Skip to main content

Mutant Selection Window Hypothesis: A Framework for Anti-mutant Dosing of Antimicrobial Agents

  • Conference paper

Part of the book series: Infectious Disease ((ID))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Davidson R, Cavalcanti R, Brunton J, Bast DJ, deAzavedo JC, Kibsey P, Fleming C, Low DE (2002) Resistance to levofloxacin and failure of treatment of pneumococcal pneumonia. N Eng J Med 346:747–750.

    Article  Google Scholar 

  2. Tapsall J (2006) Antibiotic resistance in Neisseria gonorrhoeae is diminishing available treatment options for gonorrhea: some possible remedies. Expert Rev Anti Infect Ther 4:619–628.

    Article  PubMed  CAS  Google Scholar 

  3. Baquero F (1996) Trends in antibiotic resistance of respiratory pathogens: an analysis and commentary on a collaborative surveillance study. J Antimicrob Chemother 38:117–132.

    Article  PubMed  CAS  Google Scholar 

  4. Carey B, Cryan B (2003) Antibiotic misuse in the community—a contributor to resistance. Irish Med J 96:43–45.

    CAS  Google Scholar 

  5. Stratton C (2003) Dead bugs don't mutate: susceptibility issues in the emergence of bacterial resistance. Emerg Infect Dis 9:10–16.

    PubMed  CAS  Google Scholar 

  6. Sullivan EA, Kreiswirth BN, Palumbo L, Kapur V, Musser JM, Ebrahimzadeh A, Frieden TR (1995) Emergence of fluo-roquinolone-resistant tuberculosis in New York City. Lancet 345:1148–1150.

    Article  PubMed  CAS  Google Scholar 

  7. Xu C, Kreiswirth BN, Sreevatsan S, Musser JM, Drlica K (1996) Fluoroquinolone resistance associated with specific gyrase mutations in clinical isolates of multidrug resistant Mycobacterium tuberculosis. J Infect Dis 174:1127–1130.

    PubMed  CAS  Google Scholar 

  8. Ito T, Matsumoto M, Nishino T (1995) Improved bactericidal activity of Q-35 against quinolone-resistant Staphylococci. Anti-microb Agents Chemother 39:1522–1525.

    CAS  Google Scholar 

  9. Zhao X, Wang J-Y, Xu C, Dong Y, Zhou J, Domagala J, Drlica K (1998) Killing of Staphylococcus aureus by C-8-methoxy fluo-roquinolones. Antimicrob Agents Chemother 42:956–958.

    PubMed  CAS  Google Scholar 

  10. Dong Y, Xu C, Zhao X, Domagala J, Drlica K (1998) Fluoroqui-nolone action against mycobacteria: effects of C8 substituents on bacterial growth, survival, and resistance. Antimicrob Agents Chemother 42:2978–2984.

    PubMed  CAS  Google Scholar 

  11. Zhao B-Y, Pine R, Domagala J, Drlica K (1999) Fluoroquino-lone action against clinical isolates of Mycobacterium tuberculosis : effects of a C8-methoxyl group on survival in liquid media and in human macrophages. Antimicrob Agents Che-mother 43: 661 – 666.

    CAS  Google Scholar 

  12. Zhao X, Xu C, Domagala J, Drlica K (1997) DNA topoisomer-ase targets of the fluoroquinolones: a strategy for avoiding bacterial resistance. Proc Natl Acad Sci USA 94:13,991–13,996.

    CAS  Google Scholar 

  13. Lu T, Zhao X, Drlica K (1999) Gatifloxacin activity against quinolone-resistant gyrase: allele-specific enhancement of bac-teriostatic and bactericidal activity by the C-8-methoxy group. Antimicrob Agents Chemother 43:2969–2974.

    PubMed  CAS  Google Scholar 

  14. Dong Y, Zhao X, Domagala J, Drlica K (1999) Effect of fluo-roquinolone concentration on selection of resistant mutants of Mycobacterium bovis BCG and Staphylococcus aureus. Antimi-crob Agents Chemother 43:1756–1758.

