Skip to main content

HIV-1 Sequence Diversity as a Window Into HIV-1 Biology

  • Conference paper
National Institute of Allergy and Infectious Diseases, NIH

Part of the book series: Infectious Disease ((ID))

  • 858 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Delwart EL, et al (1993) Genetic relationships determined by a DNA heteroduplex mobility assay: analysis of HIV-1 env genes. Science 262:1257–1261.

    PubMed  CAS  Google Scholar 

  2. Sagar M, et al (2003) Infection with multiple human immunodeficiency virus type 1 variants is associated with faster disease progression. J Virol 77:12,921–12,926.

    CAS  Google Scholar 

  3. Delwart E, et al (2002) Homogeneous quasispecies in 16 out of 17 individuals during very early HIV-1 primary infection. AIDS 16:189–195.

    PubMed  CAS  Google Scholar 

  4. Delwart EL, et al (1994) Human immunodeficiency virus type 1 evolution in vivo tracked by DNA heteroduplex mobility assays. J Virol 68:6672–6683.

    PubMed  CAS  Google Scholar 

  5. Ritola K, et al (2004) Multiple V1/V2 env variants are frequently present during primary infection with human immunodeficiency virus type 1. J Virol 78:11,208–11,218.

    CAS  Google Scholar 

  6. Schacker T, et al (1996) Clinical and epidemiologic features of primary HIV infection. Ann Intern Med 125:257–264.

    PubMed  CAS  Google Scholar 

  7. Borrow P, et al (1997) Antiviral pressure exerted by HIV-1-spe-cific cytotoxic T lymphocytes (CTLs) during primary infection demonstrated by rapid selection of CTL escape virus. Nat Med 3:205–211.

    PubMed  CAS  Google Scholar 

  8. Lindback S, et al (2000) Viral dynamics in primary HIV-1 infection. Karolinska Institutet Primary HIV Infection Study Group. AIDS 14:2283–2291.

    PubMed  CAS  Google Scholar 

  9. Rybarczyk BJ, et al (2004) Correlation between env V1/V2 region diversification and neutralizing antibodies during primary infection by simian immunodeficiency virus sm in rhesus macaques. J Virol 78:3561–3571.

    PubMed  CAS  Google Scholar 

  10. Delwart EL, Gordon CJ (1997) Tracking changes in HIV-1 envelope quasispecies using DNA heteroduplex analysis. Methods 12:348–354.

    PubMed  CAS  Google Scholar 

  11. Resch W, et al (2001) A multiple-site-specific heteroduplex tracking assay as a tool for the study of viral population dynamics. Proc Natl Acad Sci USA 98:176–181.

    PubMed  CAS  Google Scholar 

  12. Ritola K, et al (2005) Increased human immunodeficiency virus type 1 (HIV-1) env compartmentalization in the presence of HIV-1-associated dementia. J Virol 79:10,830–10,834.

    CAS  Google Scholar 

  13. Harrington PR, et al (2005) Compartmentalized human immunodeficiency virus type 1 present in cerebrospinal fluid is produced by short-lived cells. J Virol 79:7959–7966.

    PubMed  CAS  Google Scholar 

  14. Long EM, et al (2000) Gender differences in HIV-1 diversity at time of infection. Nat Med 6:71–75.

    PubMed  CAS  Google Scholar 

  15. Zhu T, et al (1996) Genetic characterization of human immunodeficiency virus type 1 in blood and genital secretions: evidence for viral compartmentalization and selection during sexual transmission. J Virol 70:3098–3107.

    PubMed  CAS  Google Scholar 

  16. Gorry PR, et al (2001) Macrophage tropism of human immunodeficiency virus type 1 isolates from brain and lymphoid tissues predicts neurotropism independent of coreceptor specificity. J Virol 75:10,073–10,089.

    CAS  Google Scholar 

  17. McGrath KM, et al (2001) Using HIV-1 sequence variability to explore virus biology. Virus Res 76:137–160.

    PubMed  CAS  Google Scholar 

  18. Staprans S, et al (1999) Time course of cerebrospinal fluid responses to antiretroviral therapy: evidence for variable com-partmentalization of infection. AIDS 13:1051–1061.

