Skip to main content

Systemic Immune-Based Rheumatic Diseases: Blissless States of BLySfulness

  • Chapter
  • First Online:
BLyS Ligands and Receptors

Part of the book series: Contemporary Immunology ((CONTIM))

  • 434 Accesses

Abstract

B lymphocyte stimulator (BLyS) is a vital B-cell survival and differentiation factor. Overexpression of BLyS in mice can lead to clinical and serological features of systemic lupus erythematosus (SLE) and Sjögren’s syndrome (SS). Treatment with BLyS antagonists of mice with established SLE ameliorates disease progression and enhances survival. Moreover, similar treatment of mice with inflammatory arthritis ameliorates the ongoing inflammation and subsequent joint destruction. In humans, BLyS overexpression is common in patients with several systemic immune-based rheumatic diseases (SIRDs), including SLE, rheumatoid arthritis (RA), SS, scleroderma, dermatomyositis, ANCA-associated vasculitis, and mixed cryoglobulinemia. Phase-I and phase-II clinical trials with BLyS antagonists in SLE and RA have documented in vivo biological activities along with favorable safety profiles for these agents and have pointed to beneficial effects in subsets of patients. These features collectively point to BLyS as an attractive therapeutic target in human SIRDs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moore PA, Belvedere O, Orr A, et al. BLyS: member of the tumor necrosis factor family and B lymphocyte stimulator. Science 1999;285:260–3.

    Article  CAS  PubMed  Google Scholar 

  2. Shu H-B, Hu W-H, Johnson H. TALL-1 is a novel member of the TNF family that is down-regulated by mitogens. J Leukocyte Biol 1999;65:680–3.

    CAS  PubMed  Google Scholar 

  3. Schneider P, MacKay F, Steiner V, et al. BAFF, a novel ligand of the tumor necrosis factor family, stimulates B cell growth. J Exp Med 1999;189:1747–56.

    Article  CAS  PubMed  Google Scholar 

  4. Mukhopadhyay A, Ni J, Zhai Y, Yu G-L, Aggarwal BB. Identification and characterization of a novel cytokine, THANK, a TNF homologue that activates apoptosis, nuclear factor-κB, and c-Jun NH2-terminal kinase. J Biol Chem 1999;274:15978–81.

    Article  CAS  PubMed  Google Scholar 

  5. Tribouley C, Wallroth M, Chan V, et al. Characterization of a new member of the TNF family expressed on antigen presenting cells. Biol Chem 1999;380:1443–7.

    Article  CAS  PubMed  Google Scholar 

  6. Gross JA, Johnston J, Mudri S, et al. TACI and BCMA are receptors for a TNF homologue implicated in B-cell autoimmune disease. Nature 2000;404:995–9.

    Article  CAS  PubMed  Google Scholar 

  7. Nardelli B, Belvedere O, Roschke V, et al. Synthesis and release of B-lymphocyte stimulator from myeloid cells. Blood 2001;97:198–204.

    Article  CAS  PubMed  Google Scholar 

  8. Li X, Su K, Ji C, et al. Immune opsonins modulate BLyS/BAFF release in a receptor-specific fashion. J Immunol 2008;181:1012–8.

    CAS  PubMed  Google Scholar 

  9. Scapini P, Nardelli B, Nadali G, et al. G-CSF-stimulated neutrophils are a prominent source of functional BLyS. J Exp Med 2003;197:297–302.

    Article  CAS  PubMed  Google Scholar 

  10. Scapini P, Carletto A, Nardelli B, et al. Proinflammatory mediators elicit the secretion of the intracellular B-lymphocyte stimulator pool (BLyS) that is stored in activated neutrophils: implications for inflammatory diseases. Blood 2005;105:830–7.

    Article  CAS  PubMed  Google Scholar 

  11. Assi LK, Wong SH, Ludwig A, et al. Tumor necrosis factor α activates release of B lymphocyte stimulator by neutrophils infiltrating the rheumatoid joint. Arthritis Rheum 2007;56:1776–1786.

    Article  CAS  PubMed  Google Scholar 

  12. Bossen C, Cachero TG, Tardivel A, et al. TACI, unlike BAFF-R, is solely activated by oligomeric BAFF and APRIL to support survival of activated B cells and plasmablasts. Blood 2008;111:1004–12.

    Article  CAS  PubMed  Google Scholar 

  13. Kanakaraj P, Migone T-S, Nardelli B, et al. BLyS binds to B cells with high affinity and induces activation of the transcription factors NF-κB and ELF-1. Cytokine 2001;13: 25–31.

    Article  CAS  PubMed  Google Scholar 

  14. Liu Y, Xu L, Opalka N, Kappler M, Shu H-B, Zhang G. Crystal structure of sTALL-1 reveals a virus-like assembly of TNF family ligands. Cell 2002;108:383–94.

    Article  CAS  PubMed  Google Scholar 

  15. Kim HM, Yu KS, Lee ME, et al. Crystal structure of the BAFF-BAFF-R complex and its implications for receptor activation. Nat Struct Biol 2003;10:342–8.

    Article  CAS  PubMed  Google Scholar 

  16. Liu Y, Hong X, Kappler J, et al. Ligand-receptor binding revealed by the TNF family member TALL-1. Nature 2003;423:49–56.

    Article  CAS  PubMed  Google Scholar 

  17. Karpusas M, Cachero TG, Qian F, et al. Crystal structure of extracellular human BAFF, a TNF family member that stimulates B lymphocytes. J Mol Biol 2002;315:1145–54.

    Article  CAS  PubMed  Google Scholar 

  18. Oren DA, Li Y, Volovik Y, et al. Structural basis of BLyS receptor recognition. Nat Struct Biol 2002;9:288–92.

    Article  CAS  PubMed  Google Scholar 

  19. Zhukovsky EA, Lee J-O, Villegas M, Chan C, Chu S, Mroske C. Is TALL-1 a trimer of a virus-like cluster? Nature 2004;427:413–4.

    Article  CAS  PubMed  Google Scholar 

  20. Cachero TG, Schwartz IM, Qian F, et al. Formation of virus-like clusters is an intrinsic property of the tumor necrosis factor family member BAFF (B cell activating factor). Biochemistry 2006;45:2006–13.

    Article  CAS  PubMed  Google Scholar 

  21. Gavin AL, Aït-Azzouzene D, Ware CF, Nemazee D. ΔBAFF, an alternate splice isoform that regulates receptor binding and biopresentation of the B cell survival cytokine, BAFF. J Biol Chem 2003;278:38220–8.

    Article  CAS  PubMed  Google Scholar 

  22. Gavin AL, Duong B, Skog P, et al. ΔBAFF, a splice isoform of BAFF, opposes full length BAFF activity in vivo in transgenic mouse models. J Immunol 2005;175: 319–28.

    CAS  PubMed  Google Scholar 

  23. Gorelik L, Gilbride K, Dobles M, Kalled SL, Zandman D, Scott ML. Normal B cell homeostasis requires B cell activation factor production by radiation-resistant cells. J Exp Med 2003;198:937–45.

    Article  CAS  PubMed  Google Scholar 

  24. Yoshimoto K, Takahashi Y, Ogasawara M, et al. Aberrant expression of BAFF in T cells of systemic lupus erythematosus, which is recapitualted by a human T cell line, Loucey. Int Immunol 2006;18:1189–96.

    Article  CAS  PubMed  Google Scholar 

  25. Chu VT, Enghard P, Riemekasten G, Berek C. In vitro and in vivo activation induces BAFF and APRIL expression in B cells. J Immunol 2007;179:5947–57.

    CAS  PubMed  Google Scholar 

  26. Litinskiy MB, Nardelli B, Hilbert DM, et al. DCs induce CD40-independent immunoglobulin class switching through BLyS and APRIL. Nat Immunol 2002;3:822–9.

    Article  CAS  PubMed  Google Scholar 

  27. Kim H-A, Jeon S-H, Seo G-Y, Park J-B, Kim P-H. TGF-β1 and IFN-γ stimulate mouse macrophages to express BAFF via different signaling pathways. J Leukocyte Biol 2008;83:1431–9.

