Skip to main content

DBRF-MEGN Method: An Algorithm for Inferring Gene Regulatory Networks from Large-Scale Gene Expression Profiles

  • Chapter
Introduction to Systems Biology
  • 6464 Accesses

Abstract

The difference-based regulation finding-minimum equivalent gene network (DBRF-MEGN) method is an algorithm for inferring gene regulatory networks from gene expression profiles corresponding to gene perturbations. In this method, gene regulatory networks are modeled as signed directed graphs, and the most parsimonious graphs consistent with gene expression profiles are deduced by using a graph theoretical procedure. The method is applicable to large-scale gene expression profiles, and gene regulatory networks deduced by the method are highly consistent with gene regulations identified through classic small-scale experiments in genetics and cell biology. Free software for the method is available and runs under Windows or Linux platforms on a typical IBM-compatible personal computer. The DBRF-MEGN method will provide invaluable information for basic biology and drug discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Liu H, Krizek J, Bretscher A. Construction of a GAL1-regulated yeast cDNA expression library and its application to the identification of genes whose overexpression causes lethality in yeast. Genetics 1992;132:665–673.

    PubMed  CAS  Google Scholar 

  2. Baudin A, Ozier-Kalogeropoulos O, Denouel A, et al. A simple and efficient method for direct gene deletion in Saccharomyces cerevisiae. Nucleic Acids Res 1993;21:3329–3330.

    Article  PubMed  CAS  Google Scholar 

  3. Wach A, Brachat A, Pohlmann R, et al. New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae. Yeast 1994;10:1793–1808.

    Article  PubMed  CAS  Google Scholar 

  4. Lorenz MC, Muir RS, Lim E, et al. Gene disruption with PCR products in Saccharomyces cerevisiae. Gene 1995;158:113–117.

    Article  PubMed  CAS  Google Scholar 

  5. Gari E, Piedrafita L, Aldea M, et al. A set of vectors with a tetracyclineregulatable promoter system for modulated gene expression in Saccharomyces cerevisiae. Yeast 1997;13:837–848.

    Article  PubMed  CAS  Google Scholar 

  6. Fire A, Xu S, Montgomery MK, et al. Potent and specific genentic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998; 391:806–811.

    Article  PubMed  CAS  Google Scholar 

  7. Schena M, Shalon D, Davis RW, et al. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 1995;270:467–470.

    Article  PubMed  CAS  Google Scholar 

  8. Lockhart DJ, Dong H, Byrne MC, et al. Expression monitoring by hybridization to high-density oligonucleotide arrays. Nat Biotechnol 1996;14:1675–1680.

    Article  PubMed  CAS  Google Scholar 

  9. Hughes TR, Marton MJ, Jones AR, et al. Functional discovery via a compendium of expression profiles. Cell 2000;102:109–126.

    Article  PubMed  CAS  Google Scholar 

  10. Mnaimneh S, Davierwala AP, Haynes J, et al. Exploration of essential gene functions via titratable promoter alleles. Cell 2004;118:31–44.

    Article  PubMed  CAS  Google Scholar 

  11. Ideker TE, Thorsson V, Karp RM. Discovery of regulatory interactions through perturbation: inference and experimental design. Pac Symp Biocomput 2000;305–316.

    Google Scholar 

  12. Pe’er D, Regev A, Elidan G, et al. Inferring subnetworks from perturbed expression profiles. Bioinformatics 2001;17Suppl:S215–S224.

    Google Scholar 

  13. Wagner A. How to reconstruct a large genetic network from n gene perturbations in fewer than n2 easy steps. Bioinformatics 2001;17:1183–1197.

    Article  PubMed  CAS  Google Scholar 

  14. Kyoda K, Baba K, Onami S, et al. DBRF-MEGN method: an algorithm for deducing minimum equivalent gene networks from large-scale gene expression profiles of gene deletion mutants. Bioinformatics 2004;20:2662–2675.

    Article  PubMed  CAS  Google Scholar 

  15. Breitkreutz BJ, Stark C, Tyers M. Osprey: a network visualization system. Genome Biol 2003;4:R22.

    Article  PubMed  Google Scholar 

  16. Errede B, Ammerer G. STE12, a protein involved in cell-type-specific transcription and signal transduction in yeast, is a part of protein-DNA complexes. Genes Dev 1989;3:1349–1361.

    Article  PubMed  CAS  Google Scholar 

  17. Sprague GFJr, Thorner JW. Pheromone response and signal transduction during the mating process of Saccharomyces cerevisiae. In: Jones EW, Pringle JR, Broach JR eds. The molecular and cellular biology of the yeast Saccharomyces. New York: Cold Spring Harbor Laboratory Press; 1992:657–744.

