenen DG. Reversibility of acute B-cell leukaemia induced by BCR-ABL1. Nat Genet 2000;24(1):57–60.PubMedCrossRefGoogle Scholar
  24. 24.
    Huntly BJ, Reid AG, Bench AJ, et al. Deletions of the derivative chromosome 9 occur at the time of the Philadelphia translocation and provide a powerful and independent prognostic indicator in chronic myeloid leukemia. Blood 2001;98(6):1732–8.PubMedCrossRefGoogle Scholar
  25. 25.
    Sinclair PB, Nacheva EP, Leversha M, et al. Large deletions at the t(9;22) breakpoint are common and may identify a poor-prognosis subgroup of patients with chronic myeloid leukemia. Blood 2000;95(3):738–43.PubMedGoogle Scholar
  26. 26.
    Grand F, Kulkarni S, Chase A, Goldman JM, Gordon M, Cross NC. Frequent deletion of hSNF5/INI1, a component of the SWI/SNF complex, in chronic myeloid leukemia. Cancer Res 1999;59(16):3870–4.PubMedGoogle Scholar
  27. 27.
    Herens C, Tassin F, Lemaire V, et al. Deletion of the 5′-ABL region: a recurrent anomaly detected by fluorescence in situ hybridization in about 10% of Philadelphia-positive chronic myeloid leukaemia patients. Br J Haematol 2000;110(1):214–6.PubMedCrossRefGoogle Scholar
  28. 28.
    Kolomietz E, Al-Maghrabi J, Brennan S, et al. Primary chromosomal rearrangements of leukemia are frequently accompanied by extensive submicroscopic deletions and may lead to altered prognosis. Blood 2001;97(11):3581–8.PubMedCrossRefGoogle Scholar
  29. 29.
    Huntly BJ, Bench AJ, Delabesse E, et al. Derivative chromosome 9 deletions in chronic myeloid leukemia: poor prognosis is not associated with loss of ABL-BCR expression, elevated BCR-ABL levels, or karyotypic instability. Blood 2002;99(12):4547–53.PubMedCrossRefGoogle Scholar
  30. 30.
    Delattre O, Zucman J, Melot T, et al. The Ewing family of tumors—a subgroup of small-round-cell tumors defined by specific chimeric transcripts. N Engl J Med 1994;331(5):294–9.PubMedCrossRefGoogle Scholar
  31. 31.
    Johansson JE, Adami HO, Andersson SO, Bergstrom R, Holmberg L, Krusemo UB. High 10-year survival rate in patients with early, untreated prostatic cancer. JAMA 1992;267(16):2191–6.PubMedCrossRefGoogle Scholar
  32. 32.
    Johansson JE, Holmberg L, Johansson S, Bergstrom R, Adami HO. Fifteen-year survival in prostate cancer. A prospective, population-based study in Sweden. JAMA 1997;277(6):467–71.PubMedCrossRefGoogle Scholar
  33. 33.
    Johansson JE, Adami HO, Andersson SO, Bergstrom R, Krusemo UB, Kraaz W. Natural history of localised prostatic cancer. A population-based study in 223 untreated patients. Lancet 1989;1(8642):799–803.PubMedCrossRefGoogle Scholar
  34. 34.
    Johansson JE, Andren O, Andersson SO, et al. Natural history of early, localized prostate cancer. JAMA 2004;291(22):2713–9.PubMedCrossRefGoogle Scholar
  35. 35.
    Andren O, Fall K, Franzen L, Andersson SO, Johansson JE, Rubin MA. How well does the Gleason score predict prostate cancer death? A 20-year followup of a population based cohort in Sweden. J Urol 2006;175(4):1337–40.PubMedCrossRefGoogle Scholar
  36. 36.
    Marcucci G, Baldus CD, Ruppert AS, et al. Overexpression of the ETS-related gene, ERG, predicts a worse outcome in acute myeloid leukemia with normal karyotype: a Cancer and Leukemia Group B study. J Clin Oncol 2005;23(36):9234–42.PubMedCrossRefGoogle Scholar
  37. 37.
    Porter CR, Kodama K, Gibbons RP, et al. 25-year prostate cancer control and survival outcomes: a 40-year radical prostatectomy single institution series. J Urol 2006;176(2):569–74.PubMedCrossRefGoogle Scholar
  38. 38.
    Carver BS, Bianco FJ, Jr., Scardino PT, Eastham JA. Long-term outcome following radical prostatectomy in men with clinical stage T3 prostate cancer. J Urol 2006;176(2):564–8.PubMedCrossRefGoogle Scholar
  39. 39.
    Ward JF, Blute ML, Slezak J, Bergstralh EJ, Zincke H. The long-term clinical impact of biochemical recurrence of prostate cancer 5 or more years after radical prostatectomy. J Urol 2003;170(5):1872–6.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press 2008

Authors and Affiliations

  • Mark A. Rubin

There are no affiliations available

Personalised recommendations