    Article  CAS  PubMed  Google Scholar 

  28. Baechler EC, Batliwalla FM, Karypis G, et al. Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc Natl Acad Sci USA 2003;100:2610–5.

    Article  CAS  PubMed  Google Scholar 

  29. Bennett L, Palucka AK, Arce E, et al. Interferon and granulopoiesis signatures in systemic lupus erythematosus blood. J Exp Med 2003;197:711–23.

    Article  CAS  PubMed  Google Scholar 

  30. Kirou KA, Lee C, George S, et al. Coordinate overexpression of interferon-α-induced genes in systemic lupus erythematosus. Arthritis Rheum 2004;50:3958–67.

    Article  CAS  PubMed  Google Scholar 

  31. Mavragani CP, Niewold TB, Moutsopoulos NM, Pillemer SR, Wahl SM, Crow MK. Augmented interferon-α pathway activation in patients with Sjögren’s syndrome treated with etanercept. Arthritis Rheum 2007;56:3995–4004.

    Article  CAS  PubMed  Google Scholar 

  32. He B, Chadburn A, Jou E, Schattner EJ, Knowles DM, Cerutti A. Lymphoma B cells evade apoptosis through the TNF family members BAFF/BLyS and APRIL. J Immunol 2004;172:3268–79.

    CAS  PubMed  Google Scholar 

  33. Novak AJ, Bram RJ, Kay NE, Jelinek DF. Aberrant expression of B-lymphocyte stimulator by B chronic lymphocytic leukemia cells: a mechanism for survival. Blood 2002;100:2973–9.

    Article  CAS  PubMed  Google Scholar 

  34. Novak AJ, Darce JR, Arendt BK, et al. Expression of BCMA, TACI, and BAFF-R in multiple myeloma: a mechanism for growth and survival. Blood 2004;103:689–94.

    Article  CAS  PubMed  Google Scholar 

  35. Novak AJ, Grote DM, Stenson M, et al. Expression of BLyS and its receptors in B-cell non-Hodgkin lymphoma: correlation with disease activity and patient outcome. Blood 2004;104:2247–53.

    Article  CAS  PubMed  Google Scholar 

  36. Elsawa SF, Novak AJ, Grote DM, et al. B-lymphocyte stimulator (BLyS) stimulates immunoglobulin production and malignant B-cell growth in Waldenström macroglobulinemia. Blood 2006;107:2882–8.

    Article  CAS  PubMed  Google Scholar 

  37. Cambridge G, Stohl W, Leandro MJ, Migone T-S, Hilbert DM, Edwards JCW. Circulating levels of B lymphocyte stimulator in patients with rheumatoid arthritis following rituximab treatment: relationships with B cell depletion, circulating antibodies, and clinical relapse. Arthritis Rheum 2006;54:723–32.

    Article  CAS  PubMed  Google Scholar 

  38. Seror R, Sordet C, Guillevin L, et al. Tolerance and efficacy of rituximab and changes in serum B cell biomarkers in patients with systemic complications of primary Sjögren’s syndrome. Ann Rheum Dis 2007;66:351–7.

    Article  CAS  PubMed  Google Scholar 

  39. Lavie F, Miceli-Richard C, Ittah M, Sellam J, Gottenberg J-E, Mariette X. Increase of B cell-activating factor of the TNF family (BAFF) after rituximab treatment: insights into a new regulating system of BAFF production. Ann Rheum Dis 2007;66:700–3.

    Article  CAS  PubMed  Google Scholar 

  40. Cambridge G, Isenberg DA, Edwards JCW, et al. B cell depletion therapy in systemic lupus erythaematosus: relationships among serum B lymphocyte stimulator levels, autoantibody profile and clinical response. Ann Rheum Dis 2008;67:1011–6.

    Article  CAS  PubMed  Google Scholar 

  41. Krumbholz M, Theil D, Derfuss T, et al. BAFF is produced by astrocytes and up-regulated in multiple sclerosis lesions and primary central nervous system lymphoma. J Exp Med 2005;201:195–200.

    Article  CAS  PubMed  Google Scholar 

  42. Tschen S-I, Stohlman SA, Ramakrishna C, Hinton DR, Atkinson RD, Bergmann CC. CNS viral infection diverts homing of antibody-secreting cells from lymphoid organs to the CNS. Eur J Immunol 2006;36:603–12.

    Article  CAS  PubMed  Google Scholar 

  43. Phillips TA, Ni J, Hunt JS. Cell-specific expression of B lymphocyte (APRIL, BLyS)- and Th2 (CD30L/CD153)-promoting tumor necrosis factor superfamily ligands in human placentas. J Leukocyte Biol 2003;74:81–7.

    Article  CAS  PubMed  Google Scholar 

  44. Guo W-J, Yang M-X, Zhang W-D, Liang L, Shao Q-Q, Kong B-H. Expression of BAFF in the trophoblast and decidua of normal early pregnant women and patients with recurrent spontaneous miscarriage. Chin Med J 2008;121:309–15.

    CAS  PubMed  Google Scholar 

  45. Langat DL, Wheaton DA, Platt JS, Sifers T, Hunt JS. Signaling pathways for B cell-activating factor (BAFF) and a proliferation-inducing ligand (APRIL) in human placenta. Am J Pathol 2008;172:1303–11.

    Article  CAS  PubMed  Google Scholar 

  46. Ohata J, Zvaifler NJ, Nishio M, et al. Fibroblast-like synoviocytes of mesenchymal orgin express functional B cell-activating factor of the TNF family in response to proinflammatory cytokines. J Immunol 2005;174:864–70.

    CAS  PubMed  Google Scholar 

  47. Alsaleh G, Messer L, Semaan N, et al. BAFF synthesis by rheumatoid synoviocytes is positively controlled by α5β1 integrin stimulation and is negatively regulated by tumor necrosis factor α and toll-like receptor ligands. Arthritis Rheum 2007;56:3202–14.

    Article  CAS  PubMed  Google Scholar 

  48. Goodyear CS, Boyle DL, Silverman GJ. Secretion of BAFF by fibroblast-like synoviocytes from rheumatoid arthritis biopsies attenuates B-cell depletion by rituximab. Arthritis Rheum 2005;52:S290.

    Article  CAS  Google Scholar 

  49. Moon E-Y, Lee J-H, Oh S-Y, et al. Reactive oxygen species augment B-cell-activating factor expression. Free Radic Biol Med 2006;40:2103–11.

    Article  CAS  PubMed  Google Scholar 

  50. Laabi Y, Gras M-P, Brouet J-C, Berger R, Larsen C-J, Tsapis A. The BCMA gene, preferentially expressed during B lymphoid maturation, is bidirectionally transcribed. Nucleic Acids Res 1994;22:1147–54.

    Article  CAS  PubMed  Google Scholar 

  51. von Bülow G-U, Bram RJ. NF-AT activation induced by a CAML-interacting member of the tumor necrosis factor receptor superfamily. Science 1997;278:138–41.

    Article  PubMed  Google Scholar 

  52. Thompson JS, Bixler SA, Qian F, et al. BAFF-R, a novel TNF receptor that specifically interacts with BAFF. Science 2001;293:2108–11.

    Article  CAS  PubMed  Google Scholar 

  53. Yan M, Brady JR, Chan B, et al. Identification of a novel receptor for B lymphocyte stimulator that is mutated in a mouse strain with severe B cell deficiency. Curr Biol 2001;11:1547–52.

    Article  CAS  PubMed  Google Scholar 

  54. Xia X-Z, Treanor J, Senaldi G, et al. TACI is a TRAF-interacting receptor for TALL-1, a tumor necrosis factor family member involved in B cell regulation. J Exp Med 2000;192:137–43.

    Article  CAS  PubMed  Google Scholar 

  55. Chang SK, Arendt BK, Darce JR, Wu X, Jelinek DF. A role for BLyS in the activation of innate immune cells. Blood 2006;108:2687–94.

    Article  CAS  PubMed  Google Scholar 

  56. Darce JR, Arendt BK, Wu X, Jelinek DF. Regulated expression of BAFF-binding receptors during human B cell differentiation. J Immunol 2007;179:7276–86.

