Advertisement

Reconstruction and Structural Analysis of Metabolic and Regulatory Networks

  • Hong-wu Ma
  • Marcio Rosa da Silva
  • Ji-Bin Sun
  • Bharani Kumar
  • An-Ping Zeng

Abstract

Networks of interacting cellular components carry out the essential functions in living cells. Therefore, understanding the evolution and design principles of such complex networks is a central issue of systems biology. In recent years, structural analysis methods based on graph theory have revealed several intriguing features of such networks. In this chapter, we describe some of these structural analysis methods and show their application in analysis of biological networks, specifically metabolic and transcriptional regulatory networks (TRNs). We first explain the methods used for reconstruction of biological networks, and then compare the pros and cons of the different methods. It will be shown how graph theory-based methods can help to find the organization principle(s) of the networks, such as the power law degree distribution, the bow-tie connectivity structure, etc. Furthermore, we present an integrated network that includes the metabolite-protein (transcription factor) interaction to link the regulatory network with the metabolic network. This integrated network can provide more insights into the interaction patterns of cellular regulation.

Key Words

Metabolic network regulatory network network reconstruction Scale-free network bow tie network centrality systems biology graph theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kitano H. Computational systems biology. Nature 2002;420(6912):206–210.PubMedCrossRefGoogle Scholar
  2. 2.
    Papin JA, Hunter T, Palsson BO, et al. Reconstruction of cellular signalling networks and analysis of their properties. Nat Rev Mol Cell Biol 2005;6(2):99–111.PubMedCrossRefGoogle Scholar
  3. 3.
    Barabasi AL, Oltvai ZN. Network biology: understanding the cell’s functional organization. Nat Rev Genet 2004;5(2):101–113.PubMedCrossRefGoogle Scholar
  4. 4.
    Herrgard MJ, Covert MW, Palsson BO. Reconstruction of microbial transcriptional regulatory networks. Curr Opin Biotechnol 2004;15(1):70–77.PubMedCrossRefGoogle Scholar
  5. 5.
    Ma HW, Zeng AP. Reconstruction of metabolic networks from genome data and analysis of their global structure for various organisms. Bioinformatics 2003;19(2):270–277.PubMedCrossRefGoogle Scholar
  6. 6.
    Alon U. Biological networks: the tinkerer as an engineer. Science 2003;301(5641):1866–1867.PubMedCrossRefGoogle Scholar
  7. 7.
    Bray D. Molecular networks: the top-down view. Science 2003;301(5641):1864–1865.PubMedCrossRefGoogle Scholar
  8. 8.
    Stelling J, Klamt S, Bettenbrock K, et al. Metabolic network structure determines key aspects of functionality and regulation. Nature 2002;420(6912):190–193.PubMedCrossRefGoogle Scholar
  9. 9.
    Milo R, Shen-Orr S, Itzkovitz S, et al. Network motifs: simple building blocks of complex networks. Science 2002;298(5594):824–827.PubMedCrossRefGoogle Scholar
  10. 10.
    Wagner A, Fell DA. The small world inside large metabolic networks. Proc R Soc Lond B Biol Sci 2001;268(1478):1803–1810.CrossRefGoogle Scholar
  11. 11.
    Jeong H, Tombor B, Albert R, et al. The large-scale organization of metabolic networks. Nature 2000;407(6804):651–654.PubMedCrossRefGoogle Scholar
  12. 12.
    Palsson BO. In silico biotechnology. Era of reconstruction and interrogation. Curr Opin Biotechnol 2004;15(1):50–51.PubMedCrossRefGoogle Scholar
  13. 13.
    Forster J, Famili I, Fu P, Palsson BO, et al. Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Res 2003;13(2):244–253.PubMedCrossRefGoogle Scholar
  14. 14.
    Kanehisa M, Goto S, Kawashima S, et al. The KEGG resource for deciphering the genome. Nucl Acids Res 2004;32(90001):D277–D280.PubMedCrossRefGoogle Scholar
  15. 15.
    Karp PD, Riley M, Saier M, et al. The EcoCyc and MetaCyc databases. Nucleic Acids Res 2000;28(1):56–59.PubMedCrossRefGoogle Scholar
  16. 16.
    Overbeek R, Larsen N, Pusch GD, et al. WIT: integrated system for high-throughput genome sequence analysis and metabolic reconstruction. Nucleic Acids Res 2000;28(1):123–125.PubMedCrossRefGoogle Scholar
  17. 17.
