Skip to main content

Biotreatment of Sludge and Reuse

  • Chapter
  • First Online:
Environmental Bioengineering

Abstract

Sewage sludge, a by-product of domestic wastewater treatment plant, also known as “biosolids”, is generated in millions of tons each year. While sewage sludge disposal is a worldwide problem, local conditions dictate the adoption of a variety of treatment and reuse methods. Among them, composting has been practiced extensively in Malaysia. This chapter discusses the theory of the process, fundamental factors affecting the process, and the basis of solid state bioconversion technique. Numerous case studies exhibiting the large scale and continuous operation of sewage sludge composting and their utilization are also presented in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zheng GD, Gao D, Chen TB, Luo W (2007) Stabilization of nickel and chromium in sewage sludge during aerobic composting. J Hazard Mater 142:216–221

    Article  CAS  Google Scholar 

  2. Haug RT (1980) Compost engineering principle and practice. Ann Arbor Publisher, Inc, Michigan

    Google Scholar 

  3. Haug RT (1993) The practical handbook of compost engineering. Lewis Publishers, Boca Raton, F1.717 pp

    Google Scholar 

  4. Hughes EG (1980) The composting of municipal wastes. In: Berwick MM (ed) Handbook of organic wastes conversion, Van Nostrand Reinhold, New York

    Google Scholar 

  5. Bertoldi M, Vallini G, Pera A, Zucconi F (1985) Technological aspects of composting including modeling and microbiology. In: Gesser JKR (ed) Composting of agricultural and other wastes, Elsevier Applied Science Publishers, London, p 320

    Google Scholar 

  6. Biddlestone AJ, Gray KR, Day CA (1987) Composting and straw decomposition. In: Forster CF, John Wase DA (eds) Environmental biotechnology, Ellis Horwood Limited, Chichester, pp 137–175

    Google Scholar 

  7. Diaz LF, Savage GM, Eggerth LL, Golueke CG (1993) Composting and recycling – municipal solid waste, vol 1. Lewis Publishers, Boca Raton, USA

    Google Scholar 

  8. Gaur AC (1982) Role of mesophilic fungi in composting. Agr Wastes 4(6):453–468

    Article  Google Scholar 

  9. Mitchell DA, Lonsane BK (1993) Definition, characteristics and potential. In: Doelle HW, Rolz C (eds) Solid substrate cultivation, Elsevier Applied Science, London, pp 1–13

    Google Scholar 

  10. Renner R (2000) Sewage sludge – pros and cons. Environ Sci Technol 34:1–9

    Article  Google Scholar 

  11. Lee CJ, Spinosa L, Liu JC (2002) Towards sustainable sludge management. Water 21:22–23

    Google Scholar 

  12. Hettenbach T, Cohen B, Wiles R, Cook K (1998) Dumping sewage sludge on organic farms? why USDA should just say No. EWG policy analysis. Environmental Working Group, April 30, 1998

    Google Scholar 

  13. US EPA (1995) Process design manual: land application of sewage sludge and domestic septage, EPA/625/K-95/001, Washington, DC

    Google Scholar 

  14. Stan V, Virsta A, Dusa EM., Glavan AM (2009) Waste recycling and compost benefits. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 37(2):9–13

    Google Scholar 

  15. Biddlestone AJ, Ball D, Gray KR (1981) Composting and urban waste recycling. Academic Press, Inc. Publisher, New York, pp 125–128

    Google Scholar 

  16. Crawford DL (1986) The role of actinomycetes in the decomposition of lignocellulose. FEMS Symps 34:715–728

    Google Scholar 

  17. Gotaas HB (1956) Composting – sanitary disposal and reclamation of organic wastes. WHO, Geneva

    Google Scholar 

  18. Golueke CG (1977) Biological reclamation of solid wastes. Rodale Press, Emmau, USA, p 249

    Google Scholar 

  19. Verdonck O (1998) Compost from organic waste materials as substitute for the usual horticultural substrate. Biol Waste 26:325–330

    Article  Google Scholar 

  20. Gaur AC (1987) Recycling of organic wastes by improved techniques of composting and other methods. Resour Conserv 13:157–174

    Article  Google Scholar 

  21. Hassan MA, Idris A, Ariff A, Abdul Karim MI, Abdul Razak AR, Baharum Z (2001). Co-composting of sewage sludges and municipal solid wastes. Research on sludge. Final report. Indah Water Konsortium and Universiti Putra Malaysia

    Google Scholar 

  22. Obeng LA, Wright FW (1987) Integrated resource recovery the co-composting of domestic solid and human wastes. World bank technical paper number 57. The World Bank, Washington, DC, pp 1–91

    Google Scholar 

  23. Cannel E, Moo-Young M (1980). Solids state fermentation systems. Process Biochem 15:24–28

    CAS  Google Scholar 

  24. Mudgett RE (1986) Solid-state fermentations. In: Demain AL, Solomon HA (eds) Manual of industrial microbiology and biotechnology, American Society for Microbiology, Washington, DC, pp 66–83