    CAS  PubMed  Google Scholar 

  57. Ellyard JI, Avery DT, Mackay CR, Tangye SG. Contribution of stromal cells to the migration, function and retention of plasma cells in human spleen: potential roles of CXCL12, IL-6 and CD54. Eur J Immunol 2005;35:699–708.

    Article  CAS  PubMed  Google Scholar 

  58. Underhill GH, George D, Bremer EG, Kansas GS. Gene expression profiling reveals a highly specialized genetic program of plasma cells. Blood 2003;101:4013–21.

    Article  CAS  PubMed  Google Scholar 

  59. Tarte K, Zhan F, De Vos J, Klein B, Shaughnessy J, Jr. Gene expression profiling of plasma cells and plasmablasts: toward a better understanding of the late stages of B-cell differentiation. Blood 2003;102:592–600.

    Article  CAS  PubMed  Google Scholar 

  60. Avery DT, Kalled SL, Ellyard JI, et al. BAFF selectively enhances the survival of plasmablasts generated from human memory B cells. J Clin Invest 2003;112:286–97.

    CAS  PubMed  Google Scholar 

  61. Smith SH, Cancro MP. Cutting edge: B cell receptor signals regulate BLyS receptor levels in mature B cells and their immediate progenitors. J Immunol 2003;170:5820–3.

    CAS  PubMed  Google Scholar 

  62. Treml LS, Carlesso G, Hoek KL, et al. TLR stimulation modifies BLyS receptor expression in follicular and marginal zone B cells. J Immunol 2007;178:7531–9.

    CAS  PubMed  Google Scholar 

  63. Shu H-B, Johnson H. B cell maturation protein is a receptor for the tumor necrosis factor family member TALL-1. Proc Natl Acad Sci USA 2000;97:9156–61.

    Article  CAS  PubMed  Google Scholar 

  64. Hatzoglou A, Roussel J, Bourgeade M-F, et al. TNF receptor family member BCMA (B cell maturation) associates with TNF receptor-associated factor (TRAF) 1, TRAF2, and TRAF3 and activates NF-κB, Elk-1, c-Jun N-terminal kinase, and p38 mitogen-activated protein kinase. J Immunol 2000;165:1322–30.

    CAS  PubMed  Google Scholar 

  65. Xu L-G, Shu H-B. TNFR-associated factor-3 is associated with BAFF-R and negatively regulates BAFF-R-mediated NF-κB activation and IL-10 production. J Immunol 2002;169:6883–9.

    CAS  PubMed  Google Scholar 

  66. Hikida M, Johmura S, Hashimoto A, Takezaki M, Kurosaki T. Coupling between B cell receptor and phospholipase C-γ2 is essential for mature B cell development. J Exp Med 2003;198:581–9.

    Article  CAS  PubMed  Google Scholar 

  67. Claudio E, Brown K, Park S, Wang H, Siebenlist U. BAFF-induced NEMO-independent processing of NK-κB2 in maturing B cells. Nat Immunol 2002;3:958–65.

    Article  CAS  PubMed  Google Scholar 

  68. Kayagaki N, Yan M, Seshasayee D, et al. BAFF/BLyS receptor 3 binds the B cell survival factor BAFF ligand through a discrete surface loop and promotes processing of NF-κB2. Immunity 2002;17:515–24.

    Article  CAS  PubMed  Google Scholar 

  69. Hatada EN, Do RKG, Orlofsky A, et al. NF-κB1 p50 is required for BLyS attentuation of apoptosis but dispensible for processing of NF-κB2 p100 to p52 in quiescent mature B cells. J Immunol 2003;171:761–8.

    CAS  PubMed  Google Scholar 

  70. Herrin BR, Justement LB. Expression of the adaptor protein hematopoietic Src homology 2 is up-regulated in response to stimuli that promote survival and differentiation of B cells. J Immunol 2006;176:4163–72.

    CAS  PubMed  Google Scholar 

  71. Mecklenbräuker I, Kalled SL, Leitges M, Mackay F, Tarakhovsky A. Regulation of B-cell survival by BAFF-dependent PKCδ-mediated nuclear signalling. Nature 2004;431:456–61.

    Article  PubMed  CAS  Google Scholar 

  72. Hase H, Kanno Y, Kojima M, et al. BAFF/BLyS can potentiate B-cell selection with the B-cell co-receptor complex. Blood 2004;103:2257–65.

    Article  CAS  PubMed  Google Scholar 

  73. d‘Arbonneau F, Pers J-O, Devauchelle V, Pennec Y, Saraux A, Youinou P. BAFF-induced changes in B cell antigen receptor-containing lipid rafts in Sjögren’s syndrome. Arthritis Rheum 2006;54:115–26.

    Article  PubMed  CAS  Google Scholar 

  74. Thompson JS, Schneider P, Kalled SL, et al. BAFF binds to the tumor necrosis factor receptor-like molecule B cell maturation antigen and is important for maintaining the peripheral B cell population. J Exp Med 2000;192:129–35.

    Article  CAS  PubMed  Google Scholar 

  75. Do RKG, Hatada E, Lee H, Tourigny MR, Hilbert D, Chen-Kiang S. Attenuation of apoptosis underlies B lymphocyte stimulator enhancement of humoral immune response. J Exp Med 2000;192:953–64.

    Article  CAS  PubMed  Google Scholar 

  76. Batten M, Groom J, Cachero TG, et al. BAFF mediates survival of peripheral immature B lymphocytes. J Exp Med 2000;192:1453–65.

    Article  CAS  PubMed  Google Scholar 

  77. Harless SM, Lentz VM, Sah AP, et al. Competition for BLyS-mediated signaling through Bcmd/BR3 regulates peripheral B lymphocyte numbers. Curr Biol 2001;11:1986–9.

    Article  CAS  PubMed  Google Scholar 

  78. Hsu BL, Harless SM, Lindsley RC, Hilbert DM, Cancro MP. Cutting edge: BLyS enables survival of transitional and mature B cells through distinct mediators. J Immunol 2002;168:5993–6.

    CAS  PubMed  Google Scholar 

  79. Mongini PKA, Inman JK, Han H, Fattah RJ, Abramson SB, Attur M. APRIL and BAFF promote increased viability of replicating human B2 cells via mechanism involving cyclooxygenase 2. J Immunol 2006;176:6736–51.

    CAS  PubMed  Google Scholar 

  80. Woodland RT, Fox CJ, Schmidt MR, et al. Multiple signaling pathways promote B lymphocyte stimulator-dependent B-cell growth and survival. Blood 2008;111:750–60.

    Article  CAS  PubMed  Google Scholar 

  81. Craxton A, Draves KE, Gruppi A, Clark EA. BAFF regulates B cell survival by downregulating the BH3-only family member Bim via the ERK pathway. J Exp Med 2005;202:1363–74.

    Article  CAS  PubMed  Google Scholar 

  82. Oliver PM, Vass T, Kappler J, Marrack P. Loss of the proapoptotic protein, Bim, breaks B cell anergy. J Exp Med 2006;203:731–41.

    Article  CAS  PubMed  Google Scholar 

  83. Amanna IJ, Dingwall JP, Hayes CE. Enforced bcl-xL gene expression restored splenic B lymphocyte development in BAFF-R mutant mice. J Immunol 2003;170:4593–600.

    CAS  PubMed  Google Scholar 

  84. Sasaki Y, Derudder E, Hobeika E, et al. Canonical NF-κB activity, dispensable for B cell development, replaces BAFF-receptor signals and promotes B cell proliferation upon activation. Immunity 2006;24:729–39.

    Article  CAS  PubMed  Google Scholar 

  85. Enzler T, Bonizzi G, Silverman GJ, et al. Alternative and classical NF-κB signaling retain autoreactive B cells in the splenic marginal zone and result in lupus-like disease. Immunity 2006;25:403–15.

    Article  CAS  PubMed  Google Scholar 

  86. Gardam S, Sierro F, Basten A, Mackay F, Brink R. TRAF2 and TRAF3 signal adapters act cooperatively to control the maturation and survival signals delivered to B cells by the BAFF receptor. Immunity 2008;28:391–401.

