SBML Models and MathSBML

  • Bruce E. Shapiro
  • Andrew Finney
  • Michael Hucka
  • Benjamin Bornstein
  • Akira Funahashi
  • Akiya Jouraku
  • Sarah M. Keating
  • Nicolas Le Novère
  • Joanne Matthews
  • Maria J. Schilstra


MathSBML is an open-source, freely downloadable Mathematica package that facilitates working with Systems Biology Markup Language (SBML) models. SBML is a tool-neutral, computer-readable format for representing models of biochemical reaction networks, and it is applicable to metabolic networks, cell signaling pathways, genomic regulatory networks, and other modeling problems in systems biology that is widely supported by the systems biology community. SBML is based on XML, which is a standard medium for representing and transporting data that is widely supported on the Internet, as well as in computational biology and bioinformatics. Because SBML is tool-independent, it enables model transportability, reuse, publication, and survival. In addition to Math- SBML, a number of other tools that support SBML model examination and manipulation are provided on the Web site, including libSBML, which is a C/C++ library for reading SBML models; an SBML Toolbox for MATLAB; file conversion programs; an SBML model validator and visualizer; and SBML specifications and schemas. MathSBML enables SBML file import to and export from Mathematica, as well as providing an API for model manipulation and simulation.

Key Words

SBML libSBML MathSBML systems biology XML BioModels 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hucka M, Finney A, Sauro HM, et al. The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 2003;19:524–531.PubMedCrossRefGoogle Scholar
  2. 2.
    Hucka M, Finney A, Bornstein BJ, et al. Evolving a lingua franca and associated software infrastructure for computational systems biology: the Systems Biology Markup Language Project. IEE Sys Biol 2004;1:41–53.CrossRefGoogle Scholar
  3. 3.
    XML Core Working Group. Extensible Markup Language (XML). Available at Scholar
  4. 4.
    Achard F, Vaysseix G, Barillot E. XML, bioinformatics, and data integration. Bioinformatics 2001;17:115–125.2PubMedCrossRefGoogle Scholar
  5. 5.
    Wanner BL, Finney A, Hucka M. Modeling the E. coli cell: The need for computing, cooperation, and consortia. In: Alberghina L, Westerhoff HV, eds. Systems Biology: Definitions and Perspective. Berlin: Springer-Verlag; 2005.Google Scholar
  6. 6.
    Nature Molecular Systems Biology. For Authors. Available at Scholar
  7. 7.
    Finney A, Hucka M, Benjamin J, et al. Software infrastructure for effective communication and reuse of computational models. In: Szallasi Z, Stelling J, Periwal V, eds. System Modeling in Cellular Biology: From Concepts to Nuts. MIT Press; 2006.Google Scholar
  8. 8.
    Hucka M, Finney A, Sauro H, Bolouri H. Systems Biology Markup Language (SBML) Level 1: Structures and facilities for Basic Model Definitions. SBML Level 1, Version 2 (Final), 28 August 2003. Available at Scholar
  9. 9.
    Finney A, Hucka M. Systems Biology Markup Language (SBML) Level 2: Structures and Facilities for Model Definitions. SBML Level 2, Version 1 (Final), June 28, 2003. Available at Scholar
  10. 10.
    Finney A, Hucka M. Systems Biology Markup Language (SBML) Level 2: Structures and Facilities for Model Definitions, SBML Level 2, Version 2. Available at Assessed March 26, 2005.Google Scholar
  11. 11.
    Hucka M, Finney AM, Hoops S, Keating SM, Le Novere N. Systems Biology Markup Language (SBML) Level 2: Structures and Facilities for Model Definitions, SBML Level 2, and Version 3 (Draft). Available at Scholar
  12. 12.
    Asbrooks R, Buswell S, Carlisle D, et al. Mathematical Markup Language (MathML) Version 2.0 (Second Edition), REC-MathML2-20031021/.Google Scholar
  13. 13.
    Finney A. Developing SBML Beyond Level 2: Proposals for Development. In: Danos V, Schachter V, eds. Lecture Notes in Computer Science. Computational Methods in Systems Biology. Berlin/Heidelberg: Springer; 2005:242–247.Google Scholar
  14. 14.
    Goto S, Nishioka T, Kanehisa M. LIGAND: chemical database for enzyme reactions. Bioinformatics 1998;14:591–599.PubMedCrossRefGoogle Scholar
  15. 15.
    Goto S, Okuno Y, Hattori M, et al. LIGAND: database of chemical compounds and reactions in biological pathways. Nucleic Acids Res 2002;30:402–404.PubMedCrossRefGoogle Scholar
  16. 16.
    Lloyd C, Halstead MDB, Nielson PF. CellML: its future, present, and past. Prog Biophys Mol Biol 2004;85(2–3):433–450.PubMedCrossRefGoogle Scholar
  17. 17.
    Schilstra MJ, Lu L, Matthews J, Finney A, Hucka M, LeNovere N. CELLML2SBML: Conversion of CELLML inot SBML. Bioinformatics 2006;22(8):1018–1020.PubMedCrossRefGoogle Scholar
  18. 18.
    Le Novère N, Finney A, Hucka M, et al. Minimal information requested in the annotation of models (MIRIAM). Nature Biotechnol 2005;23(12):1509–1515.CrossRefGoogle Scholar
  19. 19.
    Le Novère N, Bornstein B, Broicher A, et al. BioModels database: a free, centralized database of curated, published, quantitative kinetic models of biochemical and cellular systems. Nucleic Acids Res 2006;34(Database issue):D689–D691.PubMedCrossRefGoogle Scholar
  20. 20.
    Shapiro BE, Hucka M, Finney A, et al. MathSBML: a package for manipulating SBML-based biological models. Bioinformatics 2004;20(16):2829–2831.PubMedCrossRefGoogle Scholar
  21. 21.
    Novak B, Tyson JJ. Modeling the control of DNA replication in fission yeast. PNAS 1997;94:9147–9152.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  • Bruce E. Shapiro
    • 1
  • Andrew Finney
    • 2
  • Michael Hucka
    • 3
  • Benjamin Bornstein
    • 4
  • Akira Funahashi
    • 5
  • Akiya Jouraku
    • 5
  • Sarah M. Keating
    • 6
  • Nicolas Le Novère
    • 7
  • Joanne Matthews
    • 6
  • Maria J. Schilstra
    • 6
  1. 1.Division of Biology and Biological Network Modeling CenterCalifornia Institute of TechnologyPasadenaUSA
  2. 2.Physiomics PLC OxfordOxfordUK
  3. 3.Division of Control and Dynamical Systems and Biological Network Modeling CenterCalifornia Institute of TechnologyPasadenaUSA
  4. 4.Machine Learning Systems Group, Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA
  5. 5.ERATO-SORST Kitano Symbiotic Systems ProjectJapan Science and Technology AgencyTokyoJapan
  6. 6.Science and Technology Research InstituteUniversity of HertfordshireHatfieldUK
  7. 7.Computational NeurobiologyEMBL-EBIHinxtonUK

Personalised recommendations