    CAS  Google Scholar 

  15. Sindelar G, Zhao X, Liew A, Dong Y, Zhou J, Domagala J, Drlica K (2000) Mutant prevention concentration as a measure of fluoroquinolone potency against mycobacteria. Antimicrob Agents Chemother 44:3337–3343.

    Article  PubMed  CAS  Google Scholar 

  16. Zhou J, Dong Y, Zhao X, Lee S, Amin A, Ramaswamy S, Domagala J, Musser JM, Drlica K (2000) Selection of antibiotic resistant bacterial mutants: allelic diversity among fluoroquino-lone-resistant mutations. J Inf Dis 182:517–525.

    Article  CAS  Google Scholar 

  17. Drlica K (2003) The mutant selection window and antimicrobial resistance. J Antimicrob Chemother 52:11–17.

    Article  PubMed  CAS  Google Scholar 

  18. Sieradzki K, Roberts R, Haber S, Tomasz A (1999) The development of vancomycin resistance in a patient with methicil-lin-resistant Staphylococcus aureus infection. N Engl J Med 340:517–523.

    Article  PubMed  CAS  Google Scholar 

  19. Sieradzki K, Leski T, Dick J, Borio L, Tomasz A (2003) Evolution of a vancomycin-intermediate Staphylococcus aureus strain in vivo : multiple changes in the antibiotic resistance phe-notypes of a single lineage of methicillin-resistant S. aureus under the impact of antibiotics administered for chemotherapy. J Clin Microbiol 41:1687–1693.

    Article  PubMed  CAS  Google Scholar 

  20. Drlica K, Zhao X, Wang J-Y, Malik M, Lu T, Park S, Li X, Per-lin D (2008) An antimutant approach for antimicrobial use. In Antimicrobial Resistance and Implications for the 21st Century (Fong I, Drlica K, eds.). pp. 371–400.

    Google Scholar 

  21. Lu T, Zhao X, Li X, Hansen G, Blondeau J, Drlica K (2003) Effect of chloramphenicol, erythromycin, moxifloxacin, penicillin, and tetracycline concentration on the recovery of resistant mutants of Mycobacterium smegmatis and Staphylococcus aureus. J Antimicrob Chemother 52:61–64.

    Article  PubMed  CAS  Google Scholar 

  22. Zhao X, Drlica K (2002) Restricting the selection of antibiotic-resistant mutants: measurement and potential uses of the mutant selection window. J Inf Dis 185:561–565.

    Article  Google Scholar 

  23. Li X, Zhao X, Drlica K (2002) Selection of Streptococcus pneumoniae mutants having reduced susceptibility to levofloxacin and moxifloxacin. Antimicrob Agents Chemother 46:522–524.

    Article  PubMed  CAS  Google Scholar 

  24. Poole K (2004) Resistance to b-lactam antibiotics. Cell Mol Life Sci 61:2200–2223.

    Article  PubMed  CAS  Google Scholar 

  25. Chambers HF (1997) Penicillin-binding protein-mediated resistance in pneumococci and staphylococci. Clin Microbiol Rev 10:781–791.

    PubMed  CAS  Google Scholar 

  26. Hovde L, Rotschafer S, Ibrahim K, Gunderson B, Hermsen E, Rotschafer J (2003) Mutation prevention concentration of cef-triaxone, meropenem, imipenem, and ertapenem against three strains of Streptococcus pneumoniae. Diagn Microbiol Infect Dis 45:265–267.

    Article  PubMed  CAS  Google Scholar 

  27. Dong Y, Zhao X, Kreiswirth B, Drlica K (2000) Mutant prevention concentration as a measure of antibiotic potency: studies with clinical isolates of Mycobacterium tuberculosis. Antimi-crob Agents Chemother 44:2581–2584.