    Article  CAS  PubMed  Google Scholar 

  87. Xie P, Stunz LL, Larison KD, Yang B, Bishop GA. Tumor necrosis factor receptor-associated factor 3 is a critical regulator of B cell homeostasis in secondary lymphoid organs. Immunity 2007;27:253–67.

    Article  PubMed  CAS  Google Scholar 

  88. Patke A, Mecklenbräuker I, Erdjument-Bromage H, Tempst P, Tarakhovsky A. BAFF controls B cell metabolic fitness through a PKCβ- and Akt-dependent mechanism. J Exp Med 2006;203:2551–62.

    Article  CAS  PubMed  Google Scholar 

  89. Acosta-Rodríguez EV, Craxton A, Hendricks DW, et al. BAFF and LPS cooperate to induce B cells to become susceptible to CD95/Fas-mediated cell death. Eur J Immunol 2007;37:990–1000.

    Article  PubMed  CAS  Google Scholar 

  90. Rolink AG, Tschopp J, Schneider P, Melchers F. BAFF is a survival and maturation factor for mouse B cells. Eur J Immunol 2002;32:2004–10.

    Article  CAS  PubMed  Google Scholar 

  91. Tardivel A, Tinel A, Lens S, et al. The anti-apoptotic factor Bcl-2 can functionally substitute for the B cell survival but not for the marginal zone B cell differentiation activity of BAFF. Eur J Immunol 2004;34:509–18.

    Article  CAS  PubMed  Google Scholar 

  92. Yamada T, Zhang K, Yamada A, Zhu D, Saxon A. B lymphocyte stimulator activates p38 mitogen-activated protein kinase in human Ig class switch recombination. Am J Respir Cell Mol Biol 2005;32:388–94.

    Article  CAS  PubMed  Google Scholar 

  93. Castigli E, Wilson SA, Scott S, et al. TACI and BAFF-R mediate isotype switching in B cells. J Exp Med 2005;201:35–9.

    Article  CAS  PubMed  Google Scholar 

  94. Ettinger R, Sims GP, Robbins R, et al. IL-21 and BAFF/BLyS synergize in stimulating plasma cell differentiation from a unique population of human splenic memory B cells. J Immunol 2007;178:2872–82.

    CAS  PubMed  Google Scholar 

  95. Xu W, Santini PA, Matthews AJ, et al. Viral double-stranded RNA triggers Ig class switching by activating upper respiratory mucosa B cells through an innate TLR3 pathway involving BAFF. J Immunol 2008;181:276–87.

    CAS  PubMed  Google Scholar 

  96. Dall’Era M, Chakravarty E, Wallace D, et al. Reduced B lymphocyte and immunoglobulin levels after atacicept treatment in patients with systemic lupus erythematosus: results of a multicenter, phase Ib, double-blind, placebo-controlled, dose-escalating trial. Arthritis Rheum 2007;56:4142–50.

    Article  PubMed  CAS  Google Scholar 

  97. Tak PP, Thurlings RM, Rossier C, et al. Atacicept in patients with rheumatoid arthritis: results of a multicenter, phase Ib, double-blind, placebo-controlled, dose-escalating, single- and repeated-dose study. Arthritis Rheum 2008;58:61–72.

    Article  CAS  PubMed  Google Scholar 

  98. Badr G, Borhis G, Lefevre EA, et al. BAFF enhances chemotaxis of primary human B cells: a particular synergy between BAFF and CXCL13 on memory B cells. Blood 2008;111:2744–54.

    Article  CAS  PubMed  Google Scholar 

  99. Ng LG, Ng C-H, Woehl B, et al. BAFF costimulation of Toll-like receptor-activated B-1 cells. Eur J Immunol 2006;36:1837–46.

    Article  CAS  PubMed  Google Scholar 

  100. Chang SK, Mihalcik SA, Jelinek DF. B lymphocyte stimulator regulates adaptive immune responses by directly promoting dendritic cell maturation. J Immunol 2008;180:7394–403.

    CAS  PubMed  Google Scholar 

  101. Sutherland APR, Ng LG, Fletcher CA, et al. BAFF augments certain Th1-associated inflammatory responses. J Immunol 2005;174:5537–44.

    CAS  PubMed  Google Scholar 

  102. López-Fraga M, Fernández R, Albar JP, Hahne M. Biologically active APRIL is secreted following intracellular processing in the Golgi apparatus by furin convertase. EMBO Rep 2001;2:945–51.

    Article  PubMed  Google Scholar 

  103. Pradet-Balade B, Medema JP, López-Fraga M, et al. An endogenous hybrid mRNA encodes TWE-PRIL, a functional cell surface TWEAK-APRIL fusion protein. EMBO J 2002;21:5711–20.

    Article  CAS  PubMed  Google Scholar 

  104. Hahne M, Kataoka T, Schröter M, et al. APRIL, a new ligand of the tumor necrosis factor family, stimulates tumor cell growth. J Exp Med 1998;188:1185–90.

    Article  CAS  PubMed  Google Scholar 

  105. Kelly K, Manos E, Jensen G, Nadauld L, Jones DA. APRIL/TRDL-1, a tumor necrosis factor-like ligand, stimulates cell death. Cancer Res 2000;60:1021–7.

    CAS  PubMed  Google Scholar 

  106. Marsters SA, Yan M, Pitti RM, Haas PE, Dixit VM, Ashkenazi A. Interaction of the TNF homologues BLyS and APRIL with the receptor homologues BCMA and TACI. Curr Biol 2000;10:785–8.

    Article  CAS  PubMed  Google Scholar 

  107. Yu G, Boone T, Delaney J, et al. APRIL and TALL-1 and receptors BCMA and TACI: system for regulating humoral immunity. Nat Immunol 2000;1:252–6.

    Article  CAS  PubMed  Google Scholar 

  108. Wu Y, Bressette D, Carrell JA, et al. Tumor necrosis factor (TNF) receptor superfamily member TACI is a high affinity receptor for TNF family members APRIL and BLyS. J Biol Chem 2000;275:35478–85.

    Article  CAS  PubMed  Google Scholar 

  109. Rennert P, Schneider P, Cachero TG, et al. A soluble form of B cell maturation antigen, a receptor for the tumor necrosis factor family member APRIL, inhibits tumor cell growth. J Exp Med 2000;192:1677–83.

    Article  CAS  PubMed  Google Scholar 

  110. Day ES, Cachero TG, Qian F, et al. Selectivity of BAFF/BLyS and APRIL for binding to the TNF family receptors BAFFR/BR3 and BCMA. Biochemistry 2005;44:1919–31.

    Article  CAS  PubMed  Google Scholar 

  111. Nagatani K, Itoh K, Nakajima K, et al. Rheumatoid arthritis fibroblast-like synoviocytes express BCMA and are stimulated by APRIL. Arthritis Rheum 2007;56: 3554–63.

    Article  CAS  PubMed  Google Scholar 

  112. Tan S-M, Xu D, Roschke V, et al. Local production of B lymphocyte stimulator protein and APRIL in arthritic joints of patients with inflammatory arthritis. Arthritis Rheum 2003;48:982–92.

    Article  CAS  PubMed  Google Scholar 

  113. Koyama T, Tsukamoto H, Masumoto K, et al. A novel polymorphism of the human APRIL gene is associated with systemic lupus erythematosus. Rheumatology 2003;42:980–5.

    Article  CAS  PubMed  Google Scholar 

  114. Lee YH, Ota F, Kim-Howard X, Kaufman KM, Nath SK. APRIL polymorphism and systemic lupus erythematosus (SLE) susceptibility. Rheumatology 2007;46:1274–6.

    Article  CAS  PubMed  Google Scholar 

  115. Roschke V, Sosnovtseva S, Ward CD, et al. BLyS and APRIL form biologically active heterotrimers that are expressed in patients with systemic immune-based rheumatic diseases. J Immunol 2002;169:4314–21.

    CAS  PubMed  Google Scholar 

  116. Wallweber HJA, Compaan DM, Starovasnik MA, Hymowitz SG. The crystal structure of a proliferation-inducing ligand, APRIL. J Mol Biol 2004;343:283–90.

    Article  CAS  PubMed  Google Scholar 

  117. Bossen C, Ingold K, Tardivel A, et al. Interactions of tumor necrosis factor (TNF) and TNF receptor family members in the mouse and human. J Biol Chem 2006;281: 13964–71.

