Advertisement

Efficiency, Robustness, and Stochasticity of Gene Regulatory Networks in Systems Biology: λ Switch as a Working Example

  • Xiaomei Zhu
  • Lan Yin
  • Leroy Hood
  • David Galas
  • Ping Ao

Abstract

Phage λ is one of the most studied biological models in modern molecular biology. Over the past 50 years, quantitative experimental knowledge on this biological model has been accumulated at all levels: physics, chemistry, genomics, proteomics, functions, and more. All of its components are known in great detail. The theoretical task has been to integrate its components to make the organism work quantitatively and in a harmonic manner. This tests our biological understanding, and would lay a solid foundation for further explorations and applications, which is an obvious goal of systems biology. One of the outstanding challenges in doing this has been the so-called stability puzzle of the λ switch; the biologically observed robustness and the difficulty in mathematical reconstruction based on known experimental values. In this chapter, we review the recent theoretical and experimental efforts on tackling this problem. An emphasis is put on the minimum quantitative modeling, where a successful numerical agreement between experiments and modeling has been achieved. A novel method, tentatively named stochastic dynamical structure analysis, emerged from such study, and it is also discussed within a broad modeling perspective.

Key Words

Phage λ genetic switch robustness efficiency cooperation stochastic processes dynamical landscape systems biology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Collins FS, Green ED, Guttmacher AE, Guyer MS. A vision for the future of genomics research: a blueprint for the genomic era. Nature 2003;422:835–847.PubMedCrossRefGoogle Scholar
  2. 2.
    Kitano H. Systems biology: a brief review. Science 2002;295:1662–1664.PubMedCrossRefGoogle Scholar
  3. 3.
    Cohen JE. Mathematics is biology’s next microscope, only better; biology is mathematics’ next physics, only better. PloS Biology 2004;2:2017–2023.Google Scholar
  4. 4.
    Mesarovic MD, Sreenath SN, Keene JD. Search for organizing principles: understanding in systems biology. Syst Biol 2004;1:19–27.CrossRefGoogle Scholar
  5. 5.
    Kirschner MW. The meaning of systems biology. Cell 2005;121:503–504.PubMedCrossRefGoogle Scholar
  6. 6.
    Williamson MP. Systems biology: will it work? Biochem Soc Transact 2005;33:503–506.CrossRefGoogle Scholar
  7. 7.
    Hood L. Systems biology: integrating technology, biology, and computation. Mech Aging Dev 2003;124:9–16.PubMedCrossRefGoogle Scholar
  8. 8.
    Ptashne M. A Genetic Switch: Phage λ revisited. 3rd edition. 2004. Cold Spring Harbor; Cold Spring Harbor Laboratory Press.Google Scholar
  9. 9.
    Zhu XM, Yin L, Hood L, Ao P. Robustness, stability and efficiency of phage lambda genetic switch: dynamical structure analysis. J Bioinform Comput Biol 2004;2:785–817.PubMedCrossRefGoogle Scholar
  10. 10.
    Cairns J, Stent GS, Watson JD. Phage and the Origins of Molecular Biology. expanded edition. Cold Spring Harbor: Cold Spring Harbor Laboratory Press; 1992.Google Scholar
  11. 11.
    Olson MV. The human genome project: a player’s perspective. J Mol Biol 2002;319:931–942.PubMedCrossRefGoogle Scholar
  12. 12.
    Lander E. Biology as information. In: Research in Computational Molecular Biology, Lecture Notes in Bioinformatics 3,500. Miyano S, Mesirov J, Kasif S, Istrail S, Pevzner P, Waterman M, eds. Berlin: Springer; 2005.Google Scholar
  13. 13.
    Hood L, Galas D, Dewey G, et al. Biological Information and the Emergence of Systems Biology. Roberts and Co; 2006.Google Scholar
  14. 14.
    Bar-Yam Y, Epstein IR. Response of complex networks to stimuli. Proc Natl Acad Sci USA 2004;101:4341–4345.PubMedCrossRefGoogle Scholar
  15. 15.
    Ben-Hur A, Sigelmann HT. Computation in gene networks. Chaos 2004;14:145–151.PubMedCrossRefGoogle Scholar
  16. 16.
    Levine M, Davidson EH. Gene regulatory networks for development. Proc Natl Acad Sci USA 2005;102:4936–4942.PubMedCrossRefGoogle Scholar
  17. 17.
    Schroder A, Persson L, de Roos AM. Direct experimental evidence for alternative stable states: a review. OIKOS 2005;110:3–19.CrossRefGoogle Scholar
  18. 18.
    Balaban NQ, Merrin J, Chait R, et al. Bacterial persistence as a phenotypic switch. Science 2004;305:1622–1625.PubMedCrossRefGoogle Scholar
  19. 19.
    Laurent M, Kellershohn N. Multistability: a major means of differentiation and evolution in biological systems. TIBS 1999;24:418–422.PubMedGoogle Scholar
  20. 20.
    Freeman M, Gurdon JB. Regulatory principles of developmental signaling. Annu Rev Cell Dev Biol 2002;18:515–539.PubMedCrossRefGoogle Scholar
  21. 21.
    Kurakin A. Self-organization vs watchmaker: stochastic gene expression and cell differentiation. Dev Genes Evol 2005;215:46–52.PubMedCrossRefGoogle Scholar
  22. 22.
    Hayer A, Bhalla US. Molecular switches at the synapse emerge from receptor and kinase traffic. PloS Comp Biol 2005;1:137–154.CrossRefGoogle Scholar
  23. 23.
    O’Conner DH, Wittenberg GM, Wang SS-H. Graded bidirectional synaptic plasticity is composed of switch-like unitary events. Proc Natl Acad Sci USA 2005;102:9679–9684.CrossRefGoogle Scholar
  24. 24.
    Markevich NI, Hoek JB, Kholodenko BN. Signaling switches and bistability arising from multisite phosphorylation in protein kinase cascades. J Cell Biol 2004;164:353–359.PubMedCrossRefGoogle Scholar
  25. 25.
    Qian H, Reluga TC. Nonequilibrium thermodynamics and nonlinear kinetics in a cellular signaling switch. Phys Rev Lett 2005;94:028101.PubMedCrossRefGoogle Scholar
  26. 26.
    Miller P, Zhabotinsky AM, Lisman JE, Wang X-J. The stability of a stochastic CaMKII switch: dependence on the number of enzyme molecules and protein turnover. PloS Biol 2005;3:705–717.CrossRefGoogle Scholar
  27. 27.
    Hernday AD, Braaten BA, Low DA. The mechanism by which DNA Adenine methylase and Papl activate the Pap epigenetic switch. Mol Cell 2003;12:947–957.PubMedCrossRefGoogle Scholar
  28. 28.
    Travers A. Transcriptional switches: the role of mass action. Phys Life Rev 2004;1:57–69.CrossRefGoogle Scholar
  29. 29.
    Loayza D, de Lange T. Telomerase regulation at the telomere: a binary switch. Cell 2004;117:279–280.PubMedCrossRefGoogle Scholar
  30. 30.
    Biggar SR, Crabtree GR. Cell signaling can direct either binary or graded transcriptional response. EMBO J 2001;20:3167–3176.PubMedCrossRefGoogle Scholar
  31. 31.
    Casadesus J, D’Ari R. Memory in bacteria and phage. Bioessays 2002;24:512–518.PubMedCrossRefGoogle Scholar
  32. 32.
    Acar M, Becskei A, van Oudenaarden A. Enhancement of cellular memory by reducing stochastic transitions. Nature 2005;435:228–232.PubMedCrossRefGoogle Scholar
  33. 33.
    Shykind BM, Rohani SC, O’Donnell S, et al. Gene switching and the stability of odorant receptor gene choice. Cell 2004;117:801–815.PubMedCrossRefGoogle Scholar
  34. 34.
    Kaern M, Elston TC, Blake WJ, Collins JJ. Stochasticity in gene expression: from theories to phenotypes. Nature Rev Genet 2005;6:451–464.CrossRefPubMedGoogle Scholar
  35. 35.