    Google Scholar 

  25. Kargi K, Curme JA (1985) Solid fermentation of sweet sorghum to ethanol in a rotary drum fermentor. Biotechnol Bioeng 27:1122–1125

    Article  CAS  Google Scholar 

  26. Laukevics JJ, Apsote AF, Viesturs UE, Tangerdy RP (1984) Solid substrate fermentation of wheat straw to fungal potien. Biotechnol Bioeng 26:1465–1474

    Article  CAS  Google Scholar 

  27. Grajec W (1987) Production of D-xylanases by thermophilic fungi using different methods of culture. Biotechnol Lett 9:353–356

    Article  Google Scholar 

  28. Bajracharya R, Mudget RE (1980) Effect on control gas environment in solid substrate fermentations of rice. Biotechnol Bioeng 22:2219–2235

    Article  CAS  Google Scholar 

  29. Kumar PKR, Lonsane BK (1987) Gibberellic acid by solid state fermentation: consistent and improved yields. Biotechnol Bioeng 30:267–271

    Article  CAS  Google Scholar 

  30. Mitchell DA, Greenfield PE, Doelle HW (1988) Development of a model solid state fermentation system. Biotechnol Tech 2:1–6

    Article  CAS  Google Scholar 

  31. Hasseltine CW (1972) Biotechnology report. Solid state fermentations. Biotechnol Bioeng 14:517–532

    Article  Google Scholar 

  32. Biddlestone AJ, Gray KR (1985) Composting. In: Young MM (ed) Comprehensive biotechnology, vol 4. Pergamon Press, New York, pp 1059–1070

    Google Scholar 

  33. Moo-Young M, Moreira RA, Tangerdy RP (1983) Principles of solid substrate fermentation. In: Smith JE, Berry DR, Kristiansen B, Arnold E (eds) The filamentous fungi, vol 4. Edward Arnold, London, pp 177–144

    Google Scholar 

  34. Viesturs UE, Apsite AF, Leukevics JJ, Ose VP, Bekers MJ, Tangerdy RP (1981) Solid-state fermentation of wheat straw with Chaetomium cellulolyticum and Trichoderma lignorum. Biotechnol Bioeng Symp 11:359–369

    CAS  Google Scholar 

  35. Tangerdy RP, Murphy VG, Wissler MD (1983) Solid-state fermentation of cellulosic residues. Ann N Y Acad Sci 413:469–472

    Article  Google Scholar 

  36. Abdullah AL, Tangerdy RP, Murphy VG (1985) Optimization of solid substrate fermentation of wheat straw. Biotechnol Bioeng 27:20–27

    Article  CAS  Google Scholar 

  37. IWK-UPM (2002) Utilization of sewage sludge as fertilizer and as potting media. Report on Project 1, Indah Water Konsortium – Universiti Putra Malaysia, May 2002, Malaysia

    Google Scholar 

  38. Food Act and Regulations (1985) MDC Publishers Printers Sdn, Kuala Lumpur, pp 192–193

    Google Scholar 

  39. Kabbashi NA (2002) Study of culture condition for solid state fermentation of sewage treatment plant sludge to compost. Doctor of Philosophy Thesis, Faculty of Engineering, Universiti Putra Malaysia, Serdang, Malaysia

    Google Scholar 

  40. Hassan AHH (2001) Solid state bioconversion of oil palm empty fruit brunches (EFB) into compost by selected microbes, Master of Science Thesis, Faculty of Engineering, Universiti Putra Malaysia, Serdang, Malaysia

    Google Scholar 

  41. Zainal BB (2002) Composting of selected organic sludges using rotary drum in comparison to windrow system, Master of Science Thesis, Faculty of Food Science and Biotechnology, Universiti Putra Malaysia, Serdang, Malaysia

    Google Scholar 

  42. Abdul Rahman AR (2004) Bioreactor co-composting of sewage sludge and restaurant waste. Master of Science Thesis, Faculty of Food Science and Biotechnology, Universiti Putra Malaysia, Serdang, Malaysia

    Google Scholar 

  43. Wang LK, Shammas NK, Hung YT (eds) (2009) Advanced Biological Treatment Processes. Humana Press, Totowa, NJ, 737 pp

    Google Scholar 

  44. Wang LK, Ivanov V, Tay JH, Hung YT (eds) (2010) Environmental Biotechnology. Humana Press, Totowa, NJ, 975 pp

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Idris, A., Saed, K., Hung, YT. (2010). Biotreatment of Sludge and Reuse. In: Wang, L., Tay, JH., Tay, S., Hung, YT. (eds) Environmental Bioengineering. Handbook of Environmental Engineering, vol 11. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-031-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-031-1_5

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-58829-493-7

  • Online ISBN: 978-1-60327-031-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics