Advertisement

Islet Cell Autoantigens

  • Anastasia Katsarou
  • Barbro Holm
  • Kristian Lynch
  • Åke Lernmark
Part of the Contemporary Endocrinology book series (COE)

Summary

Type 1 diabetes (T1D) appears after autoimmune processes have eradicated a large majority of the pancreatic islet β cells. Although patients may also have other organ-specific autoimmune diseases such as thyroiditis or celiac disