Advertisement

Kinetics of Dimension-Restricted Conditions

  • Noriko Hiroi
  • Akira Funahashi

Abstract

The intracellular environment is crowded with skeletal proteins, organelle membranes, ribosomes, and so on. When molecular movement is restricted by such environments, some biochemical reaction processes cannot be represented by classical models, which assume that reactions occur in simple Newtonian fluids. Dimension-restricted reaction kinetics (DRRK) modeling is a method that can represent dimension-restricted reactions. We introduce the methods of DRRK in each case of reaction type. DRRK has another advantage in that it can be quantitatively evaluated by biochemical experiments. We also introduce the procedure of applying it for experimental results. This modeling method may provide the basis for in vivo-oriented modeling.

Key Words

Fractal kinetics percolation theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fulton AB. How crowded is the cytoplasm? Cell 1982;30:345–347.PubMedCrossRefGoogle Scholar
  2. 2.
    Medalia O. et al. Macromolecular architecture in eukaryotic cells visualized by cryoelectron tomography. Science 2002;298:1209–1213.PubMedCrossRefGoogle Scholar
  3. 3.
    Smoluchowski MV. Versuch einer mathematischen Theorie der Koagulationskinetik koloider Losungen. Phys Chem 1917;92:129–168.Google Scholar
  4. 4.
    Michaelis L, Menten LM. Die Kinetik der Invertinwirkung. Biochem Z 1913;49:333–369.Google Scholar
  5. 5.
    Segel IH. Enzyme kinetics. Behavior and analysis of rapid equilibrium and steady-state enzyme systems. New York: John Wiley & Sons, Inc; 1993.Google Scholar
  6. 6.
    Berg OG, Winter RB, von Hippel PH. Diffusion-driven mechanisms of protein translocation on nucleic acids. 1. Models and theory. Biochemistry 1981;24:6929–6948.CrossRefGoogle Scholar
  7. 7.
    Jelstch A, Pingoud A. Kinetic characterization of linear diffusion of the restriction endonuclease EcoRV on DNA. Biochemistry 1998;37:2160–2169.CrossRefGoogle Scholar
  8. 8.
    Stanford NP, Szczelkun MD, Marko JF, et al. One-and three-dimensional pathways for proteins to reach specific DNA sites. EMBO J 2000;1:6546–6557.CrossRefGoogle Scholar
  9. 9.
    Gowers DM, Halford SE. Protein motion from non-specific to specific DNA by three-dimensional routes aided by supercoiling. EMBO J 2003;17:1410–1418.CrossRefGoogle Scholar
  10. 10.
    Jeltsch A, Urbanke C. Sliding or hopping? How restriction enzymes find their way on DNA. In: Pngoud A, ed. Nucleic Acids and Molecular Biology: Restriction Endonuclease, vol. 14. Heidelberg: Springer-Verlag; 2004:95–110.Google Scholar
  11. 11.
    Einstein A. Investigations on the Theory of the Brownian Movement. New York: Dutton; 1926.Google Scholar
  12. 12.
    von Smoluchowski M. Drei Vorträgeüber Diffusion, Brownische Molekularbewegung und Koagulation von Kolloidteilchen. Phys Z 1916;17:557–571, 585–599.Google Scholar
  13. 13.
    Frish HI, Hammersly JM. Percolation process and related topics. J Soc Indust Appl Math 1963;11:894–918.CrossRefGoogle Scholar
  14. 14.
    Kopelman R, Argyrakis P. Diffusive and percolative lattice migration: Excitons. J Chem Phys 1980;72:3053–3060.CrossRefGoogle Scholar
  15. 15.
    Klymko PW, Kopelman R. Fractal reaction kinetics: exciton fusion on clusters. J Phys Chem 1983;87:4565–4567.CrossRefGoogle Scholar
  16. 16.
    Kopelman R, Klymko PW, Newhouse JS, et al. Reaction kinetics on fractals: random-walker simulations and exciton experiments. Phys Rev B 1984;29:3747–3748.CrossRefGoogle Scholar
  17. 17.
    Kopelman R. Fractal reaction kinetics. Science 1988;241:1620–1626.PubMedCrossRefGoogle Scholar
  18. 18.
    Kopelman R. Exciton microscopy and reaction kinetics in restricted spaces. In: Glass WA, Varma MN, ed. Physical and Chemical Mechanisms in Molecular Radiation Biology. New York: Plenum Press; 1991:475–502.Google Scholar
  19. 19.
    Turner TE. Stochastic and deterministic approaches to modelling in vivo biochemical kinetics [masters thesis]. Trinity, England: University of Oxford; 2003.Google Scholar
  20. 20.
    Savageau MA. Influence of fractal kinetics on molecular recognition. J Mol Recognit 1993;4:149–157.CrossRefGoogle Scholar
  21. 21.
    Savageau MA. Michaelis-Menten mechanism reconsidered: implications of fractal kinetics. J Theor Biol 1995;176:115–124.PubMedCrossRefGoogle Scholar
  22. 22.
    Savageau MA. Development of fractal kinetic theory for enzyme-catalysed reactions and implications for the design of biochemical pathways. Biosystems 1998;47:9–36.PubMedCrossRefGoogle Scholar
  23. 23.
    Schnell S, Turner TE. Reaction kinetics in intracellular environments with macromolecular crowding: simulations and rate laws. Biophys Mol Biol 2004;85:235–260.CrossRefGoogle Scholar
  24. 24.
    Vlad MO, Popa VT, Segal E, et al. Multiple rate-determining steps for nonideal and fractal kinetics. J Phys Chem 2005;109:2455–2460.Google Scholar
  25. 25.
    Duran J, Pelle F, Portella MT. Fractal kinetics of multiparticle diffusion. J Phys C: Solid State Phys 1986;19:6185–6194.CrossRefGoogle Scholar
  26. 26.
    Berry H. Monte Carlo simulations of enzyme reactions in two dimensions: fractal kinetics and spatial segregation. Biophys J 2002;83:1891–1901.PubMedGoogle Scholar
  27. 27.
    Aon MA, Cortassa S. On the fractal nature of cytoplasm. FEBS Lett 1994;344:1–4.PubMedCrossRefGoogle Scholar
  28. 28.
    Aon MA, O’Rourke B, Cortassa S. The fractal architecture of cytoplasmic organization: scaling, kinetics and emergence in metabolic network. Mol Cell Biochem 2004;256/257:169–184.CrossRefGoogle Scholar
  29. 29.
    Briggs GE, Haldane JBS. A note on the kinetics of enzyme action. Biochem J 1925;19:338–339.PubMedGoogle Scholar
  30. 30.
    Kulkarni RP, Wu DD, Davis ME, Fraser SE. Quantitating intracellular transport of polyplexes by spatio-temporal image correlation spectroscopy. Proc Natl Acad Sci USA 2005;102:7523–7528.PubMedCrossRefGoogle Scholar
  31. 31.
    Burack WR, Shaw AS. Live cell imaging of ERK and MEK. J Biol Chem 2005;280:3832–3837.PubMedCrossRefGoogle Scholar
  32. 32.
    Phair RD, Misteli T. High mobility of proteins in the mammalian cell nucleus. Nature 2000;404:604–609.PubMedCrossRefGoogle Scholar
  33. 33.
    Lillemeier BF, Köster M, Kerr IM. STAT1 from the cell membrane to the DNA. EMBO J 2001;20:2508–2517.PubMedCrossRefGoogle Scholar
  34. 34.
    Kabata H, Okada W Washizu M. Single-molecule dynamics of the EcoRI enzyme using stretched DNA: its application to in situ sliding assay and optical DNA mapping. Jpn J Appl Phys 2000;39:7164–7171.CrossRefGoogle Scholar
  35. 35.
    Seidel R, van Noort J, van der Scheer C, et al. Real-time observation of DNA translocation by the type I restriction modification enzyme EcoR124I. Nat Struct Biol 2004;11:838–843.CrossRefGoogle Scholar
  36. 36.
    Solovjeva L, Svetlova M, Stein G, et al. Conformation of replicated segments of chromosome fibers in human S-phase nucleus. Chromosome Res 1998;6:595–602.PubMedCrossRefGoogle Scholar
  37. 37.
    Maly IV, Vorobjev IA. Centrosome-dependent anisotropic random walk of cytoplasmic vesicles. Cell Biol Int 2002;26:791–799.PubMedCrossRefGoogle Scholar
  38. 38.
    Orci L, Ravazzola M, Volchuk A, et al. Anterograde flow of cargo across the Golgi stack potentially mediated via bidirectional “percolating” COPI vesicles. Proc Natl Acad Sci USA 2000;97:10400–10405PubMedCrossRefGoogle Scholar
  39. 39.
    Axelrod D, Koppel DE, Schlessinger J, et al. Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys J 1976;16:1055–1069.PubMedCrossRefGoogle Scholar
  40. 40.
    Verkman AS. Solute and macromolecule diffusion in cellular aqueous compartments. Trends Biochem Sci 2002;27:27–33PubMedCrossRefGoogle Scholar
  41. 41.
    Halford SE, Marco JF. How do site-specific DNA-binding proteins find their targets? Nucleic Acid Res 2004;32:3040–3052.PubMedCrossRefGoogle Scholar
  42. 42.
    Kitano H, Funahashi A, Matsuoka Y, Oda K. The process diagram for graphical representation of biological networks. Nat Biotechnol 2005;23:961–966.PubMedCrossRefGoogle Scholar
  43. 43.
    Hiroi N, Funahashi A, Kitano H. Kinetics for dimension restricted reactions. Submitted; 2005.Google Scholar
  44. 44.
    Hiroi N, Funahashi A, Kitano H. Two numerical model analysis for the movement of a restriction enzyme. Foundations of Systems Biology in Engineering (FOSBE 2005). Santa Barbara, CA, USA. August 2005.Google Scholar
  45. 45.
    Hiroi N, Funahashi A, Kitano H. Analysis for dimension restriction kinetics with bacterial endonuclease movement. The 2005 WSEAS International Conference on Cellular and Molecular Biology—Biophysics and Bioengineering. Athens, Greece. July 2005.Google Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  • Noriko Hiroi
    • 1
  • Akira Funahashi
    • 1
  1. 1.ERATO-SORST Kitano Symbiotic Systems ProjectJapan Science and Technology AgencyTokyoJapan

Personalised recommendations