    Lidstrom ME, Meldrum DR. Life on a chip. Nature Rev Microbiol 2003;1:158–164.CrossRefGoogle Scholar
  36. 36.
    Kramer BP, Viretta AU, Baba MD-E, et al. An engineered epigenetic transgene switch in mammalian cells. Nature Biotech 2004;22:867–870.CrossRefGoogle Scholar
  37. 37.
    Ozbudak EM, Thattai M, Lim HN, et al. Multistability in the lactose utilization network of Escherichia coli. Nature 2004;427:737–740.PubMedCrossRefGoogle Scholar
  38. 38.
    Sauer M. Reversible molecular photoswitches: a key technology for nanoscience and fluorescence imaging. Proc Natl Acad Sci USA 2005;102:9433–9434.PubMedCrossRefGoogle Scholar
  39. 39.
    Habuchi S, Ando R, Dedecker P, et al. Reversible single-molecule photo-switching in the GFP-like fluorescent protein Dronpa. Proc Natl Acad Sci USA 2005;102:9511–9516.PubMedCrossRefGoogle Scholar
  40. 40.
    Cherry JL, Adler FR. How to make a biological switch. J Theor Biol 2000;203:117–133.PubMedCrossRefGoogle Scholar
  41. 41.
    Slepchenko BM, Terasaki M. Bio-switches: what makes them robust? Curr Opin Genet Dev 2004;14:428–434.PubMedCrossRefGoogle Scholar
  42. 42.
    Goutsian J, Kim S. A nonlinear discrete dynamical model for transcriptional regulation: construction and properties. Biophys J 2004;86:1922–1945.Google Scholar
  43. 43.
    Warren PB, ten Wolde PR. Chemical models of genetic toggle switches. J Phys Chem B 2005;109:6812–6823.PubMedCrossRefGoogle Scholar
  44. 44.
    Ferrell JE, Machleder EM. The biochemical basis of an all-or-none cell fate switch in Xenopus oocytes. Science 1998;280:895–898.PubMedCrossRefGoogle Scholar
  45. 45.
    Angeli D, Ferrell JE, Sontag ED. Detection of multistability, bifurcations, and hysteresis in a large class of biological positive-feed back systems. Proc Natl Acad Sci USA 2004;101:1822–1827.PubMedCrossRefGoogle Scholar
  46. 46.
    Chen KC, Calzone L, Csikasz-Nagy A, et al. Integrative analysis of cell cycle control in budding yeast. Mol Biol Cell 2004;15:3841–3862.PubMedCrossRefGoogle Scholar
  47. 47.
    Hendrix RW. Bacteriophage genomics. Curr Opin Microbiol 2003;6:506–511.PubMedCrossRefGoogle Scholar
  48. 48.
    Shea MA, Ackers GK. The OR control system of bacteriophage lambda—A physical-chemical model for gene regulation. J Mol Biol 2005;181:211–230.CrossRefGoogle Scholar
  49. 49.
    Dodd IB, Shearwin KE, Egan JB. Revisted gene regulation in bacteriophage lambda. Curr Opin Genet Dev 2005;15:145–152.PubMedCrossRefGoogle Scholar
  50. 50.
    Santillan M, Mackey MC. Why the lysogenic state of phage lambda is so stable: a mathematical modeling approach. Biophys J 2004;86:75–86.PubMedGoogle Scholar
  51. 51.
    Bakk A, Metzler R, Sneppen K. Sensitivity of O R in phage lambda. Biophys J 2004;86:58–66.PubMedGoogle Scholar
  52. 52.
    Vilar JMG, Guet CC, Leibler S. Modeling network dynamics: the lac operon, a case study. J Cell Biol 2003;161:471–476.PubMedCrossRefGoogle Scholar
  53. 53.
    May RM. Uses and abuses of mathematics in biology. Science 2004;303:790–793.PubMedCrossRefGoogle Scholar
  54. 54.
    Hwa T. A genetic switch. Science 2004;305:345.CrossRefGoogle Scholar
  55. 55.
    Ptashne M, Jeffrey A, Johnson AD, Mauer R, Meyer BJ, Pabo CO, Roberts TM, Sauer RT. How the λ repressor and Cro work. Cell 1980;19:1–11.PubMedCrossRefGoogle Scholar
  56. 56.
    Riggs AD, Porter TN. Overview of epigenetic mechanisms. in Russo VEA, Martienssen RA, and Riggs AD (ed), Epigenetic Mechanisms of Gene Regulation. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 1996:29–45.Google Scholar
  57. 57.
    Reinitz J, Vaisnys JR. Theoretical and experimental analysis of the phage lambda genetic switch implies missing levels of cooperativity. J Theor Biol 1990;145:295–318.PubMedCrossRefGoogle Scholar
  58. 58.
    Arkin A, Ross J, McAdams HH. Stochastic kinetic analysis of developmental pathway bifurcation in phage lambda-infected Escherichia coli cells. Genetics 1998;149:1633–1648.PubMedGoogle Scholar
  59. 59.
    Aurell E, Sneppen K. Epigenetics as a first exit problem. Phys Rev Lett 2002;88:048101.PubMedCrossRefGoogle Scholar
  60. 60.
    Freidlin MI, Wentzell AD. Random perturbations of Dynamical Systems, 2nd edition. Berlin: Springer; 1998.Google Scholar
  61. 61.
    Ao P. Stochastic force defined evolution in dynamical systems and complex networks. In: Zhao XG, Jiang S, Yu XJ, eds. Computational Physics, Proceedings of the Joint Conference of ICCP6 and CCP2003. Paramus, NJ: Rinton Press; 2005:12–18). (eprint-physics/0302081: http://it.arxiv.org/PS_cache/physics/pdf/0302/0302081.pdf).Google Scholar
  62. 62.
    Ao P. Potential in stochastic differential equations: novel construction. J Phys A 2004;37:L25–L30.CrossRefGoogle Scholar
  63. 63.
    Kwon C, Ao P, Thouless DJ. Structure of stochastic dynamics near fixed points. Proc Natl Acad Sci USA 2005;102:13029–13033.PubMedCrossRefGoogle Scholar
  64. 64.
    Zhu XM, Yin L, Hood L, Ao P. Calculating biological behaviors of epigenetic states in phage λ life cycle. Funct Integr Genomics 2004;4:188–195.PubMedCrossRefGoogle Scholar
  65. 65.
    Rozanov DV, D’Ari R, Sineoky SP. RecA-independent pathways of lambdoid prophage induction in Escherichia coli. J Bacteriol 1998;180:6306–6315.PubMedGoogle Scholar
  66. 66.
    Little JW, Shepley DP, Wert DW. Robustness of a gene regulatory circuit. EMBO J 1999;18:4299–4307.PubMedCrossRefGoogle Scholar
  67. 67.
    Aurell E, Brown S, Johanson J, Sneppen K. Stability puzzle in phage λ. Phys Rev E 2002;65:051914–1-9.CrossRefGoogle Scholar
  68. 68.
    Koblan KS, Ackers GK. Site-Specific Enthalpic Regulation of DNA Transcription at Bacteriophage λ OR. Biochemistry 1992;31:57–65.PubMedCrossRefGoogle Scholar
  69. 69.
    Takeda Y, Sarai A, Rivera VM. Analysis of the sequence-specific interactions between Cro repressor and operator DNA by systematic base substitution experiments. Proc Natl Acad Sci USA 1989;86:439–443.PubMedCrossRefGoogle Scholar
  70. 70.
    Kim JG, Takeda Y, Matthews BW, Anderson WF. Kinetic Studies on Cro Repressor-Operator DNA Interaction. J Mol Biol 1987;196:149–158.PubMedCrossRefGoogle Scholar
  71. 71.
    Jana R, Hazbun TR, Mollah AKMM, Mossing MC. A folded monomeric intermediate in the formation of Lambda Cro dimer-DNA complexes. J Mol Biol 1997;273:402–416.PubMedCrossRefGoogle Scholar
  72. 72.
    Jana R, Hazbun TR, Fields JD, Mossing MC. Single-chain lambda Cro repressors confirm high intrinsic dimer-DNA affinity. Biochemistry 1998;37:6446–6455.PubMedCrossRefGoogle Scholar
  73. 73.
    Darling PJ, Holt JM, Ackers GK. Coupled energetics of λ cro repressor self-assembly and site-specific DNA operator binding I: Analysis of cro dimerization from nanomolar to micromolar concentrations. Biochemistry 2000;39:11500–11507.PubMedCrossRefGoogle Scholar
  74. 74.
    Darling PJ, Holt JM, Ackers GK. Coupled energetics of λ cro repressor self-assembly and site-specific DNA operator binding II: cooperative interactions of Cro dimers. J Mol Biol 2000;302:625–638.PubMedCrossRefGoogle Scholar
  75. 75.
    Ackers GK, Johnson AD, Shea MA. Quantitative model for gene regulation by λ phage repressor. Proc Natl Acad Sci USA 1982;79:1129–1133.PubMedCrossRefGoogle Scholar
  76. 76.
    Capp MW, Cayley DS, Zhang W, et al. Compensating Effects of Opposing Changes in Putrescine (2+) and K+ Concentrations on lac Repressor-lac Operator Binding: in vitro Thermodynamic Analysis and in vivo Relevance. J Mol Biol 1996;258:25–36.PubMedCrossRefGoogle Scholar
  77. 77.
    Record Jr. MT, Courtenay ES, Cayley S, Guttman HJ. Biophysical compensation mechanisms buffering E. coli protein-nucleic acid interactions against changing environments. Trends Biochem Sci 1998;23:190–194.PubMedCrossRefGoogle Scholar
  78. 78.
    Hawley DK, McClure WR. Mechanism of activation of transcription initiation from the lambda PRM promoter. J Mol Biol 1982;157:493–525.PubMedCrossRefGoogle Scholar
  79. 79.
    Takeda Y, Ross PD, Mudd CP. Thermodynamics of Cro protein-DNA interactions. Proc Natl Acad Sci USA 1992;89:8180–8184.PubMedCrossRefGoogle Scholar
  80. 80.
    Koblan KS, Ackers GK. Energetics of Subunit Dimerization in bacteriophage lambda cI Repressor: Linkage to Protons, Temperature and KCL. Biochemistry 1991;30:7817–7821.PubMedCrossRefGoogle Scholar
  81. 81.
    Pakula AA, Young VB, Sauer RT. Bacteriophage λ cro mutations: Effects on activity and intracellular degradation. Proc Natl Acad Sci USA 1986;83:8829–8833.PubMedCrossRefGoogle Scholar
  82. 82.
    Bechhoefer J. Feedback for physicists: A tutorial essay on control. Rev Mod Phys 2005;77:783–836.CrossRefGoogle Scholar
  83. 83.
    Jia H, Satumba WJ, Bidwell III GL, Mossing MC. Slow assembly and disassembly of lambda Cro repressor dimers. J Mol Biol 2005;350:919–929.PubMedCrossRefGoogle Scholar
  84. 84.
    Bundschuh R, Hayot F, Jayaprakash C. The role of dimerization in noise reduction of simple genetic networks. J Theor Biol 2003;220:261–269.PubMedCrossRefGoogle Scholar
  85. 85.
    Briggs GE, Haldane JBS. A note on the kinetic of enzyme action. Biochem J 1925;19:338–339.PubMedGoogle Scholar
  86. 86.
    Bakk A, Metzler R. Nonspecific binding of the O R Repressors CI and Cro of bacteriophage lambda. J Theor Biol 2004;231:525–533.PubMedCrossRefGoogle Scholar
  87. 87.
    Vilar JMG, Leibler S. DNA looping and physical constraints on transcription regulation. J Mol Biol 2003;331:981–989.PubMedCrossRefGoogle Scholar
  88. 88.
    Dodd IB, Shearwin KE, Perkins AJ, Burr T, Hochschild A, Egan JB. Cooperativity in long-range gene regulation by the lambda CI repressor. Gene Dev 2004;18:344–354.PubMedCrossRefGoogle Scholar
  89. 89.
    van Kampen NG. Stochastic processes in physics and chemistry. Amsterdam: Elsevier; 1992.Google Scholar
  90. 90.
    Elowitz MB, Levine AJ, Siggia ED, Swain PS. Stochastic gene expression in a single cell. Science 2002;297:1183–1186.PubMedCrossRefGoogle Scholar
  91. 91.
    Ao P, Yin L. Towards the understanding of stability puzzles in phage lambda. (2003; eprint: cond-mat/0307747: http://arxiv.org/PS_cache/condmat/pdf/0307/0307747.pdf)Google Scholar
  92. 92.
    Raser JM, O’Shea EK. Control of stochasticity in eukaryotic gene expression. Science 2004;304:1811–1814.PubMedCrossRefGoogle Scholar
  93. 93.
    Kramers HA. Brownian motion in a field of force and the diffusion model of chemical reactions. Physica 1940;7:284–304.CrossRefGoogle Scholar
  94. 94.
    Hanggi P, Talkner P, Borkevic M. Reaction-rate theory: Fifty years after Kramers. Rev Mod Phys 1990;62:251–341.CrossRefGoogle Scholar
  95. 95.
    Dodd IB, Perkins AJ, Tsemitsidis DT, Egan JB. Octamerization of λs CI repressor is needed for effective repression of PRM and efficient switching from lysogeny. Genes Dev 2001;15:3013–3022.PubMedCrossRefGoogle Scholar
  96. 96.
    Revet B, von Wilcken-Bergmann B, Bessert H, et al. Four dimers of λ repressor bound to two suitably spaced pairs of λ operators form octamers and DNA loops over large distances. Curr Biol 1999;9:151–154.PubMedCrossRefGoogle Scholar
  97. 97.
    Pray TR, Burz DS, Ackers GK. Cooperative non-specific DAN binding by octamerizing λ CI repressors: A site-specific thermodynamic analysis. J Mol Biol 1998;282:947–958.PubMedCrossRefGoogle Scholar
  98. 98.
    Hochschild A, Douhan III J, Ptashne M. How λ repressor and λ Cro distinguish between OR1 and OR3. Cell 1986;47:807–816.PubMedCrossRefGoogle Scholar
  99. 99.
    Bremmer H, Dennis PP. Modulation of chemical composition and other parameters of the cell by growth rate. In: Neidhardt FC, ed. Escherichia coli and Salmonella. ASM Press; 1996:1553–1569.Google Scholar
  100. 100.
    Shean CS, Gottesman ME. Translation of the prophage lambda cI transcript. Cell 1992;70:513–522.PubMedCrossRefGoogle Scholar
  101. 101.
    Ringquist S, Shinedling S, Barrick D, et al. Translation initiation in Escherichia coli: sequences within the ribosome-binding site. Mol Microbiol 1992;6:1219–1229.PubMedCrossRefGoogle Scholar
  102. 102.
    Kennell D, Riezman H. Transcription and translation initiation frequencies of the Escherichia coli lac operon. J Mol Biol 1977;114:1–21.PubMedCrossRefGoogle Scholar
  103. 103.
    Eisen H, Brachet P, Pereira da Silva L, Jacob F. Regulation of repressor expression in λ. Proc Natl Acad Sci USA 1970;66:855–862.PubMedCrossRefGoogle Scholar
  104. 104.
    Calef E, Avitabile LDG, Marchelli C, et al. The genetics of the anti-immune phenotype of defective lambda lysogens. In: Hershey AD, ed. The Bacteriophage Lambda. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 1971:609–620.Google Scholar
  105. 105.
    Bialek W. Stability and noise in biochemical switches. In: Advances in Neural Information Processing 13. Leen TK, Dietterich TG, Tresp V, eds. Cambridge: MIT Press; 2001:103.Google Scholar
  106. 106.
    Paulsson J. Summing up the noise in gene networks. Nature 2004;427:415–418.PubMedCrossRefGoogle Scholar
  107. 107.
    Casci T. Systems biology—Noise is golden. Nature Rev Genet 2005;6:346–346.CrossRefGoogle Scholar
  108. 108.
    Hartwell LH, Hopfiedl JJ, Leibler S, Murray AW. From molecular to modular cell biology. Nature 1999;402:C47–C52.PubMedCrossRefGoogle Scholar
  109. 109.
    Nijhout HF. The nature of robustness in development. Bioessays 2002;24:553–563.PubMedCrossRefGoogle Scholar
  110. 110.
    Kitano H. Biological robustness. Nature Rev Genet 2004;5:826–837.CrossRefPubMedGoogle Scholar
  111. 111.
    Ma L, Iglesias PA. Quantifying robustness of biochemical network models. BMC Bioinformatics 2002;3:38.PubMedCrossRefGoogle Scholar
  112. 112.
    Bluthgen N, Herzel H. How robust are switches in intracellular signaling cascades? J Theor Biol 2003;225:293–300.PubMedCrossRefGoogle Scholar
  113. 113.
    Kerszberg M. Noise, delays, robustness, canalization and all that. Curr Opin Genet Dev 2004;14:440–445.PubMedCrossRefGoogle Scholar
  114. 114.
    Goulian M. Robust control in bacterial regulatory circuits. Curr Opin Microbiol 2004;7:198–202.PubMedCrossRefGoogle Scholar
  115. 115.
    Stelling J, Sauer U, Szallasi Z, et al. Robustness of cellular functions. Cell 2004;118:675–685.PubMedCrossRefGoogle Scholar
  116. 116.
    Li FT, Long T, Lu Y, et al. The yeast cell-cycle network is robustly designed. Proc Natl Acad Sci USA 2004;101:4781–4786.PubMedCrossRefGoogle Scholar
  117. 117.
    Flintoft L. Gene networks—The flexible network. Nature Rev Genet 2005;6:252–252.CrossRefGoogle Scholar
  118. 118.
    Ao P. Laws in Darwinian evolutionary theory. Phys Life Rev 2005;2:117–156.CrossRefGoogle Scholar
  119. 119.
    Hill TL. Cooperativity Theory in Biochemistry: Steady State and Equilibrium Systems. New York: Springer; 1985.Google Scholar
  120. 120.
    Ben-Naim A. Cooperativity in binding of proteins to DNA. J Chem Phys 1997;107:10242–10252.CrossRefGoogle Scholar
  121. 121.
    Glass L, Kauffman SA. The logical analysis of continuous, non-linear biochemical control networks. J Theor Biol 1973;39:103–129.PubMedCrossRefGoogle Scholar
  122. 122.
    von Dassow G, Meir E, Munro EM, Odell GM. The segment polarity network is a robust developmental module. Nature 2000;406:188–192.CrossRefGoogle Scholar
  123. 123.
    Vohradsky J. Neural network model of gene expression. FASEB J 2001;15:846–854.PubMedCrossRefGoogle Scholar
  124. 124.
    Tchuraev RN, Galimzyanov AV. Parametric stability evaluation in computer experiments on the mathematical model of Drosophila control gene subnetwork In Silico. Biology 2003;3:0100.Google Scholar
  125. 125.
    Waddington CH. Organisers and Genes. Cambridge: Cambridge University Press; 1940.Google Scholar
  126. 126.
    Monod J, Jacob F. General conclusions: teleonomic mechanisms in cellular metabolism, growth and differentiation. Cold Spring Harbor Symp Quant Biol 1961;26:389–401.PubMedGoogle Scholar
  127. 127.
    Savageau MA. Design principles for elementary gene circuits: Elements, methods, and examples. Chaos 2001;11:142–159.PubMedCrossRefGoogle Scholar
  128. 128.
    Muller-Hill B. The lac Operon: a short history of a genetic paradigm. Berlin: Walter de Gruyter; 1996.Google Scholar
  129. 129.
    Hendrix RW, Roberts JW, Stahl FW, Weisberg RA. Lambda II. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory; 1983.Google Scholar
  130. 130.
    Birge EA. Bacterial and Bacteriophage Genetics. 4th edition. Berlin: Springer; 2000.Google Scholar
  131. 131.
    Wegrzyn G, Wegrzyn A. Genetic switches during bacteriophage lambda development. Prog Nucl Acid Res Mol Biol 2005;79:1–48.CrossRefGoogle Scholar
  132. 132.
    Atsumi S, Little JW. Regulatory circuit design and evolution using phage lambda. Gene Dev 2004;18:2086–2094.PubMedCrossRefGoogle Scholar
  133. 133.
    Svenningsen SL, Costanitno N, Court DL, Adhya S. On the role of Cro in lambda prophage induction. Proc Natl Acad Sci USA 2005;102:4465–4469.PubMedCrossRefGoogle Scholar
  134. 134.
    Kobiler O, Rokney A, Friedman N, et al. Quantitative kinetic analysis of the bacteriophage lambda genetic network. Proc Natl Acad Sci USA 2005;102:4470–4475.PubMedCrossRefGoogle Scholar
  135. 135.
    Buchler NE, Gerland U, Hwa T. Nonlinear protein degradation and the function of genetic circuits. Proc Natl Acad Sci USA 2005;102:9559–9564.PubMedCrossRefGoogle Scholar
  136. 136.
    Roma DM, O’Flanagan RA, Ruckenstein AE, Sengupta AM. Optimal path to epigenetic switching. Phys Rev E 2005;71:011902.CrossRefGoogle Scholar
  137. 137.
    Baak K, Svenningsen S, Eisen H, et al. Single-cell analysis of lambda immunity regulation. J Mol Biol 2003;334:363–372.CrossRefGoogle Scholar
  138. 138.
    Bintu L, Buchler NE, Garcia HG, et al. Transcriptional regulation by the numbers: application. Curr Opin Genet Dev 2005;15:125–135.PubMedCrossRefGoogle Scholar
  139. 139.
    Tian T, Burrage K. Bistability and switching in the lysis/lysogeny genetic regulatory network of bacteriophage lambda. J Theor Biol 2004;227:229–237.PubMedCrossRefGoogle Scholar
  140. 140.
    Warren PB, ten Wolde PR. Enhancement of the stability of genetic switches by overlapping upstream regulatory domains. Phys Rev Lett 2004;92:128101.PubMedCrossRefGoogle Scholar
  141. 141.
    Walczak AM, Sasai M, Wolynes PG. Self-consistent proteomic field theory of stochastic gene switches. Biophys J 2005;88:828–850.PubMedCrossRefGoogle Scholar
  142. 142.
    Campbell A. The future of bacteriophage biology. Nature Rev Genet 2003;4:471–477.CrossRefPubMedGoogle Scholar
  143. 143.
    Mann NH. The third age of phage. PloS Biol 2005;3:753–755.CrossRefGoogle Scholar
  144. 144.
    Friedman DI, Court DL. Bacteriophage lambda: alive and well and still doing its thing. Curr Opin Microbiol 2001;4:201–207.PubMedCrossRefGoogle Scholar
  145. 145.
    Wright S. The roles of mutation, inbreeding, crossbreeding and selection in evolution. Proceedings of the 6th International Congress of Genetics. 1932;1:356–366.Google Scholar
  146. 146.
    Delbruck M. Discussion in Unités biologiquées de continuité génétique (International Symposium CNRS 8), Paris; 1949:33–35.Google Scholar
  147. 147.
    Thom R. Mathematical Models of Morphogenesis. New York: Wiley; 1983.Google Scholar
  148. 148.
    von Bertalanffy L. General System Theory: Foundations, Development, Applications. New York: G. Braziller; 1968.Google Scholar
  149. 149.
    Wiener N. Cybernetics: or, Control and Communication In the Animal and the Machine, 2nd edition. Cambridge: M.I.T. Press; 1961.Google Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  • Xiaomei Zhu
    • 1
  • Lan Yin
    • 2
  • Leroy Hood
    • 3
  • David Galas
    • 3
  • Ping Ao
    • 4
  1. 1.GenMath Corp.SeattleUSA
  2. 2.School of PhysicsPeking UniversityBeijingPeople’s Republic of China
  3. 3.Institute for Systems BiologySeattleUSA
  4. 4.Department of Mechanical EngineeringUniversity of WashingtonSeattleUSA

Personalised recommendations