    PubMed  CAS  Google Scholar 

  19. Steuler H, Storch-Hagenlocher B, Wildemann B (1992) Distinct populations of human immunodeficiency virus type 1 in blood and cerebrospinal fluid. AIDS Res Hum Retroviruses 8:53–59.

    PubMed  CAS  Google Scholar 

  20. McArthur JC, et al (2003) Human immunodeficiency virus-associated dementia: an evolving disease. J Neurovirol 9:205–221.

    PubMed  CAS  Google Scholar 

  21. Gonzalez-Scarano F, Martin-Garcia J (2005) The neuropatho-genesis of AIDS. Nat Rev Immunol 5:69–81.

    PubMed  CAS  Google Scholar 

  22. Eggers C, et al (2003) Delayed central nervous system virus suppression during highly active antiretroviral therapy is associated with HIV encephalopathy, but not with viral drug resistance or poor central nervous system drug penetration. AIDS 17:1897–1906.

    PubMed  Google Scholar 

  23. Ellis RJ, et al (1997) Cerebrospinal fluid human immunodeficiency virus type 1 RNA levels are elevated in neurocognitively impaired individuals with acquired immunodeficiency syndrome. HIV Neurobehavioral Research Center Group. Ann Neurol 42:679–688.

    PubMed  CAS  Google Scholar 

  24. Crowe S, Zhu T, Muller WA (2003) The contribution of mono-cyte infection and trafficking to viral persistence, and maintenance of the viral reservoir in HIV infection. J Leukoc Biol 74:635–641.

    PubMed  CAS  Google Scholar 

  25. Pierson T, McArthur J, Siliciano RF (2000) Reservoirs for HIV-1: mechanisms for viral persistence in the presence of antiviral immune responses and antiretroviral therapy. Annu Rev Immunol 18:665–708.

    PubMed  CAS  Google Scholar 

  26. Siliciano RF (1999) Latency and reservoirs for HIV-1. AIDS 13:S49–S58.

    PubMed  CAS  Google Scholar 

  27. Henderson GJ, et al(2004) HIV-1 populations in blood and breast milk are similar. Virology 330:295–303.

    PubMed  CAS  Google Scholar 

  28. Ellis RJ, et al (2000) Cerebrospinal fluid HIV RNA originates from both local CNS and systemic sources. Neurology 54:927–936.

    PubMed  CAS  Google Scholar 

  29. Strain MC, et al (2005) Genetic composition of human immunodeficiency virus type 1 in cerebrospinal fluid and blood without treatment and during failing antiretroviral therapy. J Virol 79:1772–1788.

    PubMed  CAS  Google Scholar 

  30. von Giesen HJ, et al (2005) Cerebrospinal fluid HIV viral load in different phases of HIV-associated brain disease. J Neurol 252:801–807.

    Google Scholar 

  31. Neuenburg JK, et al (2002) HIV-related neuropathology, 1985 to 1999: rising prevalence of HIV encephalopathy in the era of highly active antiretroviral therapy. J Acquir Immune Defic Syndr 31:171–177.

    PubMed  Google Scholar 

  32. Schrager LK, D'Souza MP (1998) Cellular and anatomical reservoirs of HIV-1 in patients receiving potent antiretroviral combination therapy. JAMA 280:67–71.

    PubMed  CAS  Google Scholar 

  33. Price RW, et al (2001) Cerebrospinal fluid response to structured treatment interruption after virological failure. AIDS 15:1251–1259.

    PubMed  CAS  Google Scholar 

  34. Gonzalez E, et al (2002) HIV-1 infection and AIDS dementia are influenced by a mutant MCP-1 allele linked to increased monocyte infiltration of tissues and MCP-1 levels. Proc Natl Acad Sci USA 99:13,795–13,800.

    CAS  Google Scholar 

  35. Sabri F, et al (2003) Astrocyte activation and apoptosis: their roles in the neuropathology of HIV infection. Brain Pathol 13:84–94.

    PubMed  Google Scholar 

  36. Garden GA (2002) Microglia in human immunodeficiency virus-associated neurodegeneration. Glia 40:240–251.

    PubMed  Google Scholar 

  37. Persidsky Y, Gendelman HE (2003) Mononuclear phagocyte immunity and the neuropathogenesis of HIV-1 infection. J Leu-koc Biol 74:691–701.

    CAS  Google Scholar 

  38. Ho DD, et al (1995) Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature 373:123–126.

    PubMed  CAS  Google Scholar 

  39. Markowitz M, et al (2003) A novel antiviral intervention results in more accurate assessment of human immunodeficiency virus type 1 replication dynamics and T-cell decay in vivo. J Virol 77:5037–5038.

    PubMed  CAS  Google Scholar 

  40. Wei X, et al (1995) V iral dynamics in human immunodeficiency virus type 1 infection. Nature 373:117–122.

    PubMed  CAS  Google Scholar 

  41. Michael NL, et al (1997) The role of viral phenotype and CCR-5 gene defects in HIV-1 transmission and disease progression. Nat Med 3:338–340.

    PubMed  CAS  Google Scholar 

  42. Roos MT, et al (1992) Viral phenotype and immune response in primary human immunodeficiency virus type 1 infection. J Infect Dis 165:427–432.

    PubMed  CAS  Google Scholar 

  43. van't Wout AB, et al (1994) Macrophage-tropic variants initiate human immunodeficiency virus type 1 infection after sexual, par-enteral, and vertical transmission. J Clin Invest 94:2060–2067.

    PubMed  Google Scholar 

  44. Zhu T, et al (1993) Genotypic and phenotypic characterization of HIV-1 patients with primary infection. Science 261:1179–1181.

    PubMed  CAS  Google Scholar 

  45. Huang Y, et al (1996) The role of a mutant CCR5 allele in HIV-1 transmission and disease progression. Nat Med 2:1240–1243.

    PubMed  CAS  Google Scholar 

  46. Geijtenbeek TB, et al (2002) Identification of different binding sites in the dendritic cell-specific receptor DC-SIGN for intercellular adhesion molecule 3 and HIV-1. J Biol Chem 277:11,314–11,320.

    CAS  Google Scholar 

  47. Hladik F, et al (2005) Combined effect of CCR5-Delta32 het-erozygosity and the CCR5 promoter polymorphism-2459 A/G on CCR5 expression and resistance to human immunodeficiency virus type 1 transmission. J Virol 79:11,677–11,684.

    CAS  Google Scholar 

  48. Liu R, et al (1996) Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell 86:367–377.

    PubMed  CAS  Google Scholar 

  49. Mummidi S, et al (1998) Genealogy of the CCR5 locus and chemokine system gene variants associated with altered rates of HIV-1 disease progression. Nat Med 4:786–793.

    PubMed  CAS  Google Scholar 

  50. Connor RI, et al (1997) Change in coreceptor use coreceptor use correlates with disease progression in HIV-1-infected individuals. J Exp Med 185:621–628.

    PubMed  CAS  Google Scholar 

  51. Richman DD, Bozzette SA (1994) The impact of the syncy-tium-inducing phenotype of human immunodeficiency virus on disease progression. J Infect Dis 169:968–974.

    PubMed  CAS  Google Scholar 

  52. Scarlatti G, et al (1997) In vivo evolution of HIV-1 co-receptor usage and sensitivity to chemokine-mediated suppression. Nat Med 3:1259–1265.

    PubMed  CAS  Google Scholar 

  53. Schramm B, et al (2000) Viral entry through CXCR4 is a pathogenic factor and therapeutic target in human immunodeficiency virus type 1 disease. J Virol 74:184–192.

    PubMed  CAS  Google Scholar 

  54. Jekle A, et al (2003) In vivo evolution of human immunodeficiency virus type 1 toward increased pathogenicity through CXCR4-mediated killing of uninfected CD4 T cells. J Virol 77:5846–5854.

    PubMed  CAS  Google Scholar 

  55. Penn ML, et al (1996) CXCR4 utilization is sufficient to trigger CD4+ T cell depletion in HIV-1-infected human lymphoid tissue. Proc Natl Acad Sci USA 96:663–668.

    Google Scholar 

  56. Bagnarelli P, et al (2003) Analysis of the functional relationship between V3 loop and gp120 context with regard to human immunodeficiency virus coreceptor usage using naturally selected sequences and different viral backbones. Virology 307:328–340.

    PubMed  CAS  Google Scholar 

  57. Karlsson I, et al (2004) Coevolution of RANTES sensitivity and mode of CCR5 receptor use by human immunodeficiency virus type 1 of the R5 phenotype. J Virol 78:11,807–11,815.

    CAS  Google Scholar 

  58. Pastore C, et al (2006) Human immunodeficiency virus type 1 coreceptor switching: V1/V2 gain-of-fitness mutations compensate for V3 loss-of-fitness mutations. J Virol 80:750–758.

    PubMed  CAS  Google Scholar 

  59. Stalmeijer EH, et al (2004) In vivo evolution of X4 human immunodeficiency virus type 1 variants in the natural course of infection coincides with decreasing sensitivity to CXCR4 antagonists. J Virol 78:2722–2728.

    PubMed  CAS  Google Scholar 

  60. Basmaciogullari S, et al (2002) Identification of conserved and variable structures in the human immunodeficiency virus gp120 glycoprotein of importance for CXCR4 binding. J Virol 76:10,791–10,800.

    CAS  Google Scholar 

  61. Biscone MJ, et al (2006) Functional impact of HIV coreceptor-binding site mutations. Virology 351:226–236.

    PubMed  CAS  Google Scholar 

  62. Lederman MM, et al (2006) Biology of CCR5 and its role in HIV infection and treatment. JAMA 296:815–826.

    PubMed  CAS  Google Scholar 

  63. Bleul CC, et al (1997) The HIV coreceptors CXCR4 and CCR5 are differentially expressed and regulated on human T lymphocytes. Proc Natl Acad Sci USA 94:1925–1930.

    PubMed  CAS  Google Scholar 

  64. Grivel JC, Margolis LB (1999) CCR5- and CXCR4-tropic HIV-1 are equally cytopathic for their T-cell targets in human lymphoid tissue. Nat Med 5:344–346.

    PubMed  CAS  Google Scholar 

  65. Brenchley JM, et al (2004) CD4+ T cell depletion during all stages of HIV disease occurs predominantly in the gastrointestinal tract. J Exp Med 200:749–759.

    PubMed  CAS  Google Scholar 

  66. Mattapallil JJ, et al (2005) Massive infection and loss of memory CD4+ T cells in multiple tissues during acute SIV infection. Nature 434:1093–1097.

    PubMed  CAS  Google Scholar 

  67. Veazey RS, et al (1998) Gastrointestinal tract as a major site of CD4+ T cell depletion and viral replication in SIV infection. Science 280:427–431.

    PubMed  CAS  Google Scholar 

  68. Pastore C, Ramos A, Mosier DE (2004) Intrinsic obstacles to human immunodeficiency virus type 1 coreceptor switching. J Virol 78:7565–7574.

    PubMed  CAS  Google Scholar 

  69. Roy AM, et al (2005) Enhanced replication of R5 HIV-1 over X4 HIV-1 in CD4(+)CCR5(+)CXCR4(+) T cells. J Acquir Immune Defic Syndr 40:267–275.

    PubMed  Google Scholar 

  70. de Roda Husman AM, et al (1999) Adaptation to promiscuous usage of chemokine receptors is not a prerequisite for human immunodeficiency virus type 1 disease progression. J Infect Dis 180:1106–1115.

    PubMed  Google Scholar 

  71. Li S, et al (1999) Persistent CCR5 utilization and enhanced macrophage tropism by primary blood human immunodeficiency virus type 1 isolates from advanced stages of disease and comparison to tissue-derived isolates. J Virol 73:9741–9755.

    PubMed  CAS  Google Scholar 

  72. Este JA, et al (1999) Shift of clinical human immunodeficiency virus type 1 isolates from X4 to R5 and prevention of emergence of the syncytium-inducing phenotype by blockade of CXCR4. J Virol 73:5577–5585.

