Skip to main content

Postprandial Hyperglycemia

  • Chapter
Type 2 Diabetes Mellitus

Part of the book series: Contemporary Endocrinology ((COE))

  • 3778 Accesses

summary

In healthy individuals, blood glucose levels in the fasting state are maintained by basal insulin secretion. After a meal, the rise in postprandial glucose (PPG) is controlled by the rapid release of insulin, stimulated by both glucose and the intestinal production of incretin hormones. In diabetic individuals, postprandial insulin secretion is insufficient, resulting in postprandial hyperglycemia (PPHG). Sustained hyperglycemia results in“glucotoxicity,” that results in progressively irreversible ss-cell dysfunction. There is increasing evidence that PPHG exerts a more deleterious effect on endothelial function and the vascular system, than elevation of fasting plasma glucose (FPG). In particular, individuals with normal FPG but impaired glucose tolerance (IGT) have significantly increased risk of cardiovascular events. With the recognition of the importance of PPHG and the availability of new pharmacologic options, management of diabetes will shift to greater attention to PPG levels. Currently, there are many approaches to tackle PPHG; dietary management and promotion of exercise are very effective. In particular, meglitinides, disaccharidase inhibitors, sulfonylureas and short acting insulin analogues are particularly suited to treat PPHG. The development of glucagon-like peptide 1 (GLP-1) agonists such as exendin and dipeptidyl peptidase IV (DPP-IV) inhibitors such as vildagliptin holds great promise as additional agents in achieving stringent control of PPG. There is an urgent need for the conduct of randomized controlled trials with long term follow-up, and these studies ought to be powered to study the effect of a variety of therapeutic agents that modify PPG levels, on multiple morbidity endpoints and mortality, in individuals with prediabetes, T1DM and T2 DM. Until such data is available, routine monitoring of PPG levels with a view to impact diabetic outcomes cannot be recommended.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. McMahon M, Marsh H, Rizza R. Comparison of the pattern of postprandial carbohydrate metabolism after ingestion of a glucose drink or a mixed meal. J Clin Endocrinol Metab. Mar 1989;68(3):647–653.

    CAS  Google Scholar 

  2. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33).UK Prospective Diabetes Study (UKPDS) Group. Lancet. Sep 12 1998;352(9131):837–853.

    Google Scholar 

  3. American, Diabetes, Association.Postprandial blood glucose. . Diabetes care. Apr 2001;24(4):775–778.

    Article  Google Scholar 

  4. Gerich JE.Clinical significance, pathogenesis, and management of postprandial hyperglycemia. Arch Intern Med. Jun 9 2003;163(11):1306–1316.

    Google Scholar 

  5. Woerle HJ, Pimenta WP, Meyer C et al.Diagnostic and therapeutic implications of relationships between fasting, 2-hour postchallenge plasma glucose and hemoglobin a1c values. Arch Intern Med. Aug 9–23 2004;164(15):1627–1632.

    Article  CAS  Google Scholar 

  6. Woerle HJ, Meyer C, Dostou JM et al.Pathways for glucose disposal after meal ingestion in humans. American journal of physiology. Apr 2003;284(4):E716–725.

    CAS  Google Scholar 

  7. Brunzell JD, Robertson RP, Lerner RL et al.Relationships between fasting plasma glucose levels and insulin secretion during intravenous glucose tolerance tests. J Clin Endocrinol Metab. Feb 1976;42(2):222–229.

    Article  CAS  Google Scholar 

  8. Bruce DG, Chisholm DJ, Storlien LH, Kraegen EW.Physiological importance of deficiency in early prandial insulin secretion in non-insulin-dependent diabetes. Diabetes. Jun 1988;37(6):736–744.

    Article  CAS  Google Scholar 

  9. Poitout V, Robertson RP.Minireview: Secondary beta-cell failure in type 2 diabetes–a convergence of glucotoxicity and lipotoxicity. Endocrinology. Feb 2002;143(2):339–342.