    Article  CAS  PubMed  Google Scholar 

  118. Craxton A, Magaletti D, Ryan EJ, Clark EA. Macrophage- and dendritic cell-dependent regulation of human B-cell proliferation requires the TNF family ligand BAFF. Blood 2003;101:4464–71.

    Article  CAS  PubMed  Google Scholar 

  119. Sakurai D, Hase H, Kanno Y, Kojima H, Okumura K, Kobata T. TACI regulates IgA production by APRIL in collaboration with HSPG. Blood 2007;109:2961–7.

    CAS  PubMed  Google Scholar 

  120. He B, Xu W, Santini PA, et al. Intestinal bacteria trigger T cell-independent immunoglobulin A2 class switching by inducing eipthelial-cell secretion of the cytokine APRIL. Cell 2007;26:812–26.

    CAS  Google Scholar 

  121. Hendriks J, Planelles L, de Jong-Odding J, et al. Heparan sulfate proteoglycan binding promotes APRIL-induced tumor cell proliferation. Cell Death Differ 2005;12:637–48.

    Article  CAS  PubMed  Google Scholar 

  122. Ingold K, Zumsteg A, Tardivel A, et al. Identification of proteoglycans as the APRIL-specific binding partners. J Exp Med 2005;201:1375–83.

    Article  CAS  PubMed  Google Scholar 

  123. Belnoue E, Pihlgren M, McGaha TL, et al. APRIL is critical for plasmablast survival in the bone marrow and poorly expressed by early-life bone marrow stromal cells. Blood 2008;111:2755–64.

    Article  CAS  PubMed  Google Scholar 

  124. Varfolomeev E, Kischkel F, Martin F, et al. APRIL-deficient mice have normal immune system development. Mol Cell Biol 2004;24:997–1006.

    Article  CAS  PubMed  Google Scholar 

  125. Castigli E, Scott S, Dedeoglu F, et al. Impaired IgA class switching in APRIL-deficient mice. Proc Natl Acad Sci USA 2004;101:3903–8.

    Article  CAS  PubMed  Google Scholar 

  126. Stein JV, López-Fraga M, Elustondo FA, et al. APRIL modulates B and T cell immunity. J Clin Invest 2002;109:1587–98.

    CAS  PubMed  Google Scholar 

  127. Ramanujam M, Wang X, Huang W, et al. Similarities and differences between selective and nonselective BAFF blockade in murine SLE. J Clin Invest 2006;116:724–34.

    Article  CAS  PubMed  Google Scholar 

  128. Bischof D, Elsawa SF, Mantchev G, et al. Selective activation of TACI by syndecan-2. Blood 2006;107:3235–42.

    Article  CAS  PubMed  Google Scholar 

  129. Patel DR, Wallweber HJA, Yin JP, et al. Engineering an APRIL-specific B-cell maturation antigen (BCMA). J Biol Chem 2004;279:16727–35.

    Article  CAS  PubMed  Google Scholar 

  130. Stohl W, Metyas S, Tan S-M, et al. Inverse association between circulating APRIL levels and serologic and clinical disease activity in patients with systemic lupus erythematosus. Ann Rheum Dis 2004;63:1096–1103.

    Article  CAS  PubMed  Google Scholar 

  131. Koyama T, Tsukamoto H, Miyagi Y, et al. Raised serum APRIL levels in patients with systemic lupus erythematosus. Ann Rheum Dis 2005;64:1065–7.

    Article  CAS  PubMed  Google Scholar 

  132. Gross JA, Dillon SR, Mudri S, et al. TACI-Ig neutralizes molecules critical for B cell development and autoimmune disease: impaired B cell maturation in mice lacking BLyS. Immunity 2001;15:289–302.

    Article  CAS  PubMed  Google Scholar 

  133. Schiemann B, Gommerman JL, Vora K, et al. An essential role for BAFF in the normal development of B cells through a BCMA-independent pathway. Science 2001;293: 2111–4.

    Article  CAS  PubMed  Google Scholar 

  134. Schneider P, Takatsuka H, Wilson A, et al. Maturation of marginal zone and follicular B cells requires B cell activating factor of the tumor necrosis factor family and is independent of B cell maturation antigen. J Exp Med 2001;194:1691–7.

    Article  CAS  PubMed  Google Scholar 

  135. Xu S, Lam D-P. B-cell maturation protein, which binds the tumor necrosis factor family members BAFF and APRIL, is dispensible for humoral immune responses. Mol Cell Biol 2001;21:4067–74.

    Article  CAS  PubMed  Google Scholar 

  136. O‘Connor BP, Raman VS, Erickson LD, et al. BCMA is essential for the survival of long-lived bone marrow plasma cells. J Exp Med 2004;199:91–7.

    Article  PubMed  CAS  Google Scholar 

  137. Benson MJ, Dillon SR, Castigli E, et al. Cutting edge: the dependence of plasma cells and independence of memory B cells on BAFF and APRIL. J Immunol 2008;180:3655–9.

    CAS  PubMed  Google Scholar 

  138. Yang M, Hase H, Legarda-Addison D, Varughese L, Seed B, Ting AT. BCMA, the receptor for APRIL and BAFF, induces antigen presentation in B cells. J Immunol 2005;175:2814–24.

    CAS  PubMed  Google Scholar 

  139. Shlomchik MJ, Madaio MP, Ni D, Trounstein M, Huszar D. The role of B cells in lpr/lpr-induced autoimmunity. J Exp Med 1994;180:1295–306.

    Article  CAS  PubMed  Google Scholar 

  140. Chan O, Shlomchik MJ. A new role for B cells in systemic autoimmunity: B cells promote spontaneous T cell activation in MRL-lpr/lpr mice. J Immunol 1998;160:51–9.

    CAS  PubMed  Google Scholar 

  141. Chan OTM, Hannum LG, Haberman AM, Madaio MP, Shlomchik MJ. A novel mouse with B cells but lacking serum antibody reveals an antibody-independent role for B cells in murine lupus. J Exp Med 1999;189:1639–47.

    Article  CAS  PubMed  Google Scholar 

  142. von Bülow G-U, van Deursen JM, Bram RJ. Regulation of the T-independent humoral response by TACI. Immunity 2001;14:573–82.

    Article  PubMed  Google Scholar 

  143. Yan M, Wang H, Chan B, et al. Activation and accumulation of B cells in TACI-deficient mice. Nat Immunol 2001;2:638–43.

    Article  CAS  PubMed  Google Scholar 

  144. Seshasayee D, Valdez P, Yan M, Dixit VM, Tumas D, Grewal IS. Loss of TACI causes fatal lymphoproliferation and autoimmunity, establishing TACI as an inhibitory BLyS receptor. Immunity 2003;18:279–88.

    Article  CAS  PubMed  Google Scholar 

  145. Sakurai D, Kanno Y, Hase H, Kojima H, Okumura K, Kobata T. TACI attenuates antibody production costimulated by BAFF-R and CD40. Eur J Immunol 2007;37:110–8.

    Article  CAS  PubMed  Google Scholar 

  146. Castigli E, Wilson SA, Elkhal A, Ozcan E, Garibyan L, Geha RS. Transmembrane activator and calcium modulator and cyclophilin ligand interactor enhances CD40-driven plasma cell differentiation. J Allergy Clin Immunol 2007;120:885–91.

    Article  CAS  PubMed  Google Scholar 

  147. Katsenelson N, Kanswal S, Puig M, Mostowski H, Verthelyi D, Akkoyunlu M. Synthetic CpG oligodeoxynucleotides augment BAFF- and APRIL-mediated immunoglobulin secretion. Eur J Immunol 2007;37:1785–95.

    Article  CAS  PubMed  Google Scholar 

  148. Salzer U, Chapel HM, Webster ADB, et al. Mutations in TNFRSF13B encoding TACI are associated with common variable immunodeficiency in humans. Nat Genet 2005;37:820–8.

    Article  CAS  PubMed  Google Scholar 

  149. Castigli E, Wilson SA, Garibyan L, et al. TACI is mutant in common variable immunodeficiency and IgA deficiency. Nat Genet 2005;37:829–34.

    Article  CAS  PubMed  Google Scholar 

  150. Mantchev GT, Cortesao CS, Rebrovich M, Cascalho M, Bram RJ. TACI is required for efficient plasma cell differentiation in response to T-independent type 2 antigens. J Immunol 2007;179:2282–8.

    CAS  PubMed  Google Scholar 

  151. Kanswal S, Katsenelson N, Selvapandiyan A, Bram RJ, Akkoyunlu M. Deficient TACI expression on B lymphocytes of newborn mice leads to defective Ig secretion in response to BAFF or APRIL. J Immunol 2008;181:976–90.

    CAS  PubMed  Google Scholar 

  152. Diaz-de-Durana Y, Mantchev GT, Bram RJ, Franco A. TACI-BLyS signaling via B-cell-dendritic cell cooperation is required for naive CD8+ T-cell priming in vivo. Blood 2006;107:594–601.

    Article  CAS  PubMed  Google Scholar 

  153. Sasaki Y, Casola S, Kutok JL, Rajewski K, Schmidt-Supprian M. TNF family member B cell-activating factor (BAFF) receptor-dependent and -independent roles for BAFF in B cell physiology. J Immunol 2004;173:2245–52.

    CAS  PubMed  Google Scholar 

  154. Shulga-Morskaya S, Dobles M, Walsh ME, et al. B cell-activating factor belonging to the TNF family acts through separate receptors to support B cell survival and T cell-independent antibody formation. J Immunol 2004;173:2331–41.

    CAS  PubMed  Google Scholar 

  155. Mayne CG, Amanna IJ, Nashold FE, Hayes CE. Systemic autoimmunity in BAFF-R-mutant A/WySnJ strain mice. Eur J Immunol 2008;38:587–98.

    Article  CAS  PubMed  Google Scholar 

  156. Miller JP, Stadanlick JE, Cancro MP. Space, selection, and surveillance: setting boundaries with BLyS. J Immunol 2006;176:6405–10.

    CAS  PubMed  Google Scholar 

  157. Mackay F, Woodcock SA, Lawton P, et al. Mice transgenic for BAFF develop lymphocytic disorders along with autoimmune manifestations. J Exp Med 1999;190:1697–710.

    Article  CAS  PubMed  Google Scholar 

  158. Khare SD, Sarosi I, Xia X-Z, et al. Severe B cell hyperplasia and autoimmune disease in TALL-1 transgenic mice. Proc Natl Acad Sci USA 2000;97:3370–75.

    Article  CAS  PubMed  Google Scholar 

  159. Aït-Azzouzene D, Gavin AL, Skog P, Duong B, Nemazee D. Effect of cell:cell competition and BAFF expression on peripheral B cell tolerance and B-1 cell survival in transgenic mice expressing a low level of Igκ-reactive macroself antigen. Eur J Immunol 2006;36:985–96.

    Article  PubMed  CAS  Google Scholar 

  160. Morel L, Rudofsky UH, Longmate JA, Schiffenbauer J, Wakeland EK. Polygenic control of susceptibility to murine systemic lupus erythematosus. Immunity 1994;1:219–29.

    Article  CAS  PubMed  Google Scholar 

  161. Rozzo SJ, Allard JD, Choubey D, et al. Evidence for an interferon-inducible gene, Ifi202, in the susceptibility to systemic lupus. Immunity 2001;15:435–43.

    Article  CAS  PubMed  Google Scholar 

  162. Morel L, Mohan C, Yu Y, et al. Functional dissection of systemic lupus erythematosus using congenic mouse strains. J Immunol 1997;158:6019–28.

    CAS  PubMed  Google Scholar 

  163. Mohan C, Alas E, Morel L, Yang P, Wakeland EK. Genetic dissection of SLE pathogenesis: Sle1 on murine chromosome 1 leads to a selective loss of tolerance to H2A/H2B/DNA subnucleosomes. J Clin Invest 1998;101:1362–72.

    CAS  PubMed  Google Scholar 

  164. Stohl W, Xu D, Kim KS, et al. BAFF overexpression and accelerated glomerular disease in mice with an incomplete genetic predisposition to systemic lupus erythematosus. Arthritis Rheum 2005;52:2080–91.

    Article  CAS  PubMed  Google Scholar 

  165. Groom J, Kalled SL, Cutler AH, et al. Association of BAFF/BLyS overexpression and altered B cell differentiation with Sjögren’s syndrome. J Clin Invest 2002;109:59–68.

    CAS  PubMed  Google Scholar 

  166. Zhang M, Ko K-H, Lam QLK, et al. Expression and function of TNF family member B cell-activating factor in the development of autoimmune arthritis. Int Immunol 2005;17:1081–92.

    Article  CAS  PubMed  Google Scholar 

  167. Zhang J, Roschke V, Baker KP, et al. Cutting edge: a role for B lymphocyte stimulator in systemic lupus erythematosus. J Immunol 2001;166:6–10.

    CAS  PubMed  Google Scholar 

  168. Cheema GS, Roschke V, Hilbert DM, Stohl W. Elevated serum B lymphocyte stimulator levels in patients with systemic immune-based rheumatic diseases. Arthritis Rheum 2001;44:1313–9.

    Article  CAS  PubMed  Google Scholar 

  169. Stohl W, Metyas S, Tan S-M, et al. B lymphocyte stimulator overexpression in patients with systemic lupus erythematosus: longitudinal observations. Arthritis Rheum 2003;48:3475–86.

    Article  PubMed  Google Scholar 

  170. Petri M, Stohl W, Chatham W, et al. Association of plasma B lymphocyte stimulator levels and disease activity in systemic lupus erythematosus. Arthritis Rheum 2008;58:2453––9.

    Article  CAS  PubMed  Google Scholar 

  171. Collins CE, Gavin AL, Migone T-S, Hilbert DM, Nemazee D, Stohl W. B lymphocyte stimulator (BLyS) isoforms in systemic lupus erythematosus: disease activity correlates better with blood leukocyte BLyS mRNA levels than with plasma BLyS protein levels. Arthritis Res Ther 2006;8:R6.

    Article  PubMed  Google Scholar 

  172. Becker-Merok A, Nikolaisen C, Nossent HC. B-lymphocyte activating factor in systemic lupus erythematosus and rheumatoid arthritis in relation to autoantibody levels, disease measures and time. Lupus 2006;15:570–6.

    Article  CAS  PubMed  Google Scholar 

  173. Ju S, Zhang D, Wang Y, Ni H, Kong X, Zhong R. Correlation of the expression levels of BLyS and its receptors mRNA in patients with systemic lupus erythematosus. Clin Biochem 2006;39:1131–7.

    Article  CAS  PubMed  Google Scholar 

  174. Morimoto S, Nakano S, Watanabe T, et al. Expression of B-cell activating factor of the tumour necrosis factor family (BAFF) in T cells in active systemic lupus erythematosus: the role of BAFF in T cell-dependent B cell pathogenic autoantibody production. Rheumatology 2007;46:1083–6.

    Article  CAS  PubMed  Google Scholar 

  175. Seyler TM, Park YW, Takemura S, et al. BLyS and APRIL in rheumatoid arthritis. J Clin Invest 2005;115:3083–92.

    Article  CAS  PubMed  Google Scholar 

  176. Soto H, Hevezi P, Roth RB, et al. Gene array analysis comparison between rat collagen-induced arthritis and human rheumatoid arthritis. Scand J Immunol 2008;68:43–57.

    Article  CAS  PubMed  Google Scholar 

  177. Bosello S, Youinou P, Daridon C, et al. Concentrations of BAFF correlate with autoantibody levels, clinical disease activity, and response to treatment in early rheumatoid arthritis. J Rheumatol 2008;35:1256––64.

    CAS  PubMed  Google Scholar 

  178. La DT, Collins CE, Yang H-T, Migone T-S, Stohl W. B lymphocyte stimulator expression in patients with rheumatoid arthritis treated with tumour necrosis factor α antagonists: differential effects between good and poor clinical responders. Ann Rheum Dis 2008;67:1132––8.

