Environmental Factors in Autoimmune Endocrinopathies

  • Rajni B. Sharma
  • C. Lynne Burek
  • Daniela Cihákova
  • Dolores B. Njoku
  • Noel R. Rose
Part of the Contemporary Endocrinology book series (COE)


The autoimmune endocrinopathies include a wide range of diseases affecting one or more endocrine glands. While a strong genetic predisposition underlies their development, environmental factors are also involved in their pathogenesis. These environmental agents include infections, therapeutic drugs, chemicals, and radiation. A firm relationship between these environmental agents and autoimmune diseases is difficult to establish as exposure to these agents often precedes onset of disease by a considerable margin. Animal models have helped considerably to establish a cause/effect relationship. The mechanisms by which autoimmunity may be initiated include changes in autologous antigens, alterations in immune regulation, or altered gene expression. Environmental factors alter the immune responses depending on the genetic susceptibility of the host and may be regulated by the quality, quantity, and duration of exposure.


Environmental factors diabetes thyroid diseases 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hall R, Stanbury JB. Familial studies of autoimmune thyroiditis. Clin Exp Immunol 1967;2(Suppl):719–25.PubMedGoogle Scholar
  2. 2.
    Warram JH, Krolewski AS, Gottlieb MS, Kahn CR. Differences in risk of insulin-dependent diabetes in offspring of diabetic mothers and diabetic fathers. N Engl J Med 1984;311(3):149–52.PubMedGoogle Scholar
  3. 3.
    Roitt IM, Doniach D. A reassessment of studies on the aggregation of thyroid autoimmunity in families of thyroiditis patients. Clin Exp Immunol 1967;2(Suppl):727–36.PubMedGoogle Scholar
  4. 4.
    Barbesino G, Tomer Y, Concepcion E, Davies TF, Greenberg DA. Linkage analysis of candidate genes in autoimmune thyroid disease: 1. Selected immunoregulatory genes. International Consortium for the Genetics of Autoimmune Thyroid Disease. J Clin Endocrinol Metab 1998;83(5):1580–4.PubMedGoogle Scholar
  5. 5.
    Smyth D, Cooper JD, Collins JE, et al. Replication of an association between the lymphoid tyrosine phosphatase locus (LYP/PTPN22) with type 1 diabetes, and evidence for its role as a general autoimmunity locus. Diabetes 2004;53(11):3020–3.PubMedGoogle Scholar
  6. 6.
    Dittmar M, Kahaly GJ. Immunoregulatory and susceptibility genes in thyroid and polyglandular autoimmunity. Thyroid 2005;15(3):239–50.PubMedGoogle Scholar
  7. 7.
    Dallos T, Kovacs L. CTLA-4 and the genetic predisposition to autoimmunity. Bratisl Lek Listy 2005;106(2):55–62.PubMedGoogle Scholar
  8. 8.
    Sharma RB, Alegria JD, Talor MV, Rose NR, Caturegli P, Burek CL. Iodine and IFN-gamma synergistically enhance intercellular adhesion molecule 1 expression on NOD.H2h4 mouse thyrocytes. J Immunol 2005;174(12):7740–5.PubMedGoogle Scholar
  9. 9.
    Rose NR, Bacon LD, Sundick RS. Genetic determinants of thyroiditis in the OS chicken. Transplant Rev 1976;31:264–85.PubMedGoogle Scholar
  10. 10.
    Kaprio J, Tuomilehto J, Koskenvuo M, et al. Concordance for type 1 (insulin-dependent) and type 2 (non-insulin-dependent) diabetes mellitus in a population-based cohort of twins in Finland. Diabetologia 1992;35(11):1060–7.PubMedGoogle Scholar
  11. 11.
    Hyttinen V, Kaprio J, Kinnunen L, Koskenvuo M, Tuomilehto J. Genetic liability of type 1 diabetes and the onset age among 22,650 young Finnish twin pairs: a nationwide follow-up study. Diabetes 2003;52(4):1052–5.PubMedGoogle Scholar
  12. 12.
    Ringold DA, Nicoloff JT, Kesler M, Davis H, Hamilton A, Mack T. Further evidence for a strong genetic influence on the development of autoimmune thyroid disease: the California twin study. Thyroid 2002;12(8):647–53.PubMedGoogle Scholar
  13. 13.
    Whitacre CC. Sex differences in autoimmune disease. Nat Immunol 2001;2(9):777–80.PubMedGoogle Scholar
  14. 14.
    Chiovato L, Lapi P, Fiore E, Tonacchera M, Pinchera A. Thyroid autoimmunity and female gender. J Endocrinol Invest 1993;16(5):384–91.PubMedGoogle Scholar
  15. 15.
    Lu R, Burman KD, Jonklaas J. Transient Graves’ hyperthyroidism during pregnancy in a patient with Hashimoto’s hypothyroidism. Thyroid 2005;15(7):725–9.PubMedGoogle Scholar
  16. 16.
    Leclere J, Weryha G. Stress and auto-immune endocrine diseases. Horm Res 1989;31(1–2):90–3.PubMedGoogle Scholar
  17. 17.
    Karvonen M, Tuomilehto J, Libman I, LaPorte R. A review of the recent epidemiological data on the worldwide incidence of type 1 (insulin-dependent) diabetes mellitus. World Health Organization DIAMOND Project Group. Diabetologia 1993;36(10):883–92.PubMedGoogle Scholar
  18. 18.
    Rose Noel R. AM. From infection to autoimmunity: the adjuvant effect. ASM News/Features 2003;69(3):132–7.Google Scholar
  19. 19.
    Weets I, Kaufman L, Van der Auwera B, et al. Seasonality in clinical onset of type 1 diabetes in belgian patients above the age of 10 is restricted to HLA-DQ2/DQ8-negative males, which explains the male to female excess in incidence. Diabetologia 2004;47(4):614–21.PubMedGoogle Scholar
  20. 20.
    Onkamo P, Vaananen S, Karvonen M, Tuomilehto J. Worldwide increase in incidence of Type I diabetes–the analysis of the data on published incidence trends. Diabetologia 1999;42(12): 1395–403.PubMedGoogle Scholar
  21. 21.
    Viskari HR, Koskela P, Lonnrot M, et al. Can enterovirus infections explain the increasing incidence of type 1 diabetes? Diabetes Care 2000;23(3):414–6.PubMedGoogle Scholar
  22. 22.
    Forrest JM, Menser MA, Burgess JA. High frequency of diabetes mellitus in young adults with congenital rubella. Lancet 1971;2(7720):332–4.PubMedGoogle Scholar
  23. 23.
    Forrest JM, Menser MA, Harley JD. Diabetes mellitus and congenital rubella. Pediatrics 1969;44(3):445–7.PubMedGoogle Scholar
  24. 24.
    Forrest JM, Turnbull FM, Sholler GF, et al. Gregg’s congenital rubella patients 60 years later. Med J Aust 2002;177(11–12):664–7.PubMedGoogle Scholar
  25. 25.
    Ou D, Mitchell LA, Metzger DL, Gillam S, Tingle AJ. Cross-reactive rubella virus and glutamic acid decarboxylase (65 and 67) protein determinants recognised by T cells of patients with type I diabetes mellitus. Diabetologia 2000;43(6):750–62.PubMedGoogle Scholar
  26. 26.
    McEvoy RC, Fedun B, Cooper LZ, et al. Children at high risk of diabetes mellitus: New York studies of families with diabetes and of children with congenital rubella syndrome. Adv Exp Med Biol 1988;246:221–7.PubMedGoogle Scholar
  27. 27.
    Ginsberg-Fellner F, Witt ME, Fedun B, et al. Diabetes mellitus and autoimmunity in patients with the congenital rubella syndrome. Rev Infect Dis 1985;7(Suppl 1):S170–6.PubMedGoogle Scholar
  28. 28.
    Kawasaki E, Eisenbarth GS. High-throughput radioassays for autoantibodies to recombinant autoantigens. Front Biosci 2000;5:E181–90.PubMedGoogle Scholar
  29. 29.
    Peterson C, Campbell IL, Harrison LC. Lack of specificity of islet cell surface antibodies (ICSA) in IDDM. Diabetes Res Clin Pract 1992;17(1):33–42.PubMedGoogle Scholar
  30. 30.
    Viskari H, Paronen J, Keskinen P, et al. Humoral beta-cell autoimmunity is rare in patients with the congenital rubella syndrome. Clin Exp Immunol 2003;133(3):378–83.PubMedGoogle Scholar
  31. 31.
    Gundersen E. Is diabetes of infectious origin? J Infect Dis 1927;41:197–202.Google Scholar
  32. 32.
    Helmke K, Otten A, Willems WR, et al. Islet cell antibodies and the development of diabetes mellitus in relation to mumps infection and mumps vaccination. Diabetologia 1986;29(1):30–3.PubMedGoogle Scholar
  33. 33.
    Parkkonen P, Hyoty H, Koskinen L, Leinikki P. Mumps virus infects beta cells in human fetal islet cell cultures upregulating the expression of HLA class I molecules. Diabetologia 1992;35(1):63–9.PubMedGoogle Scholar
  34. 34.
    Cavallo MG, Baroni MG, Toto A, et al. Viral infection induces cytokine release by beta islet cells. Immunology 1992;75(4):664–8.PubMedGoogle Scholar
  35. 35.
    Prince GA, Jenson AB, Billups LC, Notkins AL. Infection of human pancreatic beta cell cultures with mumps virus. Nature 1978;271(5641):158–61.PubMedGoogle Scholar
  36. 36.
    Hyoty H, Hiltunen M, Reunanen A, et al. Decline of mumps antibodies in type 1 (insulin-dependent) diabetic children and a plateau in the rising incidence of type 1 diabetes after introduction of the mumps-measles-rubella vaccine in Finland. Childhood Diabetes in Finland Study Group. Diabetologia 1993;36(12):1303–8.PubMedGoogle Scholar
  37. 37.
    Otonkoski T, Roivainen M, Vaarala O, et al. Neonatal type I diabetes associated with maternal echovirus 6 infection: a case report. Diabetologia 2000;43(10):1235–8.PubMedGoogle Scholar
  38. 38.
    Yoon JW, Austin M, Onodera T, Notkins AL. Isolation of a virus from the pancreas of a child with diabetic ketoacidosis. N Engl J Med 1979;300(21):1173–9.PubMedGoogle Scholar
  39. 39.
    Yoon JW, Onodera T, Jenson AB, Notkins AL. Virus-induced diabetes mellitus. XI. Replication of coxsackie B3 virus in human pancreatic beta cell cultures. Diabetes 1978;27(7):778–81.PubMedGoogle Scholar
  40. 40.
    Lau G. Acute fulminant, fatal coxsackie B virus infection: a report of two cases. Ann Acad Med Singapore 1994;23(6):917–20.PubMedGoogle Scholar
  41. 41.
    Helfand RF, Gary HE, Jr, Freeman CY, Anderson LJ, Pallansch MA. Serologic evidence of an association between enteroviruses and the onset of type 1 diabetes mellitus. Pittsburgh Diabetes Research Group. J Infect Dis 1995;172(5):1206–11.PubMedGoogle Scholar
  42. 42.
    Schernthaner G, Banatvala JE, Scherbaum W, et al. Coxsackie-B-virus-specific IgM responses, complement-fixing islet-cell antibodies, HLA DR antigens, and C-peptide secretion in insulin-dependent diabetes mellitus. Lancet 1985;2(8456):630–2.PubMedGoogle Scholar
  43. 43.
    Dahlquist GG, Forsberg J, Hagenfeldt L, Boman J, Juto P. Increased prevalence of enteroviral RNA in blood spots from newborn children who later developed type 1 diabetes: a population-based case-control study. Diabetes Care 2004;27(1):285–6.PubMedGoogle Scholar
  44. 44.
    Juhela S, Hyoty H, Hinkkanen A, et al. T cell responses to enterovirus antigens and to beta-cell autoantigens in unaffected children positive for IDDM-associated autoantibodies. J Autoimmun 1999;12(4):269–78.PubMedGoogle Scholar
  45. 45.
    Juhela S, Hyoty H, Roivainen M, et al. T-cell responses to enterovirus antigens in children with type 1 diabetes. Diabetes 2000;49(8):1308–13.PubMedGoogle Scholar
  46. 46.
    Kawashima H, Ihara T, Ioi H, et al. Enterovirus-related type 1 diabetes mellitus and antibodies to glutamic acid decarboxylase in Japan. J Infect 2004;49(2):147–51.PubMedGoogle Scholar
  47. 47.
    Nairn C, Galbraith DN, Taylor KW, Clements GB. Enterovirus variants in the serum of children at the onset of type 1 diabetes mellitus. Diabet Med 1999;16(6):509–13.PubMedGoogle Scholar
  48. 48.
    Yin H, Berg AK, Tuvemo T, Frisk G. Enterovirus RNA is found in peripheral blood mononuclear cells in a majority of type 1 diabetic children at onset. Diabetes 2002;51(6):1964–71.PubMedGoogle Scholar
  49. 49.
    Banatvala JE, Bryant J, Schernthaner G, et al. Coxsackie B, mumps, rubella, and cytomegalovirus specific IgM responses in patients with juvenile-onset insulin-dependent diabetes mellitus in Britain, Austria, and Australia. Lancet 1985;1(8443):1409–12.PubMedGoogle Scholar
  50. 50.
    Jones DB, Crosby I. Proliferative lymphocyte responses to virus antigens homologous to GAD65 in IDDM. Diabetologia 1996;39(11):1318–24.PubMedGoogle Scholar
  51. 51.
    D’Alessio DJ. A case-control study of group B Coxsackievirus immunoglobulin M antibody prevalence and HLA-DR antigens in newly diagnosed cases of insulin-dependent diabetes mellitus. Am J Epidemiol 1992;135(12):1331–8.PubMedGoogle Scholar
  52. 52.
    Salminen K, Sadeharju K, Lonnrot M, et al. Enterovirus infections are associated with the induction of beta-cell autoimmunity in a prospective birth cohort study. J Med Virol 2003;69(1):91–8.PubMedGoogle Scholar
  53. 53.
    Serreze DV, Wasserfall C, Ottendorfer EW, et al. Diabetes acceleration or prevention by a coxsackievirus B4 infection: critical requirements for both interleukin-4 and gamma interferon. J Virol 2005;79(2):1045–52.PubMedGoogle Scholar
  54. 54.
    Volta C, Carano N, Street ME, Bernasconi S. Atypical subacute thyroiditis caused by Epstein-Barr virus infection in a three-year-old girl. Thyroid 2005;15(10):1189–91.PubMedGoogle Scholar
  55. 55.
    Volpe R, Row VV, Ezrin C. Circulating viral and thyroid antibodies in subacute thyroiditis. J Clin Endocrinol Metab 1967;27(9):1275–84.PubMedGoogle Scholar
  56. 56.
    Mori K, Yoshida K, Funato T, et al. Failure in detection of Epstein-Barr virus and cytomegalovirus in specimen obtained by fine needle aspiration biopsy of thyroid in patients with subacute thyroiditis. Tohoku J Exp Med 1998;186(1):13–7.PubMedGoogle Scholar
  57. 57.
    Tran A, Quaranta JF, Benzaken S, et al. High prevalence of thyroid autoantibodies in a prospective series of patients with chronic hepatitis C before interferon therapy. Hepatology 1993;18(2):253–7.PubMedGoogle Scholar
  58. 58.
    Ganne-Carrie N, Medini A, Coderc E, et al. Latent autoimmune thyroiditis in untreated patients with HCV chronic hepatitis: a case-control study. J Autoimmun 2000;14(2):189–93.PubMedGoogle Scholar
  59. 59.
    Fernandez-Soto L, Gonzalez A, Escobar-Jimenez F, et al. Increased risk of autoimmune thyroid disease in hepatitis C vs hepatitis B before, during, and after discontinuing interferon therapy. Arch Intern Med 1998;158(13):1445–8.PubMedGoogle Scholar
  60. 60.
    Preziati D, La Rosa L, Covini G, et al. Autoimmunity and thyroid function in patients with chronic active hepatitis treated with recombinant interferon alpha-2a. Eur J Endocrinol 1995;132(5):587–93.PubMedGoogle Scholar
  61. 61.
    Antonelli A, Ferri C, Pampana A, et al. Thyroid disorders in chronic hepatitis C. Am J Med 2004;117(1):10–3.PubMedGoogle Scholar
  62. 62.
    Metcalfe RA, Ball G, Kudesia G, Weetman AP. Failure to find an association between hepatitis C virus and thyroid autoimmunity. Thyroid 1997;7(3):421–4.PubMedGoogle Scholar
  63. 63.
    Marazuela M, Garcia-Buey L, Gonzalez-Fernandez B, et al. Thyroid autoimmune disorders in patients with chronic hepatitis C before and during interferon-alpha therapy. Clin Endocrinol (Oxf) 1996;44(6):635–42.Google Scholar
  64. 64.
    Kawai H, Saito M, Takagi M, et al. Hashimoto’s thyroiditis in HTLV-I carriers. Intern Med 1992;31(10):1213–6.PubMedGoogle Scholar
  65. 65.
    Mine H, Kawai H, Yokoi K, Akaike M, Saito S. High frequencies of human T-lymphotropic virus type I (HTLV-I) infection and presence of HTLV-II proviral DNA in blood donors with anti-thyroid antibodies. J Mol Med 1996;74(8):471–7.PubMedGoogle Scholar
  66. 66.
    Akamine H, Takasu N, Komiya I, et al. Association of HTLV-I with autoimmune thyroiditis in patients with adult T-cell leukaemia (ATL) and in HTLV-I carriers. Clin Endocrinol (Oxf) 1996;45(4):461–6.Google Scholar
  67. 67.
    Kawai H, Mitsui T, Yokoi K, et al. Evidence of HTLV-I in thyroid tissue in an HTLV-I carrier with Hashimoto’s thyroiditis. J Mol Med 1996;74(5):275–78.PubMedGoogle Scholar
  68. 68.
    Kubonishi I, Kubota T, Sawada T, et al. An HTLV-I carrier with Graves’ disease followed by uveitis: isolation of HTLV-I from thyroid tissue. Int J Hematol 1997;66(2):233–7.PubMedGoogle Scholar
  69. 69.
    Shenkman L, Bottone EJ. Antibodies to Yersinia enterocolitica in thyroid disease. Ann Intern Med 1976;85(6):735–9.PubMedGoogle Scholar
  70. 70.
    Bech K. Yersinia enterocolitica and thyroid autoimmunity. Autoimmunity 1990;7(4):291–4.PubMedGoogle Scholar
  71. 71.
    Bech K, Clemmensen O, Larsen JH, Thyme S, Bendixen G. Cell-mediated immunity of Yersinia enterocolitica serotype 3 in patients with thyroid diseases. Allergy 1978;33(2):82–8.PubMedGoogle Scholar
  72. 72.
    Weiss M, Ingbar SH, Winblad S, Kasper DL. Demonstration of a saturable binding site for thyrotropin in Yersinia enterocolitica. Science 1983;219(4590):1331–3.PubMedGoogle Scholar
  73. 73.
    Heyma P, Harrison LC, Robins-Browne R. Thyrotrophin (TSH) binding sites on Yersinia enterocolitica recognized by immunoglobulins from humans with Graves’ disease. Clin Exp Immunol 1986;64(2):249–54.PubMedGoogle Scholar
  74. 74.
    Luo G, Seetharamaiah GS, Niesel DW, et al. Purification and characterization of Yersinia enterocolitica envelope proteins which induce antibodies that react with human thyrotropin receptor. J Immunol 1994;152(5):2555–61.PubMedGoogle Scholar
  75. 75.
    Gangi E, Kapatral V, El-Azami El-Idrissi M, Martinez O, Prabhakar BS. Characterization of a recombinant Yersinia enterocolitica lipoprotein; implications for its role in autoimmune response against thyrotropin receptor. Autoimmunity 2004;37(6–7):515–20.PubMedGoogle Scholar
  76. 76.
    Luo G, Fan JL, Seetharamaiah GS, et al. Immunization of mice with Yersinia enterocolitica leads to the induction of antithyrotropin receptor antibodies. J Immunol 1993;151(2):922–8.PubMedGoogle Scholar
  77. 77.
    Zhang H, Kaur I, Niesel DW, et al. Lipoprotein from Yersinia enterocolitica contains epitopes that cross-react with the human thyrotropin receptor. J Immunol 1997;158(4):1976–83.PubMedGoogle Scholar
  78. 78.
    Figura N, Di Cairano G, Lore F, et al. The infection by Helicobacter pylori strains expressing CagA is highly prevalent in women with autoimmune thyroid disorders. J Physiol Pharmacol 1999;50(5):817–26.PubMedGoogle Scholar
  79. 79.
    Larizza D, Calcaterra V, Martinetti M, et al. H. Pylori infection and autoimmune thyroid disease in young patients: the disadvantage of carrying the Hla-Drb1* 0301 allele. J Clin Endocrinol Metab 2005.Google Scholar
  80. 80.
    Fahmy MH, Said M, Amara F, Ghanem MH. Thyroid function in hepatic schistosomiasis. Ann Trop Med Parasitol 1978;72(4):353–6.PubMedGoogle Scholar
  81. 81.
    Nagayama Y, McLachlan SM, Rapoport B, Oishi K. Graves’ hyperthyroidism and the hygiene hypothesis in a mouse model. Endocrinology 2004;145(11):5075–9.PubMedGoogle Scholar
  82. 82.
    Nagayama Y, Watanabe K, Niwa M, McLachlan SM, Rapoport B. Schistosoma mansoni and alpha-galactosylceramide: prophylactic effect of Th1 Immune suppression in a mouse model of Graves’ hyperthyroidism. J Immunol 2004;173(3):2167–73.PubMedGoogle Scholar
  83. 83.
    Lindberg B, Ahlfors K, Carlsson A, et al. Previous exposure to measles, mumps, and rubella–but not vaccination during adolescence–correlates to the prevalence of pancreatic and thyroid autoantibodies. Pediatrics 1999;104(1):e12.PubMedGoogle Scholar
  84. 84.
    Toft J, Larsen S, Toft H. Subacute thyroiditis after hepatitis B vaccination. Endocr J 1998;45(1):135.PubMedGoogle Scholar
  85. 85.
    Tonooka N, Leslie GA, Greer MA, Olson JC. Lymphoid thyroiditis following immunization with group A streptococcal vaccine. Am J Pathol 1978;92(3):681–90.PubMedGoogle Scholar
  86. 86.
    Mancia G, Grassi G, Zanchetti A. New-onset diabetes and antihypertensive drugs. J Hypertens 2006;24(1):3–10.PubMedGoogle Scholar
  87. 87.
    Mason JM, Dickinson HO, Nicolson DJ, Campbell F, Ford GA, Williams B. The diabetogenic potential of thiazide-type diuretic and beta-blocker combinations in patients with hypertension. J Hypertens 2005;23(10):1777–81.PubMedGoogle Scholar
  88. 88.
    Roberts CG, Ladenson PW. Hypothyroidism. Lancet 2004;363(9411):793–803.PubMedGoogle Scholar
  89. 89.
    Herr RR, Eble TE, Bergy ME, Jahnke HK. Isolation and characterization of streptozotocin. Antibiot Annu 1959;7:236–40.PubMedGoogle Scholar
  90. 90.
    Prosser PR, Karam JH. Diabetes mellitus following rodenticide ingestion in man. JAMA 1978;239(12):1148–50.PubMedGoogle Scholar
  91. 91.
    Pont A, Rubino JM, Bishop D, Peal R. Diabetes mellitus and neuropathy following Vacor ingestion in man. Arch Intern Med 1979;139(2):185–7.PubMedGoogle Scholar
  92. 92.
    Sumrani N, Delaney V, Ding Z, et al. Posttransplant diabetes mellitus in cyclosporine-treated renal transplant recipients. Transplant Proc 1991;23(1 Pt 2):1249–50.PubMedGoogle Scholar
  93. 93.
    Keshavarz R, Mousavi MA, Hassani C. Diabetic ketoacidosis in a child on FK506 immunosuppression after a liver transplant. Pediatr Emerg Care 2002;18(1):22–4.PubMedGoogle Scholar
  94. 94.
    Ersoy A, Ersoy C, Tekce H, Yavascaoglu I, Dilek K. Diabetic ketoacidosis following development of de novo diabetes in renal transplant recipient associated with tacrolimus. Transplant Proc 2004;36(5):1407–10.PubMedGoogle Scholar
  95. 95.
    Wiersinga WM. Towards an animal model of amiodarone-induced thyroid dysfunction. Eur J Endocrinol 1997;137(1):15–7.PubMedGoogle Scholar
  96. 96.
    Trip MD, Wiersinga W, Plomp TA. Incidence, predictability, and pathogenesis of amiodarone-induced thyrotoxicosis and hypothyroidism. Am J Med 1991;91(5):507–11.PubMedGoogle Scholar
  97. 97.
    Chianese-Bullock KA, Woodson EM, Tao H, et al. Autoimmune toxicities associated with the administration of antitumor vaccines and low-dose interleukin-2. J Immunother 2005;28(4):412–9.PubMedGoogle Scholar
  98. 98.
    Evans JS, Gerritsen GC, Mann KM, Owen SP. Antitumor and hyperglycemic activity of streptozotocin (NSC-37917) and its cofactor, U-15,774. Cancer Chemother Rep 1965;48:1–6.PubMedGoogle Scholar
  99. 99.
    Wilson GL, Leiter EH. Streptozotocin interactions with pancreatic beta cells and the induction of insulin-dependent diabetes. Curr Top Microbiol Immunol 1990;156:27–54.PubMedGoogle Scholar
  100. 100.
    Rossini AA, Like AA, Dulin WE, Cahill GF, Jr. Pancreatic beta cell toxicity by streptozotocin anomers. Diabetes 1977;26(12):1120–4.PubMedGoogle Scholar
  101. 101.
    Reddy S, Sandler S. Age-dependent sensitivity to streptozotocin of pancreatic islets isolated from female NOD mice. Autoimmunity 1995;22(2):121–6.PubMedGoogle Scholar
  102. 102.
    Rossini AA, Williams RM, Appel MC, Like AA. Sex differences in the multiple-dose streptozotocin model of diabetes. Endocrinology 1978;103(4):1518–20.PubMedGoogle Scholar
  103. 103.
    Schnedl WJ, Ferber S, Johnson JH, Newgard CB. STZ transport and cytotoxicity. Specific enhancement in GLUT2-expressing cells. Diabetes 1994;43(11):1326–33.PubMedGoogle Scholar
  104. 104.
    Delaney CA, Dunger A, Di Matteo M, Cunningham JM, Green MH, Green IC. Comparison of inhibition of glucose-stimulated insulin secretion in rat islets of Langerhans by streptozotocin and methyl and ethyl nitrosoureas and methanesulphonates. Lack of correlation with nitric oxide-releasing or O6-alkylating ability. Biochem Pharmacol 1995;50(12):2015–20.PubMedGoogle Scholar
  105. 105.
    Turk J, Corbett JA, Ramanadham S, Bohrer A, McDaniel ML. Biochemical evidence for nitric oxide formation from streptozotocin in isolated pancreatic islets. Biochem Biophys Res Commun 1993;197(3):1458–64.PubMedGoogle Scholar
  106. 106.
    Kroncke KD, Fehsel K, Sommer A, Rodriguez ML, Kolb-Bachofen V. Nitric oxide generation during cellular metabolization of the diabetogenic N-methyl-N-nitroso-urea streptozotozin contributes to islet cell DNA damage. Biol Chem Hoppe Seyler 1995;376(3):179–85.PubMedGoogle Scholar
  107. 107.
    Albers R, de Heer C, Bol M, Bleumink R, Seinen W, Pieters R. Selective immunomodulation by the autoimmunity-inducing xenobiotics streptozotocin and HgCl2. Eur J Immunol 1998;28(4): 1233–42.PubMedGoogle Scholar
  108. 108.
    Herold KC, Bloch TN, Vezys V, Sun Q. Diabetes induced with low doses of streptozotocin is mediated by V beta 8.2+ T-cells. Diabetes 1995;44(3):354–9.PubMedGoogle Scholar
  109. 109.
    Arata M, Fabiano de Bruno L, Goncalvez Volpini WM, et al. Beta-cell function in mice injected with mononuclear splenocytes from multiple-dose streptozotocin diabetic mice. Proc Soc Exp Biol Med 1994;206(1):76–82.PubMedGoogle Scholar
  110. 110.
    Pechhold K, Patterson NB, Blum C, Fleischacker CL, Boehm BO, Harlan DM. Low dose streptozotocin-induced diabetes in rat insulin promoter-mCD80-transgenic mice is T cell autoantigen-specific and CD28 dependent. J Immunol 2001;166(4):2531–9.PubMedGoogle Scholar
  111. 111.
    Rabinovitch A, Suarez-Pinzon WL. Role of cytokines in the pathogenesis of autoimmune diabetes mellitus. Rev Endocr Metab Disord 2003;4(3):291–9.PubMedGoogle Scholar
  112. 112.
    Andrade J, Conde M, Sobrino F, Bedoya FJ. Activation of peritoneal macrophages during the prediabetic phase in low-dose streptozotocin-treated mice. Adv Exp Med Biol 1997;426:341–3.PubMedGoogle Scholar
  113. 113.
    Green IC, Cunningham JM, Delaney CA, Elphick MR, Mabley JG, Green MH. Effects of cytokines and nitric oxide donors on insulin secretion, cyclic GMP and DNA damage: relation to nitric oxide production. Biochem Soc Trans 1994;22(1):30–7.PubMedGoogle Scholar
  114. 114.
    Southern C, Schulster D, Green IC. Inhibition of insulin secretion by interleukin-1 beta and tumour necrosis factor-alpha via an L-arginine-dependent nitric oxide generating mechanism. FEBS Lett 1990;276(1–2):42–4.PubMedGoogle Scholar
  115. 115.
    Sandler S, Bendtzen K, Eizirik DL, Strandell E, Welsh M, Welsh N. Metabolism and beta-cell function of rat pancreatic islets exposed to human interleukin-1 beta in the presence of a high glucose concentration. Immunol Lett 1990;26(3):245–51.PubMedGoogle Scholar
  116. 116.
    Delaney CA, Green MH, Lowe JE, Green IC. Endogenous nitric oxide induced by interleukin-1 beta in rat islets of Langerhans and HIT-T15 cells causes significant DNA damage as measured by the ‘comet’ assay. FEBS Lett 1993;333(3):291–5.PubMedGoogle Scholar
  117. 117.
    Di Matteo MA, Loweth AC, Thomas S, et al. Superoxide, nitric oxide, peroxynitrite and cytokine combinations all cause functional impairment and morphological changes in rat islets of Langerhans and insulin secreting cell lines, but dictate cell death by different mechanisms. Apoptosis 1997;2(2):164–77.PubMedGoogle Scholar
  118. 118.
    Mabley JG, Suarez-Pinzon WL, Hasko G, et al. Inhibition of poly (ADP-ribose) synthetase by gene disruption or inhibition with 5-iodo-6-amino-1,2-benzopyrone protects mice from multiple-low-dose-streptozotocin-induced diabetes. Br J Pharmacol 2001;133(6):909–19.PubMedGoogle Scholar
  119. 119.
    Suarez-Pinzon WL, Mabley JG, Power R, Szabo C, Rabinovitch A. Poly (ADP-ribose) polymerase inhibition prevents spontaneous and recurrent autoimmune diabetes in NOD mice by inducing apoptosis of islet-infiltrating leukocytes. Diabetes 2003;52(7):1683–8.PubMedGoogle Scholar
  120. 120.
    Calne RY, Rolles K, White DJ, et al. Cyclosporin-A in clinical organ grafting. Transplant Proc 1981;13(1 Pt 1):349–58.PubMedGoogle Scholar
  121. 121.
    Powles RL, Clink HM, Spence D, et al. Cyclosporin A to prevent graft-versus-host disease in man after allogeneic bone-marrow transplantation. Lancet 1980;1(8164):327–9.PubMedGoogle Scholar
  122. 122.
    Sigal NH, Dumont FJ. Cyclosporin A, FK-506, and rapamycin: pharmacologic probes of lymphocyte signal transduction. Annu Rev Immunol 1992;10:519–60.PubMedGoogle Scholar
  123. 123.
    Brazelton TR, Morris RE. Molecular mechanisms of action of new xenobiotic immunosuppressive drugs: tacrolimus (FK506), sirolimus (rapamycin), mycophenolate mofetil and leflunomide. Curr Opin Immunol 1996;8(5):710–20.PubMedGoogle Scholar
  124. 124.
    Sakaguchi S, Sakaguchi N. Thymus and autoimmunity. Transplantation of the thymus from cyclosporin A-treated mice causes organ-specific autoimmune disease in athymic nude mice. J Exp Med 1988;167(4):1479–85.PubMedGoogle Scholar
  125. 125.
    Sakaguchi S, Sakaguchi N. Organ-specific autoimmune disease induced in mice by elimination of T cell subsets. V. Neonatal administration of cyclosporin A causes autoimmune disease. J Immunol 1989;142(2):471–80.PubMedGoogle Scholar
  126. 126.
    Krentz AJ, Dousset B, Mayer D, et al. Metabolic effects of cyclosporin A and FK 506 in liver transplant recipients. Diabetes 1993;42(12):1753–9.PubMedGoogle Scholar
  127. 127.
    Yamamoto H, Akazawa S, Yamaguchi Y, et al. Effects of cyclosporin A and low dosages of steroid on posttransplantation diabetes in kidney transplant recipients. Diabetes Care 1991;14(10):867–70.PubMedGoogle Scholar
  128. 128.
    Obuobie K, Al-Sabah A, Lazarus JH. Subacute thyroiditis in an immunosuppressed patient. J Endocrinol Invest 2002;25(2):169–71.PubMedGoogle Scholar
  129. 129.
    Prud’homme GJ, Parfrey NA, Vanier LE. Cyclosporine-induced autoimmunity and immune hyperreactivity. Autoimmunity 1991;9(4):345–56.PubMedGoogle Scholar
  130. 130.
    Robertson RP. Cyclosporin-induced inhibition of insulin secretion in isolated rat islets and HIT cells. Diabetes 1986;35(9):1016–9.PubMedGoogle Scholar
  131. 131.
    Draznin B, Metz SA, Sussman KE, Leitner JW. Cyclosporin-induced inhibition of insulin release. Possible role of voltage-dependent calcium transport channels. Biochem Pharmacol 1988;37(20):3941–5.PubMedGoogle Scholar
  132. 132.
    Andersson A, Borg H, Hallberg A, Hellerstrom C, Sandler S, Schnell A. Long-term effects of cyclosporin A on cultured mouse pancreatic islets. Diabetologia 1984;27(Suppl):66–9.PubMedGoogle Scholar
  133. 133.
    Lucke S, Radloff E, Laube R, Hahn HJ. Morphology of the endocrine pancreas in cyclosporine-treated glucose-intolerant Wistar rats. Anat Anz 1991;172(5):351–8.PubMedGoogle Scholar
  134. 134.
    Dufer M, Krippeit-Drews P, Lembert N, Idahl LA, Drews G. Diabetogenic effect of cyclosporin A is mediated by interference with mitochondrial function of pancreatic B-cells. Mol Pharmacol 2001;60(4):873–9.PubMedGoogle Scholar
  135. 135.
    Goto T, Kino T, Hatanaka H, et al. Discovery of FK-506, a novel immunosuppressant isolated from Streptomyces tsukubaensis. Transplant Proc 1987;19(5 Suppl 6):4–8.PubMedGoogle Scholar
  136. 136.
    Goto T, Kino T, Hatanaka H, et al. FK 506: historical perspectives. Transplant Proc 1991;23(6):2713–7.PubMedGoogle Scholar
  137. 137.
    Crespo-Leiro MG. Calcineurin inhibitors in heart transplantation. Transplant Proc 2005;37(9):4018–20.PubMedGoogle Scholar
  138. 138.
    Tabasco-Minguillan J, Mieles L, Carroll P, Gavaler J, Van Thiel DH, Starzl TE. Insulin requirements after liver transplantation and FK-506 immunosuppression. Transplantation 1993;56(4):862–7.PubMedGoogle Scholar
  139. 139.
    Weir MR, Fink JC. Risk for posttransplant Diabetes mellitus with current immunosuppressive medications. Am J Kidney Dis 1999;34(1):1–13.PubMedGoogle Scholar
  140. 140.
    Reiffel JA, Estes NA, 3rd, Waldo AL, Prystowsky EN, DiBianco R. A consensus report on antiarrhythmic drug use. Clin Cardiol 1994;17(3):103–16.PubMedGoogle Scholar
  141. 141.
    Doval HC, Nul DR, Grancelli HO, Perrone SV, Bortman GR, Curiel R. Randomised trial of low-dose amiodarone in severe congestive heart failure. Grupo de Estudio de la Sobrevida en la Insuficiencia Cardiaca en Argentina (GESICA). Lancet 1994;344(8921):493–8.PubMedGoogle Scholar
  142. 142.
    Rao RH, McCready VR, Spathis GS. Iodine kinetic studies during amiodarone treatment. J Clin Endocrinol Metab 1986;62(3):563–8.PubMedGoogle Scholar
  143. 143.
    Bogazzi F, Bartalena L, Gasperi M, Braverman LE, Martino E. The various effects of amiodarone on thyroid function. Thyroid 2001;11(5):511–9.PubMedGoogle Scholar
  144. 144.
    Martino E, Bartalena L, Bogazzi F, Braverman LE. The effects of amiodarone on the thyroid. Endocr Rev 2001;22(2):240–54.PubMedGoogle Scholar
  145. Martino E, Aghini-Lombardi F, Bartalena L, et al. Enhanced susceptibility to amiodarone-induced hypothyroidism in patients with thyroid autoimmune disease. Arch Intern Med 1994;154 (23):2722–6.PubMedGoogle Scholar
  146. 146.
    Chiovato L, Martino E, Tonacchera M, et al. Studies on the in vitro cytotoxic effect of amiodarone. Endocrinology 1994;134(5):2277–82.PubMedGoogle Scholar
  147. 147.
    Martino E, Macchia E, Aghini-Lombardi F, et al. Is humoral thyroid autoimmunity relevant in amiodarone iodine-induced thyrotoxicosis (AIIT)? Clin Endocrinol (Oxf) 1986;24(6):627–33.Google Scholar
  148. 148.
    Monteiro E, Galvao-teles A, Santos ML, et al. Antithyroid antibodies as an early marker for thyroid disease induced by amiodarone. Br Med J (Clin Res Ed) 1986;292(6515):227–8.Google Scholar
  149. 149.
    Safran M, Martino E, Aghini-Lombardi F, et al. Effect of amiodarone on circulating antithyroid antibodies. BMJ 1988;297(6646):456–7.PubMedGoogle Scholar
  150. 150.
    Weetman AP, Bhandal SK, Burrin JM, Robinson K, McKenna W. Amiodarone and thyroid autoimmunity in the United Kingdom. BMJ 1988;297(6640):33.PubMedGoogle Scholar
  151. 151.
    Diaz MO, Bohlander S, Allen G. Nomenclature of the human interferon genes. J Interferon Cytokine Res 1996;16(2):179–80.PubMedGoogle Scholar
  152. 152.
    Stewart TA. Neutralizing interferon alpha as a therapeutic approach to autoimmune diseases. Cytokine Growth Factor Rev 2003;14(2):139–54.PubMedGoogle Scholar
  153. 153.
    Vilcek J, Ng MH. Potentiation of the action of interferon by extracts of Escherichia coli. Virology 1967;31(3):552–5.PubMedGoogle Scholar
  154. 154.
    Merigan TC. Induction of circulating interferon by synthetic anionic polymers of known composition. Nature 1967;214(86):416–7.PubMedGoogle Scholar
  155. 155.
    Reyes VE, Ballas ZK, Singh H, Klimpel GR. Interleukin 2 induces interferon alpha/beta production in mouse bone marrow cells. Cell Immunol 1986;102(2):374–85.PubMedGoogle Scholar
  156. 156.
    Zhou A, Chen Z, Rummage JA, et al. Exogenous interferon-gamma induces endogenous synthesis of interferon-alpha and -beta by murine macrophages for induction of nitric oxide synthase. J Interferon Cytokine Res 1995;15(10):897–904.PubMedGoogle Scholar
  157. 157.
    Chakrabarti D, Huang X, Beck J, et al. Control of islet intercellular adhesion molecule-1 expression by interferon-alpha and hypoxia. Diabetes 1996;45(10):1336–43.PubMedGoogle Scholar
  158. 158.
    Chelbi-Alix MK, Brouard A, Boissard C, Pelaprat D, Rostene W, Thang MN. Induction by vasoactive intestinal peptide of interferon alpha/beta synthesis in glial cells but not in neurons. J Cell Physiol 1994;158(1):47–54.PubMedGoogle Scholar
  159. 159.
    Devendra D, Eisenbarth GS. Interferon alpha–a potential link in the pathogenesis of viral-induced type 1 diabetes and autoimmunity. Clin Immunol 2004;111(3):225–33.PubMedGoogle Scholar
  160. 160.
    Sumi M, Tauchi T, Takaku T, Ohyashiki JH, Ohyashiki K. [Successful treatment with interferon-alpha in a case of acute myeloid leukemia with del (20q) following polycythemia vera]. Rinsho Ketsueki 2005;46(11):1208–12.PubMedGoogle Scholar
  161. 161.
    Makita M, Nakamura K, Kono A. [Successful rituximab treatment in a patient with refractory hairy cell leukemia-Japanese variant and suffering from acute respiratory distress]. Rinsho Ketsueki 2005;46(11):1196–201.PubMedGoogle Scholar
  162. 162.
    Rodriguez MA, Prinz WA, Sibbitt WL, Bankhurst AD, Williams RC, Jr. alpha-Interferon increases immunoglobulin production in cultured human mononuclear leukocytes. J Immunol 1983;130(3):1215–9.PubMedGoogle Scholar
  163. 163.
    Finkelman FD, Svetic A, Gresser I, et al. Regulation by interferon alpha of immunoglobulin isotype selection and lymphokine production in mice. J Exp Med 1991;174(5):1179–88.PubMedGoogle Scholar
  164. 164.
    Rawlinson L, Dalton BJ, Rogers K, Rees RC. The influence of interferon alpha and gamma, singly or in combination on human natural cell mediated cytotoxicity. Biosci Rep 1989;9(5): 549–57.PubMedGoogle Scholar
  165. 165.
    Webb DS, Zur Nedden D, Miller DM, Zoon KC, Gerrard TL. Enhancement of monocyte-mediated tumoricidal activity by multiple interferon-alpha species. Cell Immunol 1989;124(1):158–67.PubMedGoogle Scholar
  166. 166.
    Hooks JJ, Moutsopoulos HM, Geis SA, Stahl NI, Decker JL, Notkins AL. Immune interferon in the circulation of patients with autoimmune disease. N Engl J Med 1979;301(1):5–8.PubMedGoogle Scholar
  167. 167.
    Preble OT, Black RJ, Friedman RM, Klippel JH, Vilcek J. Systemic lupus erythematosus: presence in human serum of an unusual acid-labile leukocyte interferon. Science 1982;216(4544):429–31.PubMedGoogle Scholar
  168. 168.
    Foulis AK, Farquharson MA, Meager A. Immunoreactive alpha-interferon in insulin-secreting beta cells in type 1 diabetes mellitus. Lancet 1987;2(8573):1423–7.PubMedGoogle Scholar
  169. 169.
    Huang X, Yuang J, Goddard A, et al. Interferon expression in the pancreases of patients with type I diabetes. Diabetes 1995;44(6):658–64.PubMedGoogle Scholar
  170. 170.
    Schmid P, Itin P, Cox D, McMaster GK, Horisberger MA. The type I interferon system is locally activated in psoriatic lesions. J Interferon Res 1994;14(5):229–34.PubMedGoogle Scholar
  171. 171.
    Fais S, Capobianchi MR, Silvestri M, Mercuri F, Pallone F, Dianzani F. Interferon expression in Crohn’s disease patients: increased interferon-gamma and -alpha mRNA in the intestinal lamina propria mononuclear cells. J Interferon Res 1994;14(5):235–8.PubMedGoogle Scholar
  172. 172.
    Monteleone G, Pender SL, Wathen NC, MacDonald TT. Interferon-alpha drives T cell-mediated immunopathology in the intestine. Eur J Immunol 2001;31(8):2247–55.PubMedGoogle Scholar
  173. 173.
    Fattovich G, Giustina G, Favarato S, Ruol A. A survey of adverse events in 11,241 patients with chronic viral hepatitis treated with alfa interferon. J Hepatol 1996;24(1):38–47.PubMedGoogle Scholar
  174. 174.
    Okanoue T, Sakamoto S, Itoh Y, et al. Side effects of high-dose interferon therapy for chronic hepatitis C. J Hepatol 1996;25(3):283–91.PubMedGoogle Scholar
  175. 175.
    Fabris P, Betterle C, Floreani A, et al. Development of type 1 diabetes mellitus during interferon alfa therapy for chronic HCV hepatitis. Lancet 1992;340(8818):548.PubMedGoogle Scholar
  176. 176.
    Fabris P, Floreani A, Tositti G, Vergani D, De Lalla F, Betterle C. Type 1 diabetes mellitus in patients with chronic hepatitis C before and after interferon therapy. Aliment Pharmacol Ther 2003;18(6):549–58.PubMedGoogle Scholar
  177. 177.
    Koh LK, Greenspan FS, Yeo PP. Interferon-alpha induced thyroid dysfunction: three clinical presentations and a review of the literature. Thyroid 1997;7(6):891–6.PubMedGoogle Scholar
  178. 178.
    Doi F, Kakizaki S, Takagi H, et al. Long-term outcome of interferon-alpha-induced autoimmune thyroid disorders in chronic hepatitis C. Liver Int 2005;25(2):242–6.PubMedGoogle Scholar
  179. 179.
    Huang SW, Taylor GE. Immune insulitis and antibodies to nucleic acids induced with streptozotocin in mice. Clin Exp Immunol 1981;43(2):425–9.PubMedGoogle Scholar
  180. 180.
    Moriyama H, Wen L, Abiru N, et al. Induction and acceleration of insulitis/diabetes in mice with a viral mimic (polyinosinic-polycytidylic acid) and an insulin self-peptide. Proc Natl Acad Sci USA 2002;99(8):5539–44.PubMedGoogle Scholar
  181. 181.
    Chakrabarti D, Hultgren B, Stewart TA. IFN-alpha induces autoimmune T cells through the induction of intracellular adhesion molecule-1 and B7.2. J Immunol 1996;157(2):522–8.PubMedGoogle Scholar
  182. 182.
    Smith KA. Lowest dose interleukin-2 immunotherapy. Blood 1993;81(6):1414–23.PubMedGoogle Scholar
  183. 183.
    Carrel A, Meinen A, Garry C, Storandt R. Effects of nutrition education and exercise in obese children: the Ho-Chunk Youth Fitness Program. WMJ 2005;104(5):44–7.PubMedGoogle Scholar
  184. 184.
    Heald AH, Sharma R, Anderson SG, et al. Dietary intake and the insulin-like growth factor system: effects of migration in two related populations in India and Britain with markedly different dietary intake. Public Health Nutr 2005;8(6):620–7.PubMedGoogle Scholar
  185. 185.
    Moller DE, Chang PY, Yaspelkis BB, 3rd, Flier JS, Wallberg-Henriksson H, Ivy JL. Transgenic mice with muscle-specific insulin resistance develop increased adiposity, impaired glucose tolerance, and dyslipidemia. Endocrinology 1996;137(6):2397–405.PubMedGoogle Scholar
  186. 186.
    Ebbesson SO, Risica PM, Ebbesson LO, Kennish JM, Tejero ME. Omega-3 fatty acids improve glucose tolerance and components of the metabolic syndrome in Alaskan Eskimos: the Alaska Siberia project. Int J Circumpolar Health 2005;64(4):396–408.PubMedGoogle Scholar
  187. 187.
    Rakatzi I, Mueller H, Ritzeler O, Tennagels N, Eckel J. Adiponectin counteracts cytokine- and fatty acid-induced apoptosis in the pancreatic beta-cell line INS-1. Diabetologia 2004;47(2):249–58.PubMedGoogle Scholar
  188. 188.
    Liu D, Cardozo AK, Darville MI, Eizirik DL. Double-stranded RNA cooperates with interferon-gamma and IL-1 beta to induce both chemokine expression and nuclear factor-kappa B-dependent apoptosis in pancreatic beta-cells: potential mechanisms for viral-induced insulitis and beta-cell death in type 1 diabetes mellitus. Endocrinology 2002;143(4):1225–34.PubMedGoogle Scholar
  189. 189.
    Kharroubi I, Ladriere L, Cardozo AK, Dogusan Z, Cnop M, Eizirik DL. Free fatty acids and cytokines induce pancreatic beta-cell apoptosis by different mechanisms: role of nuclear factor-kappaB and endoplasmic reticulum stress. Endocrinology 2004;145(11):5087–96.PubMedGoogle Scholar
  190. 190.
    Chang I, Kim S, Kim JY, et al. Nuclear factor kappaB protects pancreatic beta-cells from tumor necrosis factor-alpha-mediated apoptosis. Diabetes 2003;52(5):1169–75.PubMedGoogle Scholar
  191. 191.
    Oddie TH, Fisher DA, McConahey WM, Thompson CS. Iodine intake in the United States: a reassessment. J Clin Endocrinol Metab 1970;30(5):659–65.PubMedGoogle Scholar
  192. 192.
    Braverman LE. Iodine induced thyroid disease. Acta Med Austriaca 1990;17(Suppl 1):29–33.PubMedGoogle Scholar
  193. 193.
    Weaver DK, Batsakis JG, Nishiyama RH. Relationship of iodine to “lymphocytic goiters”. Arch Surg 1969;98(2):183–6.PubMedGoogle Scholar
  194. 194.
    Phillips DI, Nelson M, Barker DJ, Morris JA, Wood TJ. Iodine in milk and the incidence of thyrotoxicosis in England. Clin Endocrinol (Oxf) 1988;28(1):61–6.Google Scholar
  195. 195.
    Pennington JA. A review of iodine toxicity reports. J Am Diet Assoc 1990;90(11):1571–81.PubMedGoogle Scholar
  196. 196.
    Zois C, Stavrou I, Kalogera C, et al. High prevalence of autoimmune thyroiditis in schoolchildren after elimination of iodine deficiency in northwestern Greece. Thyroid 2003;13(5):485–9.PubMedGoogle Scholar
  197. 197.
    Tajiri J, Higashi K, Morita M, Umeda T, Sato T. Studies of hypothyroidism in patients with high iodine intake. J Clin Endocrinol Metab 1986;63(2):412–7.PubMedGoogle Scholar
  198. 198.
    Basaria S, Cooper DS. Amiodarone and the thyroid. Am J Med 2005;118(7):706–14.PubMedGoogle Scholar
  199. 199.
    Rao RR, Chatt A. Determination of nanogram amounts of iodine in foods by radiochemical neutron activation analysis. Analyst 1993;118(10):1247–51.PubMedGoogle Scholar
  200. 200.
    Allegrini M, Pennington JA, Tanner JT. Total diet study: determination of iodine intake by neutron activation analysis. J Am Diet Assoc 1983;83(1):18–24.PubMedGoogle Scholar
  201. 201.
    Braverman LE, Ingbar SH, Vagenakis AG, Adams L, Maloof F. Enhanced susceptibility to iodide myxedema in patients with Hashimoto’s disease. J Clin Endocrinol Metab 1971;32(4):515–21.PubMedGoogle Scholar
  202. 202.
    Konno N, Makita H, Yuri K, Iizuka N, Kawasaki K. Association between dietary iodine intake and prevalence of subclinical hypothyroidism in the coastal regions of Japan. J Clin Endocrinol Metab 1994;78(2):393–7.PubMedGoogle Scholar
  203. 203.
    Roti E, Uberti ED. Iodine excess and hyperthyroidism. Thyroid 2001;11(5):493–500.PubMedGoogle Scholar
  204. 204.
    Yoon SJ, Choi SR, Kim DM, et al. The effect of iodine restriction on thyroid function in patients with hypothyroidism due to Hashimoto’s thyroiditis. Yonsei Med J 2003;44(2):227–35.PubMedGoogle Scholar
  205. 205.
    Kasagi K, Iwata M, Misaki T, Konishi J. Effect of iodine restriction on thyroid function in patients with primary hypothyroidism. Thyroid 2003;13(6):561–7.PubMedGoogle Scholar
  206. 206.
    Malthiery Y, Lissitzky S. Primary structure of human thyroglobulin deduced from the sequence of its 8448-base complementary DNA. Eur J Biochem 1987;165(3):491–8.PubMedGoogle Scholar
  207. 207.
    Rawitch AB, Chernoff SB, Litwer MR, Rouse JB, Hamilton JW. Thyroglobulin structure-function. The amino acid sequence surrounding thyroxine. J Biol Chem 1983;258(4):2079–82.PubMedGoogle Scholar
  208. 208.
    Gavaret JM, Deme D, Nunez J, Salvatore G. Sequential reactivity of tyrosyl residues of thyroglobulin upon iodination catalyzed by thyroid peroxidase. J Biol Chem 1977;252(10):3281–5.PubMedGoogle Scholar
  209. 209.
    Palumbo G, Gentile F, Condorelli GL, Salvatore G. The earliest site of iodination in thyroglobulin is residue number 5. J Biol Chem 1990;265(15):8887–92.PubMedGoogle Scholar
  210. 210.
    Van der Walt B, Van Jaarsveld P. Bovine 37S iodoprotein: isolation and characterization. Arch Biochem Biophys 1972;150(2):786–91.PubMedGoogle Scholar
  211. 211.
    Lamas L, Ingbar SH. The effect of varying iodine content on the susceptibility of thyroglobulin to hydrolysis by thyroid acid protease. Endocrinology 1978;102(1):188–97.PubMedGoogle Scholar
  212. 212.
    Schneider AB, Edelhoch H. The properties of thyroglobulin. XIX. The equilibrium between guinea pig thyroglobulin and its subunits. J Biol Chem 1970;245(4):885–90.PubMedGoogle Scholar
  213. 213.
    Rasooly L, Rose NR, Saboori AM, Ladenson PW, Burek CL. Iodine is essential for human T cell recognition of human thyroglobulin. Autoimmunity 1998;27(4):213–9.PubMedGoogle Scholar
  214. 214.
    Saboori AM, Rose NR, Burek CL. Iodination of human thyroglobulin (Tg) alters its immunoreactivity. II. Fine specificity of a monoclonal antibody that recognizes iodinated Tg. Clin Exp Immunol 1998;113(2):303–8.PubMedGoogle Scholar
  215. 215.
    Saboori AM, Rose NR, Bresler HS, Vladut-Talor M, Burek CL. Iodination of human thyroglobulin (Tg) alters its immunoreactivity. I. Iodination alters multiple epitopes of human Tg. Clin Exp Immunol 1998;113(2):297–302.PubMedGoogle Scholar
  216. 216.
    Dai YD, Rao VP, Carayanniotis G. Enhanced iodination of thyroglobulin facilitates processing and presentation of a cryptic pathogenic peptide. J Immunol 2002;168(11):5907–11.PubMedGoogle Scholar
  217. 217.
    Champion BR, Page K, Rayner DC, Quartey-Papafio R, Byfield PG, Henderson G. Recognition of thyroglobulin autoantigenic epitopes by murine T and B cells. Immunology 1987;62(2): 255–63.PubMedGoogle Scholar
  218. 218.
    Vladutiu AO, Rose NR. Autoimmune murine thyroiditis relation to histocompatibility (H-2) type. Science 1971;174(14):1137–9.PubMedGoogle Scholar
  219. 219.
    Weatherall D, Sarvetnick N, Shizuru JA. Genetic control of diabetes mellitus. Diabetologia 1992;35(Suppl 2):S1–7.PubMedGoogle Scholar
  220. 220.
    Bonita RE, Rose NR, Rasooly L, Caturegli P, Burek CL. Kinetics of mononuclear cell infiltration and cytokine expression in iodine-induced thyroiditis in the NOD-H2h4 mouse. Exp Mol Pathol 2003;74(1):1–12.PubMedGoogle Scholar
  221. 221.
    Braley-Mullen H, Sharp GC, Medling B, Tang H. Spontaneous autoimmune thyroiditis in NOD. H-2h4 mice. J Autoimmun 1999;12(3):157–65.PubMedGoogle Scholar
  222. 222.
    Yu S, Medling B, Yagita H, Braley-Mullen H. Characteristics of inflammatory cells in spontaneous autoimmune thyroiditis of NOD.H-2h4 mice. J Autoimmun 2001;16(1):37–46.PubMedGoogle Scholar
  223. 223.
    Braley-Mullen H, Yu S. Early requirement for B cells for development of spontaneous autoimmune thyroiditis in NOD.H-2h4 mice. J Immunol 2000;165(12):7262–9.PubMedGoogle Scholar
  224. 224.
    Mooij P, Simons PJ, de Haan-Meulman M, de Wit HJ, Drexhage HA. Effect of thyroid hormones and other iodinated compounds on the transition of monocytes into veiled/dendritic cells: role of granulocyte-macrophage colony-stimulating factor, tumour-necrosis factor-alpha and interleukin-6. J Endocrinol 1994;140(3):503–12.PubMedGoogle Scholar
  225. 225.
    Mooij P, de Haan-Meulman M, de Wit HJ, Drexhage HA. Thyroid hormones and their iodinated breakdown products enhance the capability of monocytes to mature into veiled cells. Blocking effects of alpha-GM-CSF. Adv Exp Med Biol 1993;329:633–6.PubMedGoogle Scholar
  226. 226.
    Bonita RE, Rose NR, Rasooly L, Caturegli P, Burek CL. Adhesion molecules as susceptibility factors in spontaneous autoimmune thyroiditis in the NOD-H2h4 mouse. Exp Mol Pathol 2002;73(3):155–63.PubMedGoogle Scholar
  227. 227.
    Bagnasco M, Caretto A, Olive D, Pedini B, Canonica GW, Betterle C. Expression of intercellular adhesion molecule-1 (ICAM-1) on thyroid epithelial cells in Hashimoto’s thyroiditis but not in Graves’ disease or papillary thyroid cancer. Clin Exp Immunol 1991;83(2):309–13.PubMedGoogle Scholar
  228. 228.
    Bagnasco M, Pesce GP, Caretto A, et al. Follicular thyroid cells of autoimmune thyroiditis may coexpress ICAM-1 (CD54) and its natural ligand LFA-1 (CD11a/CD18). J Allergy Clin Immunol 1995;95(5 Pt 1):1036–43.PubMedGoogle Scholar
  229. 229.
    Zoppini G, Targher G, Cacciatori V, Guerriero A, Muggeo M. Chronic cigarette smoking is associated with increased plasma circulating intercellular adhesion molecule 1 levels in young type 1 diabetic patients. Diabetes Care 1999;22(11):1871–4.PubMedGoogle Scholar
  230. 230.
    Vestergaard P. Smoking and thyroid disorders–a meta-analysis. Eur J Endocrinol 2002;146(2): 153–61.PubMedGoogle Scholar
  231. 231.
    Vestergaard P, Rejnmark L, Weeke J, et al. Smoking as a risk factor for Graves’ disease, toxic nodular goiter, and autoimmune hypothyroidism. Thyroid 2002;12(1):69–75.PubMedGoogle Scholar
  232. 232.
    Strieder TG, Prummel MF, Tijssen JG, Endert E, Wiersinga WM. Risk factors for and prevalence of thyroid disorders in a cross-sectional study among healthy female relatives of patients with autoimmune thyroid disease. Clin Endocrinol (Oxf) 2003;59(3):396–401.Google Scholar
  233. 233.
    Holm IA, Manson JE, Michels KB, Alexander EK, Willett WC, Utiger RD. Smoking and other lifestyle factors and the risk of Graves’ hyperthyroidism. Arch Intern Med 2005;165(14):1606–11.PubMedGoogle Scholar
  234. 234.
    Brix TH, Hansen PS, Kyvik KO, Hegedus L. Cigarette smoking and risk of clinically overt thyroid disease: a population-based twin case-control study. Arch Intern Med 2000;160(5):661–6.PubMedGoogle Scholar
  235. 235.
    Belin RM, Astor BC, Powe NR, Ladenson PW. Smoke exposure is associated with a lower prevalence of serum thyroid autoantibodies and thyrotropin concentration elevation and a higher prevalence of mild thyrotropin concentration suppression in the third National Health and Nutrition Examination Survey (NHANES III). J Clin Endocrinol Metab 2004;89(12):6077–86.PubMedGoogle Scholar
  236. 236.
    Fukata S, Kuma K, Sugawara M. Relationship between cigarette smoking and hypothyroidism in patients with Hashimoto’s thyroiditis. J Endocrinol Invest 1996;19(9):607–12.PubMedGoogle Scholar
  237. 237.
    Couper JJ, Steele C, Beresford S, et al. Lack of association between duration of breast-feeding or introduction of cow’s milk and development of islet autoimmunity. Diabetes 1999;48(11):2145–9.PubMedGoogle Scholar
  238. 238.
    Ziegler AG, Schmid S, Huber D, Hummel M, Bonifacio E. Early infant feeding and risk of developing type 1 diabetes-associated autoantibodies. JAMA 2003;290(13):1721–8.PubMedGoogle Scholar
  239. 239.
    Kimpimaki T, Erkkola M, Korhonen S, et al. Short-term exclusive breastfeeding predisposes young children with increased genetic risk of Type I diabetes to progressive beta-cell autoimmunity. Diabetologia 2001;44(1):63–9.PubMedGoogle Scholar
  240. 240.
    Capuco AV, Rice CP, Baldwin RLt, et al. Fate of dietary perchlorate in lactating dairy cows: Relevance to animal health and levels in the milk supply. Proc Natl Acad Sci USA 2005;102(45):16152–7.PubMedGoogle Scholar
  241. 241.
    Kirk AB, Martinelango PK, Tian K, Dutta A, Smith EE, Dasgupta PK. Perchlorate and iodide in dairy and breast milk. Environ Sci Technol 2005;39(7):2011–7.PubMedGoogle Scholar
  242. 242.
    Braverman LE, He X, Pino S, et al. The effect of perchlorate, thiocyanate, and nitrate on thyroid function in workers exposed to perchlorate long-term. J Clin Endocrinol Metab 2005;90(2):700–6.PubMedGoogle Scholar
  243. 243.
    Strbak V, Skultetyova M, Michalickova J, et al. Effect of breast-feeding on infant thyroid activity: 3 year follow up–longitudinal study. Endocrinol Exp 1986;20(2–3):257–66.PubMedGoogle Scholar
  244. 244.
    Strbak V, Skultetyova M, Hromadova M, Randuskova A, Macho L. Late effects of breast-feeding and early weaning: seven-year prospective study in children. Endocr Regul 1991;25(1–2):53–7.PubMedGoogle Scholar
  245. 245.
    Bohles H, Aschenbrenner M, Roth M, von Loewenich V, Ball F, Usadel KH. Development of thyroid gland volume during the first 3 months of life in breast-fed versus iodine-supplemented and iodine-free formula-fed infants. Clin Investig 1993;71(1):13–20.PubMedGoogle Scholar
  246. 246.
    Mizuta H, Amino N, Ichihara K, et al. Thyroid hormones in human milk and their influence on thyroid function of breast-fed babies. Pediatr Res 1983;17(6):468–71.PubMedGoogle Scholar
  247. 247.
    Smyth PP, Hetherton AM, Smith DF, Radcliff M, O’Herlihy C. Maternal iodine status and thyroid volume during pregnancy: correlation with neonatal iodine intake. J Clin Endocrinol Metab 1997;82(9):2840–3.PubMedGoogle Scholar
  248. 248.
    Brouwer A, Longnecker MP, Birnbaum LS, et al. Characterization of potential endocrine-related health effects at low-dose levels of exposure to PCBs. Environ Health Perspect 1999;107 (Suppl 4):639–49.PubMedGoogle Scholar
  249. 249.
    Sala M, Sunyer J, Otero R, et al. Health effects of chronic high exposure to hexachlorobenzene in a general population sample. Arch Environ Health 1999;54(2):102–9.PubMedGoogle Scholar
  250. 250.
    Langer P, Tajtakova M, Fodor G, et al. Increased thyroid volume and prevalence of thyroid disorders in an area heavily polluted by polychlorinated biphenyls. Eur J Endocrinol 1998;139(4):402–9.PubMedGoogle Scholar
  251. 251.
    Steenland K, Cedillo L, Tucker J, et al. Thyroid hormones and cytogenetic outcomes in backpack sprayers using ethylenebis(dithiocarbamate) (EBDC) fungicides in Mexico. Environ Health Perspect 1997;105(10):1126–30.PubMedGoogle Scholar
  252. 252.
    Marinovich M, Guizzetti M, Ghilardi F, Viviani B, Corsini E, Galli CL. Thyroid peroxidase as toxicity target for dithiocarbamates. Arch Toxicol 1997;71(8):508–12.PubMedGoogle Scholar
  253. 253.
    McNabb FM, Larsen CT, Pooler PS. Ammonium perchlorate effects on thyroid function and growth in bobwhite quail chicks. Environ Toxicol Chem 2004;23(4):997–1003.PubMedGoogle Scholar
  254. 254.
    Capen CC. Mechanistic data and risk assessment of selected toxic end points of the thyroid gland. Toxicol Pathol 1997;25(1):39–48.PubMedGoogle Scholar
  255. 255.
    Capen CC, Martin SL. The effects of xenobiotics on the structure and function of thyroid follicular and C-cells. Toxicol Pathol 1989;17(2):266–93.PubMedGoogle Scholar
  256. 256.
    Hill RN, Crisp TM, Hurley PM, Rosenthal SL, Singh DV. Risk assessment of thyroid follicular cell tumors. Environ Health Perspect 1998;106(8):447–57.PubMedGoogle Scholar
  257. 257.
    Hurley PM. Mode of carcinogenic action of pesticides inducing thyroid follicular cell tumors in rodents. Environ Health Perspect 1998;106(8):437–45.PubMedGoogle Scholar
  258. 258.
    Hill RN, Erdreich LS, Paynter OE, Roberts PA, Rosenthal SL, Wilkinson CF. Thyroid follicular cell carcinogenesis. Fundam Appl Toxicol 1989;12(4):629–97.PubMedGoogle Scholar
  259. 259.
    Capen CC. Mechanisms of chemical injury of thyroid gland. Prog Clin Biol Res 1994;387:173–91.PubMedGoogle Scholar
  260. 260.
    Jacob P, Kenigsberg Y, Zvonova I, et al. Childhood exposure due to the Chernobyl accident and thyroid cancer risk in contaminated areas of Belarus and Russia. Br J Cancer 1999;80(9):1461–9.PubMedGoogle Scholar
  261. 261.
    261. Institute NC. Estimated exposure and thyroid doses received by the American people from Iodine-131 in fallout following Nevada Atmospheric Nuclear Bomb Test. US Department of Health and Human Resources, Washington, DC NIH Pub No 97-4264 1997.Google Scholar
  262. 262.
    Eheman CR, Garbe P, Tuttle RM. Autoimmune thyroid disease associated with environmental thyroidal irradiation. Thyroid 2003;13(5):453–64.PubMedGoogle Scholar
  263. 263.
    DeGroot LJ. Effects of irradiation on the thyroid gland. Endocrinol Metab Clin North Am 1993;22(3):607–15.PubMedGoogle Scholar
  264. 264.
    Sugenoya A, Asanuma K, Hama Y, et al. Thyroid abnormalities among children in the contaminated area related to the Chernobyl accident. Thyroid 1995;5(1):29–33.PubMedGoogle Scholar
  265. 265.
    Volzke H, Werner A, Wallaschofski H, et al. Occupational exposure to ionizing radiation is associated with autoimmune thyroid disease. J Clin Endocrinol Metab 2005;90(8):4587–92.PubMedGoogle Scholar
  266. 266.
    Lu ST, Michaelson SM, Quinlan WJ. Sequential pathophysiologic effects of ionizing radiation on the beagle thyroid gland. J Natl Cancer Inst 1973;51(2):419–41.PubMedGoogle Scholar
  267. 267.
    Rose NR. Mechanisms of autoimmunity. Semin Liver Dis 2002;22(4):387–94.PubMedGoogle Scholar
  268. 268.
    Rose NR. Pathogenic mechanisms in autoimmune diseases. Clin Immunol Immunopathol 1989;53 (2 Pt 2):S7–16.PubMedGoogle Scholar
  269. 269.
    Griem P, Wulferink M, Sachs B, Gonzalez JB, Gleichmann E. Allergic and autoimmune reactions to xenobiotics: how do they arise? Immunol Today 1998;19(3):133–41.PubMedGoogle Scholar
  270. 270.
    Njoku DB, Talor MV, Fairweather D, Frisancho-Kiss S, Odumade OA, Rose NR. A novel model of drug hapten-induced hepatitis with increased mast cells in the BALB/c mouse. Exp Mol Pathol 2005;78(2):87–100.PubMedGoogle Scholar
  271. 271.
    Kubicka-Muranyi M, Kremer J, Rottmann N, et al. Murine systemic autoimmune disease induced by mercuric chloride: T helper cells reacting to self proteins. Int Arch Allergy Immunol 1996;109 (1):11–20.PubMedGoogle Scholar
  272. 272.
    Lehmann PV, Sercarz EE, Forsthuber T, Dayan CM, Gammon G. Determinant spreading and the dynamics of the autoimmune T-cell repertoire. Immunol Today 1993;14(5):203–8.PubMedGoogle Scholar
  273. 273.
    Sercarz EE, Lehmann PV, Ametani A, Benichou G, Miller A, Moudgil K. Dominance and crypticity of T cell antigenic determinants. Annu Rev Immunol 1993;11:729–66.PubMedGoogle Scholar
  274. 274.
    Reidenberg MM. Aromatic amines and the pathogenesis of lupus erythematosus. Am J Med 1983;75(6):1037–42.PubMedGoogle Scholar
  275. 275.
    Jan V, Callens A, Machet L, Machet MC, Lorette G, Vaillant L. [D-penicillamine-induced pemphigus, polymyositis and myasthenia]. Ann Dermatol Venereol 1999;126(2):153–6.PubMedGoogle Scholar
  276. 276.
    Griem P, Panthel K, Kalbacher H, Gleichmann E. Alteration of a model antigen by Au(III) leads to T cell sensitization to cryptic peptides. Eur J Immunol 1996;26(2):279–87.PubMedGoogle Scholar
  277. 277.
    Griem P, Gleichmann E. [Gold antirheumatic drug: desired and adverse effects of Au(I) and Au(III) [corrected] on the immune system. Z Rheumatol 1996;55(5):348–58.PubMedGoogle Scholar
  278. 278.
    Bowlus CL. The role of iron in T cell development and autoimmunity. Autoimmun Rev 2003;2(2):73–8.PubMedGoogle Scholar
  279. 279.
    Wulferink M, Dierkes S, Gleichmann E. Cross-sensitization to haptens: formation of common haptenic metabolites, T cell recognition of cryptic peptides, and true T cell cross-reactivity. Eur J Immunol 2002;32(5):1338–48.PubMedGoogle Scholar
  280. 280.
    Gleichmann H. Studies on the mechanism of drug sensitization: T-cell-dependent popliteal lymph node reaction to diphenylhydantoin. Clin Immunol Immunopathol 1981;18(2):203–11.PubMedGoogle Scholar
  281. 281.
    van Elven EH, van der Veen FM, Rolink AG, Issa P, Duin TM, Gleichmann E. Diseases caused by reactions of T lymphocytes to incompatible structures of the major histocompatibility complex. V. High titers of IgG autoantibodies to double-stranded DNA. J Immunol 1981;127(6):2435–8.PubMedGoogle Scholar
  282. 282.
    Romagnoli P, Spinas GA, Sinigaglia F. Gold-specific T cells in rheumatoid arthritis patients treated with gold. J Clin Invest 1992;89(1):254–8.PubMedGoogle Scholar
  283. 283.
    Ellis NM, Li Y, Hildebrand W, Fischetti VA, Cunningham MW. T cell mimicry and epitope specificity of cross-reactive T cell clones from rheumatic heart disease. J Immunol 2005;175(8):5448–56.PubMedGoogle Scholar
  284. 284.
    Guilherme L, Cunha-Neto E, Coelho V, et al. Human heart-infiltrating T-cell clones from rheumatic heart disease patients recognize both streptococcal and cardiac proteins. Circulation 1995;92(3):415–20.PubMedGoogle Scholar
  285. 285.
    Iwai LK, Juliano MA, Juliano L, Kalil J, Cunha-Neto E. T-cell molecular mimicry in Chagas disease: identification and partial structural analysis of multiple cross-reactive epitopes between Trypanosoma cruzi B13 and cardiac myosin heavy chain. J Autoimmun 2005;24(2):111–7.PubMedGoogle Scholar
  286. 286.
    Modes of presentation of chemical neoantigens to the immune system. Toxicology 2002;181–182:49–54.PubMedGoogle Scholar
  287. 287.
    Depta JP, Pichler WJ. Cross-reactivity with drugs at the T cell level. Curr Opin Allergy Clin Immunol 2003;3(4):261–7.PubMedGoogle Scholar
  288. 288.
    Richardson B. DNA methylation and autoimmune disease. Clin Immunol 2003;109(1):72–9.PubMedGoogle Scholar
  289. 289.
    Uetrecht J. Current trends in drug-induced autoimmunity. Autoimmun Rev 2005;4(5):309–14.PubMedGoogle Scholar
  290. 290.
    Richardson B, Powers D, Hooper F, Yung RL, O’Rourke K. Lymphocyte function-associated antigen 1 overexpression and T cell autoreactivity. Arthritis Rheum 1994;37(9):1363–72.PubMedGoogle Scholar
  291. 291.
    Richardson BC. Role of DNA methylation in the regulation of cell function: autoimmunity, aging and cancer. J Nutr 2002;132(8 Suppl):2401S–5S.PubMedGoogle Scholar
  292. 292.
    Kojima A, Tanaka-Kojima Y, Sakakura T, Nishizuka Y. Spontaneous development of autoimmune thyroiditis in neonatally thymectomized mice. Lab Invest 1976;34(6):550–7.PubMedGoogle Scholar
  293. 293.
    Wei WZ, Jacob JB, Zielinski JF, et al. Concurrent induction of antitumor immunity and autoimmune thyroiditis in CD4+ CD25+ regulatory T cell-depleted mice. Cancer Res 2005;65(18):8471–8.PubMedGoogle Scholar
  294. 294.
    Vladutiu AO. Autoimmune thyroiditis: conversion of low-responder mice to high-responders by cyclophosphamide. Clin Exp Immunol 1982;47(3):683–8.PubMedGoogle Scholar
  295. 295.
    Silverman DA, Rose NR. Spontaneous and methylcholanthrene-enhanced thyroiditis in BUF rats. I. The incidence and severity of the disease, and the genetics of susceptibility. J Immunol 1975;114 (1 Pt 1):145–7.PubMedGoogle Scholar
  296. 296.
    Taguchi O, Nishizuka Y. Self tolerance and localized autoimmunity. Mouse models of autoimmune disease that suggest tissue-specific suppressor T cells are involved in self tolerance. J Exp Med 1987;165(1):146–56.PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  • Rajni B. Sharma
  • C. Lynne Burek
  • Daniela Cihákova
  • Dolores B. Njoku
  • Noel R. Rose

There are no affiliations available

Personalised recommendations