    Sun J, Zeng AP. IdentiCS-identification of coding sequence and in silico reconstruction of the metabolic network directly from unannotated low-coverage bacterial genome sequence. BMC Bioinformatics 2004;5(1):112.PubMedCrossRefGoogle Scholar
  18. 18.
    Schomburg I, Chang A, Ebeling C, et al. BRENDA, the enzyme database: updates and major new developments. Nucleic Acids Res 2004;32 (Database issue):D431–D433.PubMedCrossRefGoogle Scholar
  19. 19.
    Gasteiger E, Gattiker A, Hoogland C, et al. ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucl Acids Res 2003;31(13):3784–3788.PubMedCrossRefGoogle Scholar
  20. 20.
    Goto S, Okuno Y, Hattori M, et al. LIGAND: database of chemical compounds and reactions in biological pathways. Nucleic Acids Res 2002;30(1):402–404.PubMedCrossRefGoogle Scholar
  21. 21.
    Karp P. Call for an enzyme genomics initiative. Genome Biol 2004;5(8):401.PubMedCrossRefGoogle Scholar
  22. 22.
    Keseler IM, Collado-Vides J, Gama-Castro S, et al. EcoCyc: a comprehensive database resource for Escherichia coli. Nucleic Acids Res 2005;33 (Database issue):D334–D337.PubMedCrossRefGoogle Scholar
  23. 23.
    Becker SA, Palsson BO. Genome-scale reconstruction of the metabolic network in Staphylococcus aureus N315: an initial draft to the two-dimensional annotation. BMC Microbiol 2005;5(1):8.PubMedCrossRefGoogle Scholar
  24. 24.
    Edwards JS, Palsson BO. The Escherichea coli MG1655 in silico metabolic genotype: its definition, characteristics, and capabilities. Proc Natl Acad Sci USA 2000;97(10):5528–5533.PubMedCrossRefGoogle Scholar
  25. 25.
    Thiele I, Vo TD, Price ND, et al. Expanded metabolic reconstruction of Helicobacter pylori (iIT341 GSM/GPR): an in silico genome-scale characterization of single-and double-deletion mutants. J Bacteriol 2005;187(16):5818–5830.PubMedCrossRefGoogle Scholar
  26. 26.
    von Mering C, Huynen M, Jaeggi D, et al. STRING: a database of predicted functional associations between proteins. Nucleic Acids Res 2003;31(1):258–261.CrossRefGoogle Scholar
  27. 27.
    Yu H, Luscombe NM, Lu HX, et al. Annotation transfer between genomes: protein-protein interologs and protein-DNA regulogs. Genome Res 2004;14(6):1107–1118.PubMedCrossRefGoogle Scholar
  28. 28.
    Salgado H, Gama-Castro S, Martinez-Antonio A, et al. RegulonDB (version 4.0): transcriptional regulation, operon organization and growth conditions in Escherichia coli K-12. Nucleic Acids Res 2004;32 Database issue:D303–D306.PubMedCrossRefGoogle Scholar
  29. 29.
    Ishii T, Yoshida K, Terai G, et al. DBTBS: a database of Bacillus subtilis promoters and transcription factors. Nucleic Acids Res 2001;29(1):278–280.PubMedCrossRefGoogle Scholar
  30. 30.
    Luscombe NM, Babu MM, Yu H, et al. Genomic analysis of regulatory network dynamics reveals large topological changes. Nature 2004;431(7006):308–312.PubMedCrossRefGoogle Scholar
  31. 31.
    Guelzim N, Bottani S, Bourgine P, et al. Topological and causal structure of the yeast transcriptional regulatory network. Nat Genet 2002;31(1):60–63.PubMedCrossRefGoogle Scholar
  32. 32.
    Makita Y, Nakao M, Ogasawara N, et al. DBTBS: database of transcriptional regulation in Bacillus subtilis and its contribution to comparative genomics. Nucleic Acids Res 2004;32 (Database issue):D75–D77.PubMedCrossRefGoogle Scholar
  33. 33.
    Munch R, Hiller K, Barg H, et al. PRODORIC: prokaryotic database of gene regulation. Nucleic Acids Res 2003;31(1):266–269.PubMedCrossRefGoogle Scholar
  34. 34.
    Matys V, Fricke E, Geffers R, et al. TRANSFAC: transcriptional regulation, from patterns to profiles. Nucleic Acids Res 2003;31(1):374–378.PubMedCrossRefGoogle Scholar
  35. 35.
    Ma HW, Kumar B, Ditges U, et al. An extended transcriptional regulatory network of Escherichia coli and analysis of its hierarchical structure and network motifs. Nucleic Acids Res 2004;32(22):6643–6649.PubMedCrossRefGoogle Scholar
  36. 36.
    Shen-Orr SS, Milo R, Mangan S, et al. Network motifs in the transcriptional regulation network of Escherichia coli. Nat Genet 2002;31(1):64–68.PubMedCrossRefGoogle Scholar
  37. 37.
    Salgado H, Gama-Castro S, Peralta-Gil M, et al. RegulonDB (version 5.0): Escherichia coli K-12 transcriptional regulatory network, operon organization, and growth conditions. Nucleic Acids Res 2006;34 (Database issue):D394–D397.PubMedCrossRefGoogle Scholar
  38. 38.