    Article  CAS  PubMed  Google Scholar 

  179. Cantaert T, Kolln J, Timmer T, et al. B lymphocyte autoimmunity in rheumatoid synovitis is independent of ectopic lymphoid neogenesis. J Immunol 2008;181:785–94.

    CAS  PubMed  Google Scholar 

  180. Mariette X, Roux S, Zhang J, et al. The level of BLyS (BAFF) correlates with the titre of autoantibodies in human Sjögren’s syndrome. Ann Rheum Dis 2003;62:168–71.

    Article  CAS  PubMed  Google Scholar 

  181. Jonsson MV, Szodoray P, Jellestad S, Jonsson R, Skarstein K. Association between circulating levels of the novel TNF family members APRIL and BAFF and lymphoid organization in primary Sjögren’s syndrome. J Clin Immunol 2005;25:189–201.

    Article  CAS  PubMed  Google Scholar 

  182. Pers J-O, Daridon C, Devauchelle V, et al. BAFF overexpression is associated with autoantibody production in autoimmune diseases. Ann NY Acad Sci 2005;1050:34–9.

    Article  CAS  PubMed  Google Scholar 

  183. Pers J-O, d‘Arbonneau F, Devauchelle-Pensec V, Saraux A, Pennec Y-L, Youinou P. Is periodontal disease mediated by salivary BAFF in Sjögren’s syndrome? Arthritis Rheum 2005;52:2411–4.

    Article  PubMed  Google Scholar 

  184. Szodoray P, Jellestad S, Teague MO, Jonsson R. Attenuated apoptosis of B cell activating factor-expressing cells in primary Sjögren’s syndrome. Lab Invest 2003;83:357–65.

    Article  CAS  PubMed  Google Scholar 

  185. Lavie F, Miceli-Richard C, Quillard J, Roux S, Leclerc P, Mariette X. Expression of BAFF (BLyS) in T cells infiltrating labial salivary glands from patients with Sjögren’s syndrome. J Pathol 2004;202:496–502.

    Article  CAS  PubMed  Google Scholar 

  186. Ittah M, Miceli-Richard C, Gottenberg J-E, et al. B cell-activating factor of the tumor necrosis factor family (BAFF) is expressed under stimulation by interferon in salivary gland epithelial cells in primary Sjögren’s syndrome. Arthritis Res Ther 2006;8:R51.

    Article  PubMed  CAS  Google Scholar 

  187. Ittah M, Miceli-Richard C, Gottenberg J-E, et al. Viruses induce high expression of BAFF by salivary gland epithelial cells through TLR- and type-I IFN-dependent and -independent pathways. Eur J Immunol 2008;38:1058–64.

    Article  CAS  PubMed  Google Scholar 

  188. Daridon C, Pers J-O, Devauchelle V, et al. Identification of transitional type II B cells in the salivary glands of patients with Sjögren’s syndrome. Arthritis Rheum 2006;54:2280–8.

    Article  CAS  PubMed  Google Scholar 

  189. Daridon C, Devauchelle V, Hutin P, et al. Aberrant expression of BAFF by B lymphocytes infiltrating the salivary glands of patients with primary Sjögren’s syndrome. Arthritis Rheum 2007;56:1134–44.

    Article  CAS  PubMed  Google Scholar 

  190. Matsushita T, Hasegawa M, Yanaba K, Kodera M, Takehara K, Sato S. Elevated serum BAFF levels in patients with systemic sclerosis: enhanced BAFF signaling in systemic sclerosis B lymphocytes. Arthritis Rheum 2006;54:192–201.

    Article  CAS  PubMed  Google Scholar 

  191. Krumbholz M, Specks U, Wick M, Kalled SL, Jenne D, Meinl E. BAFF is elevated in serum of patients with Wegener’s granulomatosis. J Autoimmun 2005;25:298–302.

    Article  CAS  PubMed  Google Scholar 

  192. Sanders J-SF, Huitema MG, Kallenberg CGM, Stegeman CA. Plasma levels of soluble interleukin 2 receptor, soluble CD30, interleukin 10 and B cell activator of the tumor necrosis factor family during follow-up in vasculitis associated with proteinase 3-antineutrophil cytoplasmic antibodies: associations with disease activity and relapse. Ann Rheum Dis 2006;65:1484–9.

    Article  CAS  PubMed  Google Scholar 

  193. Fabris M, Quartuccio L, Sacco S, et al. B-Lymphocyte stimulator (BLyS) up-regulation in mixed cryoglobulinaemia syndrome and hepatitis-C virus infection. Rheumatology 2007;46:37–43.

    Article  CAS  PubMed  Google Scholar 

  194. Toubi E, Gordon S, Kessel A, et al. Elevated serum B-lymphocyte activating factor (BAFF) in chronic hepatitis C virus infection: association with autoimmunity. J Autoimmun 2006;27:134–9.

    Article  CAS  PubMed  Google Scholar 

  195. Sène D, Limal N, Ghillani-Dalbin P, Saadoun D, Piette J-C, Cacoub P. Hepatitis C virus-associated B-cell proliferation – the role of serum B lymphocyte stimulator (BLyS/BAFF). Rheumatology 2007;46:65–9.

    Article  PubMed  Google Scholar 

  196. Landau D-A, Rosenzwajg M, Saadoun D, Klatzmann D, Cacoub P. The B lymphocyte stimulator receptor-ligand system in hepatitis C virus-induced B-cell clonal disorders. Ann Rheum Dis 2008;68:337––44.

    Article  PubMed  CAS  Google Scholar 

  197. Gorelik L, Cutler AH, Thill G, et al. Cutting edge: BAFF regulates CD21/35 and CD23 expression independent of its B cell survival function. J Immunol 2004;172:762–6.

    CAS  PubMed  Google Scholar 

  198. Lesley R, Xu Y, Kalled SL, et al. Reduced competitiveness of autoantigen-engaged B cells due to increased dependence on BAFF. Immunity 2004;20:441–53.

    Article  CAS  PubMed  Google Scholar 

  199. Thien M, Phan TG, Gardam S, et al. Excess BAFF rescues self-reactive B cells from peripheral deletion and allows them to enter forbidden follicular and marginal zone niches. Immunity 2004;20:785–98.

    Article  CAS  PubMed  Google Scholar 

  200. Jacob CO, Pricop L, Putterman C, et al. Paucity of clinical disease despite serological autoimmunity and kidney pathology in lupus-prone New Zealand Mixed 2328 mice deficient in BAFF. J Immunol 2006;177:2671–80.

    CAS  PubMed  Google Scholar 

  201. Stohl W, Jacob N, Quinn WJ, III, et al. Global T cell dysregulation in non-autoimmune-prone mice promotes rapid development of BAFF-independent, systemic lupus erythematosus-like autoimmunity. J Immunol 2008;181:833–41.

    CAS  PubMed  Google Scholar 

  202. Schiffer L, Bethunaickan R, Ramanujam M, et al. Activated renal macrophages are markers of disease onset and disease remission in lupus nephritis. J Immunol 2008;180: 1938–47.

    CAS  PubMed  Google Scholar 

  203. Ju ZL, Shi GY, Zuo JX, Zhang JW, Sun J. Unexpected development of autoimmunity in BAFF-R-mutant MRL-lpr mice. Immunology 2007;120:281–9.

    Article  CAS  PubMed  Google Scholar 

  204. Ramanujam M, Wang X, Huang W, et al. Mechanism of action of transmembrane activator and calcium modulator ligand interactor-Ig in murine systemic lupus erythematosus. J Immunol 2004;173:3524–34.

    CAS  PubMed  Google Scholar 

  205. Wang H, Marsters SA, Baker T, et al. TACI-ligand interactions are required for T cell activation and collagen-induced arthritis in mice. Nat Immunol 2001;2:632–7.

    Article  CAS  PubMed  Google Scholar 

  206. Matsushita T, Fujimoto M, Hasegawa M, et al. BAFF antagonist attenuates the development of skin fibrosis in tight-skin mice. J Invest Dermatol 2007;127:2772–80.