    Article  CAS  Google Scholar 

  10. Sako Y, Grill VE.Coupling of beta-cell desensitization by hyperglycemia to excessive stimulation and circulating insulin in glucose-infused rats. Diabetes. Dec 1990;39(12):1580–1583.

    Article  CAS  Google Scholar 

  11. Leahy JL, Bumbalo LM, Chen C.Diazoxide causes recovery of beta-cell glucose responsiveness in 90% pancreatectomized diabetic rats. Diabetes. Feb 1994;43(2):173–179.

    Article  CAS  Google Scholar 

  12. Moran A, Zhang HJ, Olson LK, Harmon JS, Poitout V, Robertson RP.Differentiation of glucose toxicity from beta cell exhaustion during the evolution of defective insulin gene expression in the pancreatic islet cell line, HIT-T15. J Clin Invest. Feb 1 1997;99(3): 534–539.

    Article  CAS  Google Scholar 

  13. Gleason CE, Gonzalez M, Harmon JS, Robertson RP.Determinants of glucose toxicity and its reversibility in the pancreatic islet beta-cell line, HIT-T15. Am J Physiol Endocrinol Metab. Nov 2000;279(5):E997–1002.

    CAS  Google Scholar 

  14. Pick A, Clark J, Kubstrup C et al.Role of apoptosis in failure of beta-cell mass compensation for insulin resistance and beta-cell defects in the male Zucker diabetic fatty rat. Diabetes. Mar 1998;47(3):358–364.

    Article  CAS  Google Scholar 

  15. Donath MY, Gross DJ, Cerasi E, Kaiser N.Hyperglycemia-induced beta-cell apoptosis in pancreatic islets of Psammomys obesus during development of diabetes. Diabetes. Apr 1999;48(4):738–744.

    Article  CAS  Google Scholar 

  16. Bonner-Weir S, Trent DF, Honey RN, Weir GC.Responses of neonatal rat islets to streptozotocin: limited B-cell regeneration and hyperglycemia. Diabetes. Jan 1981;30(1):64–69.

    Article  CAS  Google Scholar 

  17. Bonner-Weir S, Trent DF, Weir GC.Partial pancreatectomy in the rat and subsequent defect in glucose-induced insulin release. J Clin Invest. Jun 1983;71(6):1544–1553.

    Article  CAS  Google Scholar 

  18. Leahy JL, Weir GC.Evolution of abnormal insulin secretory responses during 48-h in vivo hyperglycemia. Diabetes. Feb 1988; 37(2):217–222.

    Article  CAS  Google Scholar 

  19. Rossetti L, Shulman GI, Zawalich W, DeFronzo RA.Effect of chronic hyperglycemia on in vivo insulin secretion in partially pancreatectomized rats. J Clin Invest. Oct 1987;80(4):1037–1044.

    Article  CAS  Google Scholar 

  20. Rossetti L, Smith D, Shulman GI, Papachristou D, DeFronzo RA.Correction of hyperglycemia with phlorizin normalizes tissue sensitivity to insulin in diabetic rats. J Clin Invest. May 1987;79(5):1510–1515.

    Article  CAS  Google Scholar 

  21. Kosaka K, Kuzuya T, Akanuma Y, Hagura R.Increase in insulin response after treatment of overt maturity-onset diabetes is independent of the mode of treatment. Diabetologia. Jan 1980;18(1):23–28.

    Article  CAS  Google Scholar 

  22. Yki-Jarvinen H, Helve E, Koivisto VA.Hyperglycemia decreases glucose uptake in type I diabetes. Diabetes. Aug 1987;36(8): 892–896.

    Article  CAS  Google Scholar 

  23. Most RS, Sinnock P.The epidemiology of lower extremity amputations in diabetic individuals. Diabetes Care. Jan-Feb 1983;6(1): 87–91.