    PubMed  CAS  Google Scholar 

  73. Coetzer M, et al (2006) Genetic characteristics of the V3 region associated with CXCR4 usage in HIV-1 subtype C isolates. Virology 356:95–105.

    PubMed  CAS  Google Scholar 

  74. Pollakis G, et al (2001) N-linked glycosylation of the HIV type-1 gp120 envelope glycoprotein as a major determinant of CCR5 and CXCR4 coreceptor utilization. J Biol Chem 276:13,433–13,441.

    CAS  Google Scholar 

  75. De Jong JJ, et al (1992) Minimal requirements for the human immunodeficiency virus type 1 V3 domain to support the syn-cytium-inducing phenotype: analysis by single amino acid substitution. J Virol 66:6777–6780.

    PubMed  Google Scholar 

  76. Fouchier RA, et al (1995) Simple determination of human immunodeficiency virus type 1 syncytium-inducing V3 genotype by PCR. J Clin Microbiol 33:906–911.

    PubMed  CAS  Google Scholar 

  77. Fouchier RA, Schuitemaker H (1996) Molecular determinants of human immunodeficiency virus type I phenotype variability. Eur J Clin Invest 26:175–185.

    PubMed  CAS  Google Scholar 

  78. Hoffman NG, et al (2002) Variability in the human immunodeficiency virus type 1 gp120 Env protein linked to phenotype-associated changes in the V3 loop. J Virol 76:3852–3864.

    PubMed  CAS  Google Scholar 

  79. Resch W, Hoffman N, Swanstrom R (2001) Improved success of phenotype prediction of the human immunodeficiency virus type 1 from envelope variable loop 3 sequence using neural networks. Virology 288:51–62.

    PubMed  CAS  Google Scholar 

  80. Jensen MA, et al (2003) Improved coreceptor usage prediction and genotypic monitoring of R5-to-X4 transition by motif analysis of human immunodeficiency virus type 1 env V3 loop sequences. J Virol 77:13,376–13,388.

    CAS  Google Scholar 

  81. Jensen MA, et al (2006) A reliable phenotype predictor for human immunodeficiency virus type 1 subtype C based on envelope V3 sequences. J Virol 80:4698–4704.

    PubMed  CAS  Google Scholar 

  82. Kuiken C, et al (2000) Genetic analysis reveals epidemiologic patterns in the spread of human immunodeficiency virus. Am J Epidemiol 152:814–822.

    PubMed  CAS  Google Scholar 

  83. Robertson DL, et al (2000) HIV-1 nomenclature proposal. Science 288:55–56.

    PubMed  CAS  Google Scholar 

  84. Shankarappa R, et al (1999) Consistent viral evolutionary changes associated with the progression of human immunodeficiency virus type 1 infection. J Virol 73:10,489–10,502.

    CAS  Google Scholar 

  85. Abebe A, et al (1999) HIV-1 subtype C syncytium- and non-syncytium-inducing phenotypes and coreceptor usage among Ethiopian patients with AIDS. AIDS 13:1305–1311.

    PubMed  CAS  Google Scholar 

  86. Batra M, et al (2000) HIV type 1 envelope subtype C sequences from recent seroconverters in Zimbabwe. AIDS Res Hum Ret-roviruses 16:973–979.

    CAS  Google Scholar 

  87. Bjorndal A, et al (1999) Phenotypic characteristics of human immunodeficiency virus type 1 subtype C isolates of Ethiopian AIDS patients. AIDS Res Hum Retroviruses 15:647–653.

    PubMed  CAS  Google Scholar 

  88. Bjorndal A, et al (1997) Coreceptor usage of primary human immunodeficiency virus type 1 isolates varies according to biological phenotype. J Virol 71:7478–7487.

    PubMed  CAS  Google Scholar 

  89. Cecilia D, et al (2000) Absence of coreceptor switch with disease progression in human immunodeficiency virus infections in India. Virology 271:253–258.

    PubMed  CAS  Google Scholar 

  90. Cilliers T, et al (2003) The CCR5 and CXCR4 coreceptors are both used by human immunodeficiency virus type 1 primary isolates from subtype C. J Virol 77:4449–4456.