    CAS  PubMed  Google Scholar 

  207. Gilbert JA, Kalled SL, Moorhead H, et al. Treatment of autoimmune hyperthyroidism in a murine model of Graves' disease with tumor necrosis factor-family ligand inhibitors suggests a key role for B cell activating factor in disease pathology. Endocrinology 2006;147:4561–8.

    Article  CAS  PubMed  Google Scholar 

  208. Neri P, Kumar S, Fulciniti MT, et al. Neutralizing B-cell-activating factor antibody improves survival and inhibits osteoclastogenesis in a severe combined immunodeficient human multiple myeloma model. Clin Cancer Res 2007;13:5903–9.

    Article  CAS  PubMed  Google Scholar 

  209. Baker KP, Edwards BM, Main SH, et al. Generation and characterization of LymphoStat-B, a human monoclonal antibody that antagonizes the bioactivities of B lymphocyte stimulator. Arthritis Rheum 2003;48:3253–65.

    Article  CAS  PubMed  Google Scholar 

  210. Halpern W, Lappin P, Zanardi T, et al. Chronic administration of belimumab, a BLyS antagonist, decreases tissue and peripheral blood B-lymphocyte populations in cynomolgus monkeys: pharmacokinetic, pharmacodynamic and toxicologic effects. Toxicol Sci 2006;91: 586–99.

    Article  CAS  PubMed  Google Scholar 

  211. Furie R, Stohl W, Ginzler EM, et al. Biologic activity and safety of belimumab, a neutralizing anti-B-lymphocyte stimulator (BLyS) monoclonal antibody: a phase I trial in patients with systemic lupus erythematosus. Arthritis Res Ther 2008;10:R109.

    Google Scholar 

  212. McKay J, Chwalinska-Sadowska H, Boling E, et al. Belimumab (BmAb), a fully human monoclonal antibody to B-lymphocyte stimulator (BLyS), combined with standard of care therapy reduces the signs and symptoms of rheumatoid arthritis in a heterogeneous subject population. Arthritis Rheum 2005;52:S710–11.

    Article  Google Scholar 

  213. Stohl W, Chatham W, Weisman M, et al. Belimumab (BmAb), a novel fully human monoclonal antibody to B-lymphocyte stimulator (BLyS), selectively modulates B-cell sub-populations and immunoglobulins in a heterogeneous rheumatoid arthritis subject population. Arthritis Rheum 2005;52:S444.

    Article  CAS  Google Scholar 

  214. Wallace DJ, Lisse J, Stohl W, et al. Belimumab (BmAb) reduces SLE disease activity and demonstrates durable bioactivity at 76 weeks. Arthritis Rheum 2006;54:S790.

    Google Scholar 

  215. Carter RH, Zhao H, Liu X, et al. Expression and occupancy of BAFF-R on B cells in systemic lupus erythematosus. Arthritis Rheum 2005;52:3943–54.

    Article  CAS  PubMed  Google Scholar 

  216. Carbonatto M, Yu P, Bertolino M, et al. Nonclinical safety, pharmacokinetics, and phamcodynamics of atacicept. Toxicol Sci 2008;105(1):200–10.

    Article  CAS  PubMed  Google Scholar 

  217. Nestorov I, Munafo A, Papasouliotis O, Visich J. Pharmacokinetics and biological activity of atacicept in patients with rheumatoid arthritis. J Clin Pharmacol 2008;48:406–417.

    Article  CAS  PubMed  Google Scholar 

  218. Vugmeyster Y, Seshasayee D, Chang W, et al. A soluble BAFF antagonist, BR3-Fc, decreases peripheral blood B cells and lymphoid tissue marginal zone and follicular B cells in cynomolgus monkeys. Am J Pathol 2006;168:476–89.

    Article  CAS  PubMed  Google Scholar 

  219. Fleischmann R, Wei N, Shaw M, et al. BR3-Fc phase I study: safety, pharmacokinetics (PK) and pharmacodynamic (PD) effects of a novel BR3-Fc fusion protein in patients with rheumatoid arthritis. Arthritis Rheum 2006;54:S229–30.

    Google Scholar 

  220. Shaw M, Del Giudice J, Trapp R, et al. The safety, pharmacokinetics (PK) and pharmacodynamic (PD) effects of repeated doses of BR3-Fc in patients with rheumatoid arthritis (RA). Arthritis Rheum 2007;56:S568–9.

    Article  Google Scholar 

  221. Belouski SS, Rasmussen HE, Thomas JK, Ferbas J, Zack DJ. Changes in B cells and B cell subsets induced by BAFF neutralization in vivo. Arthritis Rheum 2007;56:S565.

    Google Scholar 

  222. Sabahi R, Owen T, Barnard J, et al. Immunologic effects of BAFF antagonism in the treatment of human SLE. Arthritis Rheum 2007;56:S566.

    Google Scholar 

  223. Edwards JCW, Szczepanski L, Szechinshi J, et al. Efficacy of B-cell-targeted therapy with rituximab in patients with rheumatoid arthritis. N Engl J Med 2004;350:2572–81.

    Article  CAS  PubMed  Google Scholar 

  224. Emery P, Fleischmann R, Filipowicz-Sosnowska A, et al. The efficacy and safety of rituximab in patients with active rheumatoid arthritis despite methotrexate treatment: results of a phase IIb randomized, double-blind, placebo-controlled, dose-ranging trial. Arthritis Rheum 2006;54:1390–400.

    Article  CAS  PubMed  Google Scholar 

  225. Cohen SB, Emery P, Greenwald MW, et al. Rituximab for rheumatoid arthritis refractory to anti-tumor necrosis factor therapy: results of a multicenter, randomized, double-blind, placebo-controlled, phase III trial evaluating primary efficacy and safety at twenty-four weeks. Arthritis Rheum 2006;54:2793–806.

    Article  CAS  PubMed  Google Scholar 

  226. Leandro MJ, Edwards JC, Cambridge G, Ehrenstein MR, Isenberg DA. An open study of B lymphocyte depletion in systemic lupus erythematosus. Arthritis Rheum 2002;46:2673–7.

    Article  PubMed  Google Scholar 

  227. Looney RJ, Anolik JH, Campbell D, et al. B cell depletion as a novel treatment for systemic lupus erythematosus: a phase I/II dose-escalation trial of rituximab. Arthritis Rheum 2004;50:2580–9.

    Article  CAS  PubMed  Google Scholar 

  228. Gunnarsson I, Sundelin B, Jónsdóttir T, Jacobson SH, Henriksson EW, van Vollenhoven RF. Histopathologic and clinical outcome of rituximab treatment in patients with cyclophosphamide-resistant proliferative lupus nephritis. Arthritis Rheum 2007;56:1263–72.

    Article  CAS  PubMed  Google Scholar 

  229. Albert D, Dunham J, Khan S, et al. Variability in the biological response to anti-CD20 B cell depletion in systemic lupus erythematosus. Ann Rheum Dis 2008;67:1724–31.

    Article  CAS  PubMed  Google Scholar 

  230. Merrill JT, Neuwelt CM, Wallace DJ, et al. Efficacy and safety of rituximab in patients with moderately to severely active systemic lupus erythematosus: results from the randomized, double-blind phase II/III study EXPLORER. Arthritis Rheum 2008;58:4029–30.

    Google Scholar 

  231. Thaunat O, Patey N, Gautreau C, et al. B cell survival in intragraft tertiary lymphoid organs after rituximab therapy. Transplantation 2008;85:1648–53.

    Article  CAS  PubMed  Google Scholar 

  232. Gong Q, Ou Q, Ye S, et al. Importance of cellular microenvironment and circulatory dynamics in B cell immunotherapy. J Immunol 2005;174:817–26.

    CAS  PubMed  Google Scholar 

  233. Vallerskog T, Heimbürger M, Gunnarsson I, et al. Differential effects on BAFF and APRIL levels in rituximab treated patients with systemic lupus erythematosus and rheumatoid arthritis. Arthritis Res Ther 2006;8:R167.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Stohl, W. (2009). Systemic Immune-Based Rheumatic Diseases: Blissless States of BLySfulness. In: Cancro, M. (eds) BLyS Ligands and Receptors. Contemporary Immunology. Humana Press. https://doi.org/10.1007/978-1-60327-013-7_8

Download citation

Publish with us

Policies and ethics