    Article  CAS  Google Scholar 

  24. Kaiser N, Sasson S, Feener EP et al.Differential regulation of glucose transport and transporters by glucose in vascular endothelial and smooth muscle cells. Diabetes. Jan 1993;42(1):80–89.

    Article  CAS  Google Scholar 

  25. Du X, Matsumura T, Edelstein D et al.Inhibition of GAPDH activity by poly(ADP-ribose) polymerase activates three major pathways of hyperglycemic damage in endothelial cells. J Clin Invest. Oct 2003;112(7):1049–1057.

    CAS  Google Scholar 

  26. Austin MA, King MC, Vranizan KM, Krauss RM.Atherogenic lipoprotein phenotype. A proposed genetic marker for coronary heart disease risk. Circulation. Aug 1990;82(2):495–506.

    CAS  Google Scholar 

  27. Austin MA, Breslow JL, Hennekens CH, Buring JE, Willett WC, Krauss RM.Low-density lipoprotein subclass patterns and risk of myocardial infarction. Jama. Oct 7 1988;260(13):1917–1921.

    Article  CAS  Google Scholar 

  28. Campos H, Genest JJ, Jr., Blijlevens E et al.Low density lipoprotein particle size and coronary artery disease. Arterioscler Thromb. Feb 1992;12(2):187–195.

    CAS  Google Scholar 

  29. Lee Y, Hirose H, Ohneda M, Johnson JH, McGarry JD, Unger RH.Beta-cell lipotoxicity in the pathogenesis of non-insulin-dependent diabetes mellitus of obese rats: impairment in adipocyte-beta-cell relationships. Proc Natl Acad Sci U S A. Nov 8 1994;91(23):10,878–10,882.

    Google Scholar 

  30. Unger RH, Zhou YT.Lipotoxicity of beta-cells in obesity and in other causes of fatty acid spillover. Diabetes. Feb 2001;50 Suppl 1:S118–121.

    Article  CAS  Google Scholar 

  31. Listenberger LL, Ory DS, Schaffer JE.Palmitate-induced apoptosis can occur through a ceramide-independent pathway. J Biol Chem. May 4 2001;276(18):14,890–14,895.

    Google Scholar 

  32. Shimabukuro M, Higa M, Zhou YT, Wang MY, Newgard CB, Unger RH.Lipoapoptosis in beta-cells of obese prediabetic fa/fa rats. Role of serine palmitoyltransferase overexpression. J Biol Chem. Dec 4 1998;273(49): 32,487–32,490.

    Google Scholar 

  33. Shimabukuro M, Ohneda M, Lee Y, Unger RH.Role of nitric oxide in obesity-induced beta cell disease. J Clin Invest. Jul 15 1997;100(2):290–295.

    Article  CAS  Google Scholar 

  34. Hardy S, Langelier Y, Prentki M.Oleate activates phosphatidylinositol 3-kinase and promotes proliferation and reduces apoptosis of MDA-MB-231 breast cancer cells, whereas palmitate has opposite effects. Cancer Res. Nov 15 2000;60(22):6353–6358.

    CAS  Google Scholar 

  35. Ostrander DB, Sparagna GC, Amoscato AA, McMillin JB, Dowhan W.Decreased cardiolipin synthesis corresponds with cytochrome c release in palmitate-induced cardiomyocyte apoptosis. J Biol Chem. Oct 12 2001;276(41):38,061–38,067.

    Google Scholar 

  36. Shimabukuro M, Wang MY, Zhou YT, Newgard CB, Unger RH.Protection against lipoapoptosis of beta cells through leptin-dependent maintenance of Bcl-2 expression. Proc Natl Acad Sci U S A. Aug 4 1998;95(16):9558–9561.

    Article  CAS  Google Scholar 

  37. Shimabukuro M, Zhou YT, Levi M, Unger RH.Fatty acid-induced beta cell apoptosis: a link between obesity and diabetes. Proc Natl Acad Sci U S A. Mar 3 1998;95(5):2498–2502.

    Article  CAS  Google Scholar 

  38. Kim Y, Tamura T, Iwashita S, Tokuyama K, Suzuki M.Effect of high-fat diet on gene expression of GLUT4 and insulin receptor in soleus muscle. Biochem Biophys Res Commun. Jul 15 1994;202(1):519–526.

    Article  CAS  Google Scholar 

  39. Boden G, Shulman GI.Free fatty acids in obesity and type 2 diabetes: defining their role in the development of insulin resistance and beta-cell dysfunction. Eur J Clin Invest. Jun 2002;32 Suppl 3:14–23.

    Google Scholar 

  40. Roden M, Price TB, Perseghin G et al.Mechanism of free fatty acid-induced insulin resistance in humans. J Clin Invest. Jun 15 1996;97(12):2859–2865.

    Article  CAS  Google Scholar 

  41. Prentki M, Corkey BE.Are the beta-cell signaling molecules malonyl-CoA and cystolic long-chain acyl-CoA implicated in multiple tissue defects of obesity and NIDDM? Diabetes. Mar 1996;45(3):273–283.

    Article  CAS  Google Scholar 

  42. McGarry JD. What if Minkowski had been ageusic? An alternative angle on diabetes. Science. Oct 30 1992;258(5083):766–770.

    Google Scholar 

  43. Ruderman NB, Saha AK, Vavvas D, Witters LA.Malonyl-CoA, fuel sensing, and insulin resistance. Am J Physiol. Jan 1999;276 (1 Pt 1):E1–E18.

    Google Scholar 

  44. Kraegen EW, Cooney GJ, Ye JM, Thompson AL, Furler SM.The role of lipids in the pathogenesis of muscle insulin resistance and beta cell failure in type II diabetes and obesity. Exp Clin Endocrinol Diabetes. 2001;109 Suppl 2:S189–201.

    Article  PubMed  CAS  Google Scholar 

  45. Ceriello A, Quagliaro L, Piconi L et al.Effect of postprandial hypertriglyceridemia and hyperglycemia on circulating adhesion molecules and oxidative stress generation and the possible role of simvastatin treatment. Diabetes. Mar 2004;53(3):701–710.

    Article  CAS  Google Scholar 

  46. Raab M, Daxecker H, Markovic S, Karimi A, Griesmacher A, Mueller MM.Variation of adhesion molecule expression on human umbilical vein endothelial cells upon multiple cytokine application. Clin Chim Acta. Jul 2002;321(1–2):11–16.

    CAS  Google Scholar 

  47. Ridker PM, Hennekens CH, Roitman-Johnson B, Stampfer MJ, Allen J.Plasma concentration of soluble intercellular adhesion molecule 1 and risks of future myocardial infarction in apparently healthy men. Lancet. Jan 10 1998;351(9096):88–92.

    Article  PubMed  CAS  Google Scholar 

  48. Avignon A, Radauceanu A, Monnier L.Nonfasting plasma glucose is a better marker of diabetic control than fasting plasma glucose in type 2 diabetes. Diabetes care. Dec 1997;20(12):1822–1826.

    Article  CAS  Google Scholar 

  49. Monnier L, Lapinski H, Colette C.Contributions of fasting and postprandial plasma glucose increments to the overall diurnal hyperglycemia of type 2 diabetic patients: variations with increasing levels of HbA(1c). Diabetes care. Mar 2003;26(3):881–885.

    Article  Google Scholar 

  50. El-Kebbi IM, Ziemer DC, Cook CB, Gallina DL, Barnes CS, Phillips LS.Utility of casual postprandial glucose levels in type 2 diabetes management. Diabetes Care. Feb 2004;27(2):335–339.

    Article  Google Scholar 

  51. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus.The Diabetes Control and Complications Trial Research Group. N Engl J Med. Sep 30 1993;329(14):977–986.