    Article  CAS  Google Scholar 

  28. Sande M, Mandell G (1975) Effect of rifampicin on nasal carriage of Staphylococcus aureus. Antimicrob Agents Chemother 7:294–297.

    PubMed  CAS  Google Scholar 

  29. Binda G, Domenichini A, Gottardi A, Orlandi B, Ortelli E, Pacini B, Fowst G (1971) Rifampicin, a general review. Arz-neim-Forsch 21:1908–1977.

    Google Scholar 

  30. Sanders C (2001) Mechanisms responsible for cross-resistance and dichotomous resistance among the quinolones. Clin Inf Dis 32:S1–S8.

    Article  CAS  Google Scholar 

  31. Marcusson L, Olofsson S, Lindgren P, Cars O, Hughes D (2005) Mutant prevention concentration of ciprofloxacin for urinary tract infection isolates of Escherichia coli. J Antimicrob Che-mother 55:938–943.

    Article  CAS  Google Scholar 

  32. Drlica K, Zhao X, Blondeau J, Hesje C (2006) Low correlation between minimal inhibitory concentration (MIC) and mutant prevention concentration (MPC). Antimicrob Agents Chemother 50:403–404.

    Article  PubMed  CAS  Google Scholar 

  33. Blondeau J, Zhao X, Hansen G, Drlica K (2001) Mutant prevention concentrations (MPC) or fluoroquinolones with clinical isolates of Streptococcus pneumoniae. Antimicrob Agents Che-mother 45:433–438.

    Article  CAS  Google Scholar 

  34. Hansen G, Metzler K, Drlica K, Blondeau JM (2003) Mutant prevention concentration for gemifloxacin with clinical isolates of Streptococcus pneumoniae. Antimicrob Agents Chemother 47:440–441.

    Article  PubMed  CAS  Google Scholar 

  35. Hansen G, Zhao X, Drlica K, Blondeau J (2006) Mutant prevention concentration for ciprofloxacin and levofloxacin with Pseu-domonas aeruginosa. Int J Antimicrob Agents 27:127–124.

    Article  Google Scholar 

  36. Baquero F, Negri M (1997) Strategies to minimize the development of antibiotic resistance. J Chemother 9:29–37.

    PubMed  CAS  Google Scholar 

  37. Zhao X, Drlica K (2001) Restricting the selection of antibiotic-resistant mutants: a general strategy derived from fluoroquino-lone studies. Clin Inf Dis 33:S147–S156.

    Article  CAS  Google Scholar 

  38. Shockley T, Hotchkiss R (1970) Stepwise introduction of transformable penicillin resistance in pneumococcus. Genetics 64:397–408.

    PubMed  CAS  Google Scholar 

  39. Eliopoulos G, Gardella AR, Moellering J (1984) In vitro activity of ciprofloxacin, a new carboxyquinoline antimicrobial agent. Antimicrob Agents Chemother 25:331–335.

    PubMed  CAS  Google Scholar 

  40. Li X, Mariano N, Rahal JJ, Urban CM, Drlica K (2004) Qui-nolone-resistant Haemophilus influenzae: determination of mutant selection window for ciprofloxacin, garenoxacin, levo-floxacin, and moxifloxacin. Antimicrob Agents Chemother 48:4460–4462.

    Article  PubMed  CAS  Google Scholar 

  41. Firsov A, Vostrov S, Lubenko I, Drlica K, Portnoy Y, Zinner S (2003) In vitro pharmacodynamic evaluation of the mutant selection window hypothesis: four fluoroquinolones against Staphylo-coccus aureus. Antimicrob Agents Chemother 47:1604–1613.

    Article  PubMed  CAS  Google Scholar 

  42. Zinner S, Lubenko I, Gilbert D, Simmons K, Zhao X, Drlica K, Firsov A (2003) Emergence of resistant Streptococcus pneu-moniae in an in vitro dynamic model that simulates moxifloxacin concentration in and out of the mutant selection window: related changes in susceptibility, resistance frequency, and bacterial killing. J Antimicrob Chemother 52:616–622.

