Mechanisms Generating Ultrasensitivity, Bistability, and Oscillations in Signal Transduction

  • Nils Blüthgen
  • Stefan Legewie
  • Hanspeter Herzel
  • Boris Kholodenko


Stimulus-response curves of signal transduction cascades are often nonlinear; take, for example, sigmoidal curves. Such sigmoidal curves are frequently termed ultrasensitive, as small alterations in the stimulus can elicit large changes in the response. This chapter shall review the importance of ultrasensitivity in signal transduction, with a focus on the activation of the mitogen-activated protein kinase (MAPK) cascade. The major mechanisms that generate ultrasensitivity (Figure 1) are introduced. In particular, zero-order kinetics and multisite phosphorylation are discussed.

Ultrasensitive signaling cascades equipped with positive or negative feedback loops may exhibit complex dynamic behavior. The large body of theory for effects of feedbacks shall be reviewed in this chapter. It is discussed that bistability can emerge from ultrasensitivity in conjunction with positive feedback, whereas adaptation, oscillations, and, surprisingly, highly linear response can arise with negative feedback.

Key Words

Mathematical modeling control theory dynamics bifurcation analysis signal transduction cascades zero-order ultrasensitivity mitogen-activated protein kinase (MAPK) cascade 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nash P, Tang X, Orlicky S, et al. Multisite phosphorylation of a CDK inhibitor sets a threshold for the onset of DNA replication. Nature 2001;414:514–521.PubMedCrossRefGoogle Scholar
  2. 2.
    LaPorte DC, Koshland DE. Phosphorylation of isocitrate dehydrogenase as a demonstration of enhanced sensitivity in covalent regulation. Nature 1983;305:286–290.PubMedCrossRefGoogle Scholar
  3. 3.
    Meinke MH, Bishop JS, Edstrom RD. Zero-order ultrasensitivity in the regulation of glycogen phosphorylase. Proc Natl Acad Sci USA 1986;83:2865–2868.PubMedCrossRefGoogle Scholar
  4. 4.
    Bradshaw JM, Kubota Y, Meyer T, et al. An ultrasensitive Ca2+/calmodulindependent protein kinase II-protein phosphatase 1 switch facilitates specificity in postsynaptic calcium signaling. Proc Natl Acad Sci USA 2003;100:10512–10517.PubMedCrossRefGoogle Scholar
  5. 5.
    Ferrell JE, Machleder EM. The biochemical basis of an all-or-none cell fate switch in Xenopus oocytes. Science 1998;280:895–898.PubMedCrossRefGoogle Scholar
  6. 6.
    Ferrell JE. Tripping the switch fantastic: how a protein kinase cascade can convert graded inputs into switch-like outputs. Trends Biochem Sci 1996;21:460–466.PubMedCrossRefGoogle Scholar
  7. 7.
    Thattai M, van Oudenaarden A. Attenuation of noise in ultrasensitive signaling cascades. Biophys J 2002;82:2943–2950.PubMedCrossRefGoogle Scholar
  8. 8.
    Goldbeter A. A minimal cascade model for the mitotic oscillator involving cyclin and cdc2 kinase. Proc Natl Acad Sci USA 1991;88:9107–9111.PubMedCrossRefGoogle Scholar
  9. 9.
    Kholodenko BN. Negative feedback and ultrasensitivity can bring about oscillations in the mitogen-activated protein kinase cascades. Eur J Biochem 2000;267:1583–1588.PubMedCrossRefGoogle Scholar
  10. 10.
    Bagowski CP, Besser J, Frey CR, Ferrell JE. The JNK cascade as a biochemical switch in mammalian cells: ultrasensitive and all-or-none responses. Curr Biol 2003;13:315–320.PubMedCrossRefGoogle Scholar
  11. 11.
    Sauro HM, Kholodenko BN. Quantitative analysis of signaling networks. Prog Biophys Mol Biol 2004;86:5–43.PubMedCrossRefGoogle Scholar
  12. 12.
    Hill AV. The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves. J Physiol 1910;40:iv–vii.Google Scholar
  13. 13.
    Cardenas ML. Kinetic behaviour of vertebrate hexokinases with emphasis on hexokinase D (IV). Biochem Soc Trans 1997;25:131–135.PubMedGoogle Scholar
  14. 14.
    Goldbeter A, Koshland DE. An amplified sensitivity arising from covalent modification in biological systems. Proc Natl Acad Sci USA 1981;78:6840–6844.PubMedCrossRefGoogle Scholar
  15. 15.
    Kacser H, Burns JA. The control of flux. Symp Soc Exp Biol 1973;210:65–104.Google Scholar
  16. 16.
    Heinrich R, Rapoport TA. A linear steady-state treatment of enzymatic chains. critique of the crossover theorem and a general procedure to identify interaction sites with an effector. Eur J Biochem 1974;42:97–105.PubMedCrossRefGoogle Scholar
  17. 17.
    Fell DA. Metabolic control analysis: a survey of its theoretical and experimental development. Biochem J 1992;286 (Pt 2):313–330.PubMedGoogle Scholar
  18. 18.
    Kahn D, Westerhoff HV. Control theory of regulatory cascades. J Theor Biol 1991;153:255–285.PubMedCrossRefGoogle Scholar
  19. 19.
    Hornberg JJ, Bruggeman FJ, Binder B, et al. Principles behind the multifarious control of signal transduction. ERK phosphorylation and kinase/ phosphatase control. FEBS J 2005;272:244–258.PubMedCrossRefGoogle Scholar
  20. 20.
    Kholodenko BN, Hoek JB, Westerhoff HV, et al. Quantification of information transfer via cellular signal transduction pathways. FEBS Letters 1997;414:430–434.PubMedCrossRefGoogle Scholar
  21. 21.
    Hornberg JJ, Binder B, Bruggeman FJ, et al. Control of MAPK signalling: from complexity to what really matters. Oncogene 2005;24:5533–5542.PubMedCrossRefGoogle Scholar
  22. 22.
    Wolf J, Heinrich R. Effect of cellular interaction on glycolytic oscillations in yeast: a theoretical investigation. Biochem J 2000;345:321–334.PubMedCrossRefGoogle Scholar
  23. 23.
    Legewie S, Blüthgen N, Herzel H. Quantitative analysis of ultrasensitive responses. FEBS J 2005;272:4071–4079.PubMedCrossRefGoogle Scholar
  24. 24.
    Cohen P. The regulation of protein function by multisite phosphorylation—a 25 year update. Trends Biochem Sci 2000;25:596–601.PubMedCrossRefGoogle Scholar
  25. 25.
    Koshland DE, Goldbeter A, Stock JB. Amplification and adaptation in regulatory and sensory systems. Science 1982;217:220–225.PubMedCrossRefGoogle Scholar
  26. 26.
    Blüthgen N, Bruggeman FJ, Legewie S, et al. Effects of sequestration on signal transduction cascades. FEBS J 2006;273:895–906.PubMedCrossRefGoogle Scholar
  27. 27.
    Holmberg CI, Tran SE, Eriksson JE, et al. Multisite phosphorylation provides sophisticated regulation of transcription factors. Trends Biochem Sci 2002;27:619–627.PubMedCrossRefGoogle Scholar
  28. 28.
    Ferrell JE, Bhatt RR. Mechanistic studies of the dual phosphorylation of mitogen-activated protein kinase. J Biol Chem 1997;272:19008–19016.PubMedCrossRefGoogle Scholar
  29. 29.
    Deshaies RJ, Ferrell JE. Multisite phosphorylation and the countdown to S phase. Cell 2001;107:819–822.PubMedCrossRefGoogle Scholar
  30. 30.
    Salazar C, Höfer T. Allosteric regulation of the transcription factor NFAT1 by multiple phosphorylation sites: a mathematical analysis. J Mol Biol 2003;327:31–45.PubMedCrossRefGoogle Scholar
  31. 31.
    Mansour SJ, Candia JM, Matsuura JE, et al. Interdependent domains controlling the enzymatic activity of mitogen-activated protein kinase kinase 1. Biochemistry 1996;35:15529–15536.PubMedCrossRefGoogle Scholar
  32. 32.
    Zhao Y, Zhang ZY. The mechanism of dephosphorylation of extracellular signal-regulated kinase y2 by mitogen-activated protein kinase phosphatase 3. J Biol Chem 2001;276:32382–32391PubMedCrossRefGoogle Scholar
  33. 33.
    Blüthgen N, Herzel H. MAP-kinase-cascade: Switch, amplifier or feedback controller. In: Gauges R, van Gend C, Kummer U, eds., 2nd Workshop on Computation of Biochemical Pathways and Genetic Networks. 2001:55–62.Google Scholar
  34. 34.
    Kholodenko BN, Hoek JB, Brown GC, et al. Control analysis of cellular signal transduction pathways. In: Larsson C, Pahlman IL, Gustafsson L, eds., Biothermokinetics in the postgenomic era. Goeteborg: Chalmers: 1998:102–107.Google Scholar
  35. 35.
    Bohr C, Hasselbach KA, Krough A. Über einen in biologischen Beziehungen wichtigen Einfluß, den die Kohlensäurespannung des Blutes auf dessen Sauerstoffbindung übt. Skand Arch Physiol 1904;16:402–412.Google Scholar
  36. 36.
    Yeung K, Seitz T, Li S, et al. Suppression of Raf-1 kinase activity and MAP kinase signalling by RKIP. Nature 1999;401:173–177.PubMedCrossRefGoogle Scholar
  37. 37.
    Legewie S, Blüthgen N, Herzel H. Ultrasensitization: switch-like regulation of cellular signalling by transcriptional induction. PLoS Comput Biol 2005;1:e54.PubMedCrossRefGoogle Scholar
  38. 38.
    Gomez Casati DF, Aon MA, Iglesias AA. Ultrasensitive glycogen synthesis in Cyanobacteria. FEBS Lett 1999;446:117–121.PubMedCrossRefGoogle Scholar
  39. 39.
    Aon MA, Gomez-Casati DF, Iglesias AA, et al. Ultrasensitivity in (supra) molecularly organized and crowded environments. Cell Biol Int 2001;25:1091–1099.PubMedCrossRefGoogle Scholar
  40. 40.
    Brown GC, Hoek JB, Kholodenko BN. Why do protein kinase cascades have more than one level? Trends Biochem Sci 1997;22:288.PubMedCrossRefGoogle Scholar
  41. 41.
    Thomas R, Gathoye AM, Lambert L. A complex control circuit. Regulation of immunity in temperate bacteriophages. Eur J Biochem 1976;71:211–227.PubMedCrossRefGoogle Scholar
  42. 42.
    Arkin A, Ross J, McAdams HH. Stochastic kinetic analysis of developmental pathway bifurcation in phage lambda-infected Escherichia coli cells. Genetics 1998;149:1633–1648.PubMedGoogle Scholar
  43. 43.
    Hasty J, Pradines J, Dolnik M, et al. Noise-based switches and amplifiers for gene expression. Proc Natl Acad Sci USA 2000;97:2075–2080.PubMedCrossRefGoogle Scholar
  44. 44.
    Gardner TS, Cantor CR, Collins JJ. Construction of a genetic toggle switch in Escherichia coli. Nature 2000;403:339–342.PubMedCrossRefGoogle Scholar
  45. 45.
    Becskei A, Seraphin B, Serrano L. Positive feedback in eukaryotic gene networks: cell differentiation by graded to binary response conversion. EMBO J 2001;20:2528–2535.PubMedCrossRefGoogle Scholar
  46. 46.
    Ferrell JE, Xiong W. Bistability in cell signaling: how to make continuous processes discontinuous, and reversible processes irreversible. Chaos 2001;11:227–235.PubMedCrossRefGoogle Scholar
  47. 47.
    Ferrell JE. Self-perpetuating states in signal transduction: positive feedback, double-negative feedback and bistability. Curr Opin Cell Biol 2002;14:140–148.PubMedCrossRefGoogle Scholar
  48. 48.
    Shvartsman SY, Muratov CB, Lauffenburger DA. Modeling and computational analysis of EGF receptor-mediated cell communication in Drosophila oogenesis. Development 2002;129:2577–2589.PubMedGoogle Scholar
  49. 49.
    Tyson JJ, Chen KC, Novak B. Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. Curr Opin Cell Biol 2003;15:221–231.PubMedCrossRefGoogle Scholar
  50. 50.
    Angeli D, Ferrell JE, Sontag ED. Detection of multistability, bifurcations, and hysteresis in a large class of biological positive-feedback systems. Proc Natl Acad Sci USA 2004;101:1822–1827.PubMedCrossRefGoogle Scholar
  51. 51.
    Bhalla US, Iyengar R. Emergent properties of networks of biological signaling pathways. Science 1999;283:381–387.PubMedCrossRefGoogle Scholar
  52. 52.
    Binder B, Heinrich R. Interrelations between dynamical properties and structural characteristics of signal transduction networks. Genome Informatics 2004;15:13–23.PubMedGoogle Scholar
  53. 53.
    Heinrich R, Neel BG, Rapoport TA. Mathematical models of protein kinase signal transduction. Mol Cell 2002;9:957–970.PubMedCrossRefGoogle Scholar
  54. 54.
    Becskei A, Serrano L. Engineering stability in gene networks by autoregulation. Nature 2000;405:590–593.PubMedCrossRefGoogle Scholar
  55. 55.
    Asthagiri AR, Lauffenburger DA. A computational study of feedback effects on signal dynamics in a mitogen-activated protein kinase (MAPK) pathway model. Biotechnol Prog 2001;17:227–239.PubMedCrossRefGoogle Scholar
  56. 56.
    Alon U, Surette MG, Barkai N, et al. Robustness in bacterial chemotaxis. Nature 1999;397:168–171.PubMedCrossRefGoogle Scholar
  57. 57.
    Lauffenburger DA. Cell signaling pathways as control modules: complexity for simplicity? Proc Natl Acad Sci USA 2000;97:5031–5033.PubMedCrossRefGoogle Scholar
  58. 58.
    Lauffenburger DA, Linderman JJ. Receptors—models for binding, trafficking, and signaling. Oxford: Oxford University Press; 1993.Google Scholar
  59. 59.
    Yi TM, Huang Y, Simon MI, Doyle J. Robust perfect adaptation in bacterial chemotaxis through integral feedback control. Proc Natl Acad Sci USA 2000;97:4649–4653.PubMedCrossRefGoogle Scholar
  60. 60.
    Hirata H, Yoshiura S, Ohtsuka T, et al. Oscillatory expression of the bHLH factor Hes1 regulated by a negative feedback loop. Science 2002;298:840–843.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  • Nils Blüthgen
    • 1
  • Stefan Legewie
    • 1
  • Hanspeter Herzel
    • 1
  • Boris Kholodenko
    • 2
  1. 1.Institute of Theoretical BiologyHumboldt UniversityBerlinGermany
  2. 2.Department of Pathology and Cell Biology, Daniel Baugh Institute for Functional Genomics/Computational BiologyThomas Jefferson UniversityPhiladelphiaUSA

Personalised recommendations