    Google Scholar 

  52. Reichard P, Nilsson BY, Rosenqvist U.The effect of long-term intensified insulin treatment on the development of microvascular complications of diabetes mellitus. N Engl J Med. Jul 29 1993;329(5):304–309.

    Article  CAS  Google Scholar 

  53. Ohkubo Y, Kishikawa H, Araki E et al. Intensive insulin therapy prevents the progression of diabetic microvascular complications in Japanese patients with non-insulin-dependent diabetes mellitus: a randomized prospective 6-year study. Diabetes Res Clin Pract. May 1995;28(2):103–117.

    Google Scholar 

  54. Coutinho M, Gerstein HC, Wang Y, Yusuf S. The relationship between glucose and incident cardiovascular events.A metaregression analysis of published data from 20 studies of 95,783 individuals followed for 12.4 years. Diabetes Care. Feb 1999;22(2):233–240.

    Google Scholar 

  55. Khaw KT, Wareham N, Luben R et al.Glycated haemoglobin, diabetes, and mortality in men in Norfolk cohort of European Prospective Investigation of Cancer and Nutrition (EPIC-Norfolk). Bmj. Jan 6 2001;322(7277):15–18.

    Article  CAS  Google Scholar 

  56. Kuusisto J, Mykkanen L, Pyorala K, Laakso M.NIDDM and its metabolic control predict coronary heart disease in elderly subjects. Diabetes. Aug 1994;43(8):960–967.

    Article  CAS  Google Scholar 

  57. Hu FB, Stampfer MJ, Haffner SM, Solomon CG, Willett WC, Manson JE.Elevated risk of cardiovascular disease prior to clinical diagnosis of type 2 diabetes. Diabetes Care. Jul 2002;25(7):1129–1134.

    Article  Google Scholar 

  58. Stratton IM, Adler AI, Neil HA et al.Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. Bmj. Aug 12 2000;321(7258):405–412.

    CAS  Google Scholar 

  59. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34).UK Prospective Diabetes Study (UKPDS) Group. Lancet. Sep 12 1998;352(9131):854–865.

    Google Scholar 

  60. Abraira C, Colwell J, Nuttall F et al.Cardiovascular events and correlates in the Veterans Affairs Diabetes Feasibility Trial. Veterans Affairs Cooperative Study on Glycemic Control and Complications in Type II Diabetes.Arch Intern Med. Jan 27 1997;157(2):181–188.

    Google Scholar 

  61. Meigs JB, Singer DE, Sullivan LM et al.Metabolic control and prevalent cardiovascular disease in non-insulin-dependent diabetes mellitus (NIDDM): The NIDDM Patient Outcome Research Team. Am J Med. Jan 1997;102(1):38–47.

    Article  CAS  Google Scholar 

  62. DECODE Study Group on behalf of the European Diabetes Epidemiology Group.Is the current definition for diabetes relevant to mortality risk from all causes and cardiovascular and noncardiovascular diseases? Diabetes Care. Mar 2003;26(3):688–696.

    Google Scholar 

  63. Nakagami T.Hyperglycaemia and mortality from all causes and from cardiovascular disease in five populations of Asian origin. Diabetologia. Mar 2004;47(3):385–394.

    Article  CAS  Google Scholar 

  64. Selvin E, Marinopoulos S, Berkenblit G et al.Meta-analysis: glycosylated hemoglobin and cardiovascular disease in diabetes mellitus. Ann Intern Med. Sep 21 2004;141(6):421–431.

    Google Scholar 

  65. Effect of intensive diabetes management on macrovascular events and risk factors in the Diabetes Control and Complications Trial.Am J Cardiol. May 1 1995;75(14):894–903.

    Article  Google Scholar 

  66. Effect of intensive diabetes treatment on carotid artery wall thickness in the epidemiology of diabetes interventions and complications. Epidemiology of Diabetes Interventions and Complications (EDIC) Research Group. Diabetes. Feb 1999;48(2):383–390.

