The Statistical Design and Interpretation of Microarray Experiments

  • Kevin K. Dobbin
  • Richard M. Simon
Part of the Cancer Drug Discovery and Development book series (CDD&D)


This chapter reviews major issues related to design and interpretation of microarray experiments. Important aspects of design covered include identification of experimental objectives, treatment of batch effects, selection of replication and pooling levels, determining sample size for class comparison and class prediction, and optimal allocation of samples to arrays and labels in dual label experiments. Aspects of interpretation focus on class prediction issues, including case selection, external vs. internal validation, and pitfalls in cross-validation.


Microarrays Experimental design Sample size Prediction Validation  


  1. Ambroise C and McLachlan GJ. Selection bias in gene extraction on the basis of microarray gene-expression data. Proc Natl Acad Sci USA 2002; 99:6562–6PubMedCrossRefGoogle Scholar
  2. Bammler T, Beyer RP, Bhattacharya S, etal. Standardizing global gene expression analysis between laboratories and across platforms. Nat Methods 2005;2:351–6PubMedCrossRefGoogle Scholar
  3. Dobbin K, Simon R. Comparison of microarray designs for class comparison and class discovery. Bioinformatics 2002;18:1438–45PubMedCrossRefGoogle Scholar
  4. Dobbin K, Simon R. Sample size determination in microarray experiments for class comparison and prognostic classification. Biostatistics 2005;6:27–38PubMedCrossRefGoogle Scholar
  5. Dobbin K, Simon R. Sample size planning for developing classifiers using high dimensional DNA microarray data. Biostatistics 2007;8:101–17PubMedCrossRefGoogle Scholar
  6. Dobbin K, Shih JH, Simon R. Statistical design of reverse dye microarrays. Bioinformatics 2003;19:803–10PubMedCrossRefGoogle Scholar
  7. Dobbin KK,Beer DG, Meyerson M, etal. Interlaboratory comparability study of cancer gene expression analysis using oligonucleotide microarrays. Clin Cancer Res 2005;11:565–72PubMedGoogle Scholar
  8. Dudoit S, Fridlyand J, and Speed TP. Comparison of discrimination methods for the classification of tumors using gene expression data. J Am Stat Assoc 2002;97:77–87CrossRefGoogle Scholar
  9. Hu J, Zou F, Wright FA. Practical FDR-based sample size calculations in microarray experiments. Bioinformatics 2005;21:3264–72PubMedCrossRefGoogle Scholar
  10. Jung SH. Sample size for FDR-control in microarray data analysis. Bioinformatics 2005;21:3097–104PubMedCrossRefGoogle Scholar
  11. Kendziorski CM, Zhang Y, Lan H, Attie AD. The efficiency of pooling mRNA in microarray experiments. Biostatistics 2003;4:465–77PubMedCrossRefGoogle Scholar
  12. Li SS, Bigler J, Lampe JW, Potter JD, Feng Z. FDR-controlling testing procedures and sample size determination for microarrays. Stat Med 2005;24:2267–80PubMedCrossRefGoogle Scholar
  13. Mukherjee S, Tamayo P, Rogers S, etal. Estimating dataset size requirements for classifying DNA microarray data. J Comput Biol 2005;10:119–42CrossRefGoogle Scholar
  14. Paik S, Shak S, Tang G, etal. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med 2004;351:2817–26PubMedCrossRefGoogle Scholar
  15. Shih JH, Michalowska AM, Dobbin K, Ye Y, Qiu TH, Green JE. Effects of pooling mRNA in microarray class comparisons. Bioinformatics 2004;20:3318–25PubMedCrossRefGoogle Scholar
  16. Simon R. Roadmap for developing and validating therapeutically relevant genomic classifiers. J Clin Oncol 2005;23:7332–41PubMedCrossRefGoogle Scholar
  17. Simon RM, Dobbin K. Experimental design of DNA microarray experiments. Biotechniques 2003;34:516–21Google Scholar
  18. Simon R, Radmacher MD, Dobbin K, McShane LM. Pitfalls in the use of DNA microarray data for diagnostic and prognostic classification. J Natl Cancer Inst 2003;95:14–8PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Kevin K. Dobbin
    • 1
  • Richard M. Simon
    • 1
  1. 1.Biometric Research BranchNational Cancer InstituteBethesdaUSA

Personalised recommendations