    PubMed  CAS  Google Scholar 

  91. Johnston ER, et al (2003) High frequency of syncytium-inducing and CXCR4-tropic viruses among human immunodeficiency virus type 1 subtype C-infected patients receiving antiretroviral treatment. J Virol 77:7682–7688.

    PubMed  CAS  Google Scholar 

  92. Ping LH, et al (1999) Characterization of V3 sequence heterogeneity in subtype C human immunodeficiency virus type 1 isolates from Malawi: underrepresentation of X4 variants. J Virol 73:6271–6281.

    PubMed  CAS  Google Scholar 

  93. Tscherning C, et al (1998) Differences in chemokine core-ceptor usage between genetic subtypes of HIV-1. Virology 241:181–188.

    PubMed  CAS  Google Scholar 

  94. Pollakis G, et al (2004) Phenotypic and genotypic comparisons of CCR5- and CXCR4-tropic human immunodeficiency virus type 1 biological clones isolated from subtype C-infected individuals. J Virol 78:2841–2852.

    PubMed  CAS  Google Scholar 

  95. Ball SC, et al (2003) Comparing the ex vivo fitness of CCR5-tropic human immunodeficiency virus type 1 isolates of subtypes B and C. J Virol 77:1021–1038.

    PubMed  CAS  Google Scholar 

  96. Suphaphiphat P, et al (2003) Effect of amino acid substitution of the V3 and bridging sheet residues in human immunodeficiency virus type 1 subtype C gp120 on CCR5 utilization. J Virol 77:3832–3837.

    PubMed  CAS  Google Scholar 

  97. Dragic T, et al (1998) Amino-terminal substitutions in the CCR5 coreceptor impair gp120 binding and human immunodeficiency virus type 1 entry. J Virol 72:279–285.

    PubMed  CAS  Google Scholar 

  98. Genoud S, et al (1999) CCR5-Mediated human immunodeficiency virus entry depends on an amino-terminal gp120-binding site and on the conformational integrity of all four extracellular domains. J Virol 73:1645–1648.

    PubMed  CAS  Google Scholar 

  99. Rabut GE, et al (1998) Alanine substitutions of polar and nonpolar residues in the amino-terminal domain of CCR5 differently impair entry of macrophage- and dualtropic isolates of human immunodeficiency virus type 1. J Virol 72:3464–3468.

    PubMed  CAS  Google Scholar 

  100. Sharon M, et al (2003) Alternative conformations of HIV-1 V3 loops mimic beta hairpins in chemokines, suggesting a mechanism for coreceptor selectivity. Structure 11:225–236.

    PubMed  CAS  Google Scholar 

  101. Pitisuttithum P, et al (2004) Phase I/II study of a candidate vaccine designed against the B and E subtypes of HIV-1. J Acquir Immune Defic Syndr 37:1160–1165.

    PubMed  CAS  Google Scholar 

  102. Moog C, et al (1997) Autologous and heterologous neutralizing antibody responses following initial seroconversion in human immunodeficiency virus type 1-infected individuals. J Virol 71:3734–3741.

    PubMed  CAS  Google Scholar 

  103. Wei X, et al (2003) Antibody neutralization and escape by HIV-1. Nature 422:307–312.

    PubMed  CAS  Google Scholar 

  104. Cao Y, et al (1995) Virologic and immunologic characterization of long-term survivors of human immunodeficiency virus type 1 infection. N Engl J Med 332:201–208.

    PubMed  CAS  Google Scholar 

  105. Lauren A, et al (2006) Comparative studies on mucosal and intravenous transmission of simian immunodeficiency virus (SIVsm): evolution of coreceptor use varies with pathogenic outcome. J Gen Virol 87:581–594.

    PubMed  CAS  Google Scholar 

  106. Montefiori DC, et al (1996) Neutralizing and infection-enhancing antibody responses to human immunodeficiency virus type 1 in long-term nonprogressors. J Infect Dis 173:60–67.