    Article  PubMed  CAS  Google Scholar 

  43. Firsov A, Smirnova M, Lubenko I, Vostrov S, Portnoy Y, Zinner S (2006) Testing the mutant selection window hypothesis with Staphylococcus aureus exposed to daptomycin and vancomy-cin in an in vitro dynamic model. J Antimicrob Chemother 58:1185–1192.

    Article  PubMed  CAS  Google Scholar 

  44. Campion J, Chung P, McNamara P, Titlow W, Evans M (2005) Pharmacodynamic modeling of the evolution of levofloxacin resistance in Staphylococcus aureus. Antimicrob Agents Che-mother 49:2189–2199.

    Article  CAS  Google Scholar 

  45. Campion J, McNamara P, Evans M (2005) Pharmacodynamic modeling of ciprofloxacin resistance in Staphylococcus aureus. Antimicrob Agents Chemother 49:209–219.

    Article  PubMed  CAS  Google Scholar 

  46. Campion J, McNamara P, Evans ME (2004) Evolution of cip-rofloxacin-resistant Staphylococcus aureus in in vitro phar-macokinetic environments. Antimicrob Agents Chemother 48:4733–4744.

    Article  PubMed  CAS  Google Scholar 

  47. Etienne M, Croisier D, Charles P-E, Lequeu C, Piroth L, Portier H, Drlica K, Chavanet P (2004) Effect of low-level resistance on subsequent enrichment of fluoroquinolone-resistant Streptococcus pneumoniae in rabbits. J Inf Dis 190:1472–1475.

    Article  CAS  Google Scholar 

  48. Cui J, Liu Y, Wang R, Tong W, Drlica K, Zhao X (2006) The mutant selection window demonstrated in rabbits infected with Staphylococcus aureus. J Inf Dis 194:1601–1608.

    Article  Google Scholar 

  49. Lipsitch M, Levin B (1997) The population dynamics of antimicrobial chemotherapy. Antimicrob Agents Chemother 41:363–373.

    PubMed  CAS  Google Scholar 

  50. Olofsson S, Marcusson L, Komp-Lindgren P, Hughes D, Cars O (2006) Selection of ciprofloxacin resistance in Escherichia coli in an in vitro kinetic model: relation between drug exposure and mutant prevention concentration. J Antimicrob Chemother 57:1116–1121.

    Article  PubMed  CAS  Google Scholar 

  51. Craig W (1998) Pharmacokinetic/pharmacodynamic parameters: rationale for antibacterial dosing of mice and men. Clin Infect Dis 26:1–12.

    Article  PubMed  CAS  Google Scholar 

  52. Drlica K, Zhao X (2007) The mutant selection window hypothesis updated. Clin Inf Dis 44:681–688.

    Article  Google Scholar 

  53. Vernon A, Burman W, Benator D, Khan A, Bozeman L (1999) Acquired rifamycin monoresistance in patients with HIV-related tuberculosis treated with once-weekly rifapentine and isoniazid. The Lancet 353:1843–1847.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Marila Gennaro and Richard Pine for critical comments on the manuscript. The work was supported by grants from Bayer AG, Bristol-Myers-Squibb, Cubist Inc., and NIH grants AI35257 and AI063431.

Author information

Authors and Affiliations

Authors

Editor information

Vassil St. Georgiev PhD Karl A. Western MD John J. McGowan PhD

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this paper

Cite this paper

Drlica, K., Zhao, X. (2008). Mutant Selection Window Hypothesis: A Framework for Anti-mutant Dosing of Antimicrobial Agents. In: Georgiev, V.S., Western, K.A., McGowan, J.J. (eds) National Institute of Allergy and Infectious Diseases, NIH. Infectious Disease. Humana Press. https://doi.org/10.1007/978-1-59745-569-5_12

Download citation

Publish with us

Policies and ethics