    Google Scholar 

  18. Oehlen LJ, McKinney JD, Cross FR. Ste12 and Mcm1 regulate cell cycle-dependent transcription of FAR1. Mol Cell Biol 1996;16:2830–2837.

    PubMed  CAS  Google Scholar 

  19. Oehlen L, Cross FR. The mating factor response pathway regulates transcription of TEC1, a gene involved in pseudohyphal differentiation of Saccharomyces cerevisiae. FEBS Lett 1998;429:83–88.

    Article  PubMed  CAS  Google Scholar 

  20. Ren B, Robert F, Wyrick JJ, et al. Genome-wide location and function of DNA binding proteins. Science 2000;290:2306–2309.

    Article  PubMed  CAS  Google Scholar 

  21. Roberts CJ, Nelson B, Marton MJ, et al. Signaling and circuitry of multiple MAPK pathways revealed by a matrix of global gene expression profiles. Science 2000;287:873–880.

    Article  PubMed  CAS  Google Scholar 

  22. Tedford K, Kim S, Sa D, et al. Regulation of the mating pheromone and invasive growth responses in yeast by two MAP kinase substrates. Curr Biol 1997;7:228–238.

    Article  PubMed  CAS  Google Scholar 

  23. Elion EA. The Ste5p scaffold. J Cell Sci 2001;114:3967–3978.

    PubMed  CAS  Google Scholar 

  24. Jenness DD, Burkholder AC, Hartwell LH. Binding of α-factor pheromone to yeast a cells: chemical and genetic evidence for an α-factor receptor. Cell 1983;35:521–529.

    Article  PubMed  CAS  Google Scholar 

  25. Herskowitz I, Rine J, Strathern J. Mating-type determination and matingtype interconversion in Saccharomyces cerevisiae. In: Jones RW, Pringle JR, Broach JR, eds. The molecular and cellular biology of the yeast Saccharomyces. New York: Cold Spring Harbor Laboratory Press, 1992:319–414.

    Google Scholar 

  26. Ramer SW, Davis RW. A dominant truncation allele identifies a gene, STE20, that encodes a putative protein kinase necessary for mating in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 1993;90:452–456

    Article  PubMed  CAS  Google Scholar 

  27. Elion EA, Brill JA, Fink GR. FUS3 represses CLN1 and CLN2 and in concert with KSS1 promotes signal transduction. Proc Natl Acad Sci USA 1991;88:9392–9396.

    Article  PubMed  CAS  Google Scholar 

  28. Lee TI, Rinaldi NJ, Robert F, et al. Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 2002;298:799–804.

    Article  PubMed  CAS  Google Scholar 

  29. Farkas I, Jeong H, Vicsek T, et al. The topology of the transcriptional regulatory network in the yeast, Saccharomyces cerevisiae. Physica A 2003; 318:601–612.

    Article  CAS  Google Scholar 

  30. Ideker T, Thorsson V, Ranish JA, et al. Integrated genomic and proteomic analysis of a systematically perturbed metabolic network. Science 2001;292: 805–817.

    Article  Google Scholar 

  31. Gunsalus KC, Ge H, Schetter AJ, et al. Predictive model of molecular machines involved in Caenorhabditis elegans early embryogenesis. Nature 2005;436:861–865.

    Article  PubMed  CAS  Google Scholar 

  32. Uetz P, Giot L, Gagney G, et al. A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 2000;403:623–627.

    Article  PubMed  CAS  Google Scholar 

  33. Ito T, Chiba T, Ozawa R, et al. A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc Natl Acad Sci USA 2001;98: 4569–4574.

    Article  PubMed  CAS  Google Scholar 

  34. Gavin AC, Bosche M, Krause R, et al. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 2002;415: 141–147.

    Article  PubMed  CAS  Google Scholar 

  35. Ho Y, Gruhler A, Helibut A, et al. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 2002;415: 180–183.

    Article  PubMed  CAS  Google Scholar 

  36. Huh WK, Falvo JV, Gerke LC, et al. Global analysis of protein localization in budding yeast. Nature 2003;425:686–691.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this chapter

Cite this chapter

Kyoda, K., Onami, S. (2007). DBRF-MEGN Method: An Algorithm for Inferring Gene Regulatory Networks from Large-Scale Gene Expression Profiles. In: Choi, S. (eds) Introduction to Systems Biology. Humana Press. https://doi.org/10.1007/978-1-59745-531-2_22

Download citation

Publish with us

Policies and ethics