    Salgado H, Santos-Zavaleta A, Gama-Castro S, et al. The comprehensive updated regulatory network of Escherichia coli K-12. BMC Bioinformatics 2006;7(1):5.PubMedCrossRefGoogle Scholar
  39. 39.
    Herrgard MJ, Lee BS, Portnoy V, et al. Integrated analysis of regulatory and metabolic networks reveals novel regulatory mechanisms in Saccharomyces cerevisiae. Genome Res 2006;16(5):627–635.PubMedCrossRefGoogle Scholar
  40. 40.
    Yeger-Lotem E, Sattath S, Kashtan N, et al. Network motifs in integrated cellular networks of transcription-regulation and protein-protein interaction. Proc Natl Acad Sci USA 2004;20;101(16):5934–5939.PubMedCrossRefGoogle Scholar
  41. 41.
    Croes D, Couche F, Wodak SJ, et al. Metabolic PathFinding: inferring relevant pathways in biochemical networks. Nucleic Acids Res 2005;33 (Web Server issue):W326–W330.PubMedCrossRefGoogle Scholar
  42. 42.
    Croes D, Couche F, Wodak SJ, et al. Inferring meaningful pathways in weighted metabolic networks. J Mol Biol 2006;356(1):222–236.PubMedCrossRefGoogle Scholar
  43. 43.
    Arita M. In silico atomic tracing by substrate-product relationships in Escherichia coli intermediary metabolism. Genome Res 2003;13(11):2455–2466.PubMedCrossRefGoogle Scholar
  44. 44.
    Arita M. The metabolic world of Escherichia coli is not small. Proc Natl Acad Sci U S A 2004;101(6):1543–1547.PubMedCrossRefGoogle Scholar
  45. 45.
    Barrett CL, Price ND, Palsson BO. Network-level analysis of metabolic regulation in the human red blood cell using random sampling and singular value decomposition. BMC Bioinformatics 2006;7:132.PubMedCrossRefGoogle Scholar
  46. 46.
    Wolf YI, Karev G, Koonin EV. Scale-free networks in biology: new insights into the fundamentals of evolution? Bioessays 2002;24(2):105–109.PubMedCrossRefGoogle Scholar
  47. 47.
    Jeong H, Mason SP, Barabasi AL, et al. Lethality and centrality in protein networks. Nature 2001;411(6833):41–42.PubMedCrossRefGoogle Scholar
  48. 48.
    Strogatz SH. Exploring complex networks. Nature 2001;410(6825):268–276.PubMedCrossRefGoogle Scholar
  49. 49.
    Albert R, Barabasi AL. Topology of evolving networks: local events and universality. Phys Rev Lett 2000;85(24):5234–5237.PubMedCrossRefGoogle Scholar
  50. 50.
    Van N, V, Snel B, Huynen MA. The yeast coexpression network has a small-world, scale-free architecture and can be explained by a simple model. EMBO Rep 2004;5(3):280–284.CrossRefGoogle Scholar
  51. 51.
    Ma HW, Buer J, Zeng AP. Hierarchical structure and modular organisation in the Escherichia coli transcriptional regulatory network. BMC Bioinformatics 2004;2004.Google Scholar
  52. 52.
    Batagelj V, Mrvar A. Pajek. Program for Large Network Analysis. Connections 1998;21(2):47–57.Google Scholar
  53. 53.
    Ma HW, Zeng AP. Phylogenetic comparasion of metabolic capacities of organisms at genome level. Mol Phylogenet Evol 2004;31(1):204–213.PubMedCrossRefGoogle Scholar
  54. 54.
    Ma HW, Zeng AP. The connectivity structure, giant strong component and centrality of metabolic networks. Bioinformatics 2003;19(11):1423–1430.PubMedCrossRefGoogle Scholar
  55. 55.
    Freeman LC. Centrality in social networks: Conceptual clarification. Social Networks 1979;1:215–239.CrossRefGoogle Scholar
  56. 56.
    Sabidussi G. The centrality index of a graph. Psychometrika 1966;31:58–603.CrossRefGoogle Scholar
  57. 57.
    Holme P, Huss M, Jeong H. Subnetwork hierarchies of biochemical pathways. Bioinformatics 2003;19(4):532–538.PubMedCrossRefGoogle Scholar
  58. 58.
    Broder A, Kumar R, Maghoul F, et al. Graph structure in the Web. Comp Networks 2000;33(1–6):309–320.CrossRefGoogle Scholar
  59. 59.
    Csete M, Doyle J. Bow ties, metabolism and disease. Trends Biotechnol 2004;22(9):446–450.PubMedCrossRefGoogle Scholar
  60. 60.
    Kitano H. Biological robustness. Nat Rev Genet 2004;5(11):826–837.PubMedCrossRefGoogle Scholar
  61. 61.
    Martinez-Antonio A, Collado-Vides J. Identifying global regulators in transcriptional regulatory networks in bacteria. Curr Opin Microbiol 2003;6(5):482–489.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  • Hong-wu Ma
    • 1
  • Marcio Rosa da Silva
    • 1
  • Ji-Bin Sun
    • 1
  • Bharani Kumar
    • 1
  • An-Ping Zeng
    • 1
  1. 1.Research Group Systems BiologyGBF—German Research Centre for BiotechnologyBraunschweigGermany

Personalised recommendations