    Google Scholar 

  67. Nathan DM, Lachin J, Cleary P et al.Intensive diabetes therapy and carotid intima-media thickness in type 1 diabetes mellitus. N Engl J Med. Jun 5 2003;348(23):2294–2303.

    Article  Google Scholar 

  68. The relationship of glycemic exposure (HbA1c) to the risk of development and progression of retinopathy in the diabetes control and complications trial. Diabetes. Aug 1995;44(8):968–983.

    Google Scholar 

  69. de Vegt F, Dekker JM, Ruhe HG et al.Hyperglycaemia is associated with all-cause and cardiovascular mortality in the Hoorn population: the Hoorn Study. Diabetologia. Aug 1999;42(8):926–931.

    Article  Google Scholar 

  70. Donahue RP, Abbott RD, Reed DM, Yano K.Postchallenge glucose concentration and coronary heart disease in men of Japanese ancestry. Honolulu Heart Program.Diabetes. Jun 1987;36(6):689–692.

    Article  CAS  Google Scholar 

  71. Ceriello A. Postprandial hyperglycemia and diabetes complications: is it time to treat? Diabetes. Jan 2005;54(1):1–7.

    Article  CAS  Google Scholar 

  72. Balkau B, Shipley M, Jarrett RJ et al.High blood glucose concentration is a risk factor for mortality in middle-aged nondiabetic men. 20-year follow-up in the Whitehall Study, the Paris Prospective Study, and the Helsinki Policemen Study. Diabetes Care. Mar 1998; 21(3):360–367.

    Article  CAS  Google Scholar 

  73. Hanefeld M, Fischer S, Julius U et al.Risk factors for myocardial infarction and death in newly detected NIDDM: the Diabetes Intervention Study, 11-year follow-up. Diabetologia. Dec 1996;39(12):1577–1583.

    Article  CAS  Google Scholar 

  74. de Veciana M, Major CA, Morgan MA et al.Postprandial versus preprandial blood glucose monitoring in women with gestational diabetes mellitus requiring insulin therapy. N Engl J Med. Nov 9 1995;333(19):1237–1241.

    Article  Google Scholar 

  75. Ceriello A, Quagliaro L, Catone B et al.Role of hyperglycemia in nitrotyrosine postprandial generation. Diabetes Care. Aug 2002;25(8):1439–1443.

    Article  CAS  Google Scholar 

  76. Ceriello A, Cavarape A, Martinelli L et al.The post-prandial state in Type 2 diabetes and endothelial dysfunction: effects of insulin aspart. Diabet Med. Feb 2004;21(2):171–175.

    Article  CAS  Google Scholar 

  77. Beisswenger PJ, Howell SK, O’Dell RM, Wood ME, Touchette AD, Szwergold BS.alpha-Dicarbonyls increase in the postprandial period and reflect the degree of hyperglycemia. Diabetes Care. Apr 2001;24(4):726–732.

    Article  CAS  Google Scholar 

  78. Rudofsky G, Jr., Reismann P, Schiekofer S et al.Reduction of postprandial hyperglycemia in patients with type 2 diabetes reduces NF-kappaB activation in PBMCs. Horm Metab Res. Sep 2004;36(9):630–638.

    Google Scholar 

  79. Esposito K, Giugliano D, Nappo F, Marfella R.Regression of carotid atherosclerosis by control of postprandial hyperglycemia in type 2 diabetes mellitus. Circulation. Jul 13 2004;110(2):214–219.

    Article  CAS  Google Scholar 

  80. Hanefeld M, Cagatay M, Petrowitsch T, Neuser D, Petzinna D, Rupp M.Acarbose reduces the risk for myocardial infarction in type 2 diabetic patients: meta-analysis of seven long-term studies. Eur Heart J. Jan 2004;25(1):10–16.