    PubMed  CAS  Google Scholar 

  107. Gorny MK, et al (1992) Neutralization of diverse human immunodeficiency virus type 1 variants by an anti-V3 human monoclonal antibody. J Virol 66:7538–7542.

    PubMed  CAS  Google Scholar 

  108. Burton DR, et al (1994) Efficient neutralization of primary isolates of HIV-1 by a recombinant human monoclonal antibody. Science 266:1024–1027.

    PubMed  CAS  Google Scholar 

  109. Thali M, et al (1993) Characterization of conserved human immunodeficiency virus type 1 gp120 neutralization epitopes exposed upon gp120-CD4 binding. J Virol 67:3978–3988.

    PubMed  CAS  Google Scholar 

  110. Trkola A, et al (1996) Human monoclonal antibody 2G12 defines a distinctive neutralization epitope on the gp120 gly-coprotein of human immunodeficiency virus type 1. J Virol 70:1100–1108.

    PubMed  CAS  Google Scholar 

  111. Zwick MB, et al (2001) Broadly neutralizing antibodies targeted to the membrane-proximal external region of human immunodeficiency virus type 1 glycoprotein gp41. J Virol 75:10,892–10,905.

    CAS  Google Scholar 

  112. Muster T, et al (1993) A conserved neutralizing epitope on gp41 of human immunodeficiency virus type 1. J Virol 67:6642–6647.

    PubMed  CAS  Google Scholar 

  113. Haynes BF, et al (2005) Cardiolipin polyspecific autoreac-tivity in two broadly neutralizing HIV-1 antibodies. Science 308:1906–1908.

    PubMed  CAS  Google Scholar 

  114. Mehandru S, et al (2004) Neutralization profiles of newly transmitted human immunodeficiency virus type 1 by monoclonal antibodies 2G12, 2F5, and 4E10. J Virol 78:14,039–14,042.

    CAS  Google Scholar 

  115. Binley JM, et al (2004) Comprehensive cross-clade neutralization analysis of a panel of anti-human immunodeficiency virus type 1 monoclonal antibodies. J Virol 78:13,232–13,252.

    CAS  Google Scholar 

  116. Yuste E, et al (2006) Simian immunodeficiency virus engrafted with human immunodeficiency virus type 1 (HIV-1)-specific epitopes: replication, neutralization, and survey of HIV-1-posi-tive plasma. J Virol 80:3030–3041.

    PubMed  CAS  Google Scholar 

  117. Baba TW, et al (2000) Human neutralizing monoclonal antibodies of the IgG1 subtype protect against mucosal simian-human immunodeficiency virus infection. Nat Med 6:200–20.

    PubMed  CAS  Google Scholar 

  118. Mascola JR, et al (1999) Protection of Macaques against pathogenic simian/human immunodeficiency virus 89.6PD by passive transfer of neutralizing antibodies. J Virol 73:4009–4018.

    PubMed  CAS  Google Scholar 

  119. Mascola JR, et al (2000) Protection of macaques against vaginal transmission of a pathogenic HIV-1/SIV chimeric virus by passive infusion of neutralizing antibodies. Nat Med 6:207–21.

    PubMed  CAS  Google Scholar 

  120. Trkola A, et al (2005) Delay of HIV-1 rebound after cessation of antiretroviral therapy through passive transfer of human neutralizing antibodies. Nat Med 11:615–622.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful for the long-term support from the NIH and especially the NIAID award R37-AI44667 that allowed us to pursue questions about the biological implications of HIV-1 sequence diversity. We are also grateful to other lab members past and present who contributed to the studies cited in this manuscript.

Author information

Authors and Affiliations

Authors

Editor information

Vassil St. Georgiev PhD Karl A. Western MD John J. McGowan PhD

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this paper

Cite this paper

Patel, M., Schnell, G., Swanstrom, R. (2008). HIV-1 Sequence Diversity as a Window Into HIV-1 Biology. In: Georgiev, V.S., Western, K.A., McGowan, J.J. (eds) National Institute of Allergy and Infectious Diseases, NIH. Infectious Disease. Humana Press. https://doi.org/10.1007/978-1-59745-569-5_33

Download citation

Publish with us

Policies and ethics