    Article  CAS  Google Scholar 

  81. Satoh N, Shimatsu A, Yamada K et al.An alpha-glucosidase inhibitor, voglibose, reduces oxidative stress markers and soluble intercellular adhesion molecule 1 in obese type 2 diabetic patients. Metabolism. Jun 2006;55(6):786–793.

    Article  CAS  Google Scholar 

  82. Carroll MF, Gutierrez A, Castro M, Tsewang D, Schade DS.Targeting postprandial hyperglycemia: a comparative study of insulinotropic agents in type 2 diabetes. J Clin Endocrinol Metab. Nov 2003;88(11):5248–5254.

    Article  CAS  Google Scholar 

  83. Chiasson JL, Josse RG, Gomis R, Hanefeld M, Karasik A, Laakso M.Acarbose treatment and the risk of cardiovascular disease and hypertension in patients with impaired glucose tolerance: the STOP-NIDDM trial. JAMA. Jul 23 2003;290(4):486–494.

    Article  CAS  Google Scholar 

  84. Hanefeld M, Chiasson JL, Koehler C, Henkel E, Schaper F, Temelkova-Kurktschiev T.Acarbose slows progression of intima-media thickness of the carotid arteries in subjects with impaired glucose tolerance. Stroke. May 2004;35(5):1073–1078.

    Article  CAS  Google Scholar 

  85. Feinglos MN, Thacker CH, English J, Bethel MA, Lane JD.Modification of postprandial hyperglycemia with insulin lispro improves glucose control in patients with type 2 diabetes. Diabetes Care. Oct 1997;20(10):1539–1542.

    Article  CAS  Google Scholar 

  86. Bastyr EJ, 3rd, Stuart CA, Brodows RG et al.Therapy focused on lowering postprandial glucose, not fasting glucose, may be superior for lowering HbA1c. IOEZ Study Group. Diabetes Care. Sep 2000;23(9):1236–1241.

    Article  CAS  Google Scholar 

  87. Carroll MF, Izard A, Riboni K, Burge MR, Schade DS.Control of postprandial hyperglycemia: optimal use of short-acting insulin secretagogues. Diabetes Care. Dec 2002;25(12):2147–2152.

    Article  CAS  Google Scholar 

  88. Meier S, Hucking K, Ritzel R, Holst JJ, Schmiegel WH, Nauck MA.Absence of a memory effect for the insulinotropic action of glucagon-like peptide 1 (GLP-1) in healthy volunteers. Horm Metab Res. Sep 2003;35(9):551–556.

    Article  CAS  Google Scholar 

  89. Quddusi S, Vahl TP, Hanson K, Prigeon RL, D’Alessio DA.Differential effects of acute and extended infusions of glucagon-like peptide-1 on first- and second-phase insulin secretion in diabetic and nondiabetic humans. Diabetes Care. Mar 2003;26(3):791–798.

    Article  CAS  Google Scholar 

  90. Byrne MM, Gliem K, Wank U et al.Glucagon-like peptide 1 improves the ability of the beta-cell to sense and respond to glucose in subjects with impaired glucose tolerance. Diabetes. Aug 1998;47(8):1259–1265.

    Article  CAS  Google Scholar 

  91. Rachman J, Gribble FM, Barrow BA, Levy JC, Buchanan KD, Turner RC.Normalization of insulin responses to glucose by overnight infusion of glucagon-like peptide 1 (7–36) amide in patients with NIDDM. Diabetes. Nov 1996;45(11):1524–1530.

    Article  CAS  Google Scholar 

  92. Nauck MA.Glucagon-like peptide 1 (GLP-1) in the treatment of diabetes. Horm Metab Res. Nov-Dec 2004;36(11–12):852–858.

    Article  CAS  Google Scholar 

  93. Parkes DG, Pittner R, Jodka C, Smith P, Young A.Insulinotropic actions of exendin-4 and glucagon-like peptide-1 in vivo and in vitro. Metabolism. May 2001;50(5):583–589.

    Article  CAS  Google Scholar 

  94. Kolterman OG, Buse JB, Fineman MS et al.Synthetic exendin-4 (exenatide) significantly reduces postprandial and fasting plasma glucose in subjects with type 2 diabetes. J Clin Endocrinol Metab. Jul 2003;88(7):3082–3089.

    Article  CAS  Google Scholar 

  95. Kolterman OG, Kim DD, Shen L et al.Pharmacokinetics, pharmacodynamics, and safety of exenatide in patients with type 2 diabetes mellitus. Am J Health Syst Pharm. Jan 15 2005;62(2):173–181.

    CAS  Google Scholar 

  96. Goke R, Fehmann HC, Linn T et al.Exendin-4 is a high potency agonist and truncated exendin-(9–39)-amide an antagonist at the glucagon-like peptide 1-(7–36)-amide receptor of insulin-secreting beta-cells. J Biol Chem. Sep 15 1993;268(26):19,650–19,655.

    Google Scholar 

  97. Vilsboll T, Agerso H, Krarup T, Holst JJ.Similar elimination rates of glucagon-like peptide-1 in obese type 2 diabetic patients and healthy subjects. J Clin Endocrinol Metab. Jan 2003;88(1):220–224.

    Article  CAS  Google Scholar 

  98. Buse JB, Henry RR, Han J, Kim DD, Fineman MS, Baron AD.Effects of exenatide (exendin-4) on glycemic control over 30 weeks in sulfonylurea-treated patients with type 2 diabetes. Diabetes Care. Nov 2004;27(11):2628–2635.

    Article  CAS  Google Scholar 

  99. Kendall DM, Riddle MC, Rosenstock J et al.Effects of exenatide (exendin-4) on glycemic control over 30 weeks in patients with type 2 diabetes treated with metformin and a sulfonylurea. Diabetes Care. May 2005;28(5):1083–1091.

    Article  CAS  Google Scholar 

  100. Fehse F, Trautmann M, Holst JJ et al.Exenatide augments first- and second-phase insulin secretion in response to intravenous glucose in subjects with type 2 diabetes. J Clin Endocrinol Metab. Nov 2005;90(11):5991–5997.

    Article  CAS  Google Scholar 

  101. Ristic S, Byiers S, Foley J, Holmes D.Improved glycaemic control with dipeptidyl peptidase-4 inhibition in patients with type 2 diabetes: vildagliptin (LAF237) dose response. Diabetes Obes Metab. Nov 2005;7(6):692–698.

    Article  CAS  Google Scholar 

  102. Postprandial blood glucose.American Diabetes Association. Diabetes Care. Apr 2001;24(4):775–778.

    Google Scholar 

  103. Milicevic Z, Raz I, Strojek K et al.Hyperglycemia and its effect after acute myocardial infarction on cardiovascular outcomes in patients with Type 2 diabetes mellitus (HEART2D) Study design. J Diabetes Complications. Mar-Apr 2005;19(2):80–87.

    Article  Google Scholar 

  104. Prentki M, Joly E, El-Assaad W, Roduit R.Malonyl-CoA signaling, lipid partitioning, and glucolipotoxicity: role in beta-cell adaptation and failure in the etiology of diabetes. Diabetes. Dec 2002;51 Suppl 3:S405–413.

    Article  Google Scholar 

  105. Glucose tolerance and mortality: comparison of WHO and American Diabetes Association diagnostic criteria.The DECODE study group. European Diabetes Epidemiology Group. Diabetes Epidemiology: Collaborative analysis Of Diagnostic criteria in Europe.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

A. Raghavan, V., Garber, A.J. (2008). Postprandial Hyperglycemia. In: Feinglos, M.N., Bethel, M.A. (eds) Type 2 Diabetes Mellitus. Contemporary Endocrinology. Humana Press. https://doi.org/10.1007/978-1-60327-043-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-043-4_7

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-794-5

  • Online ISBN: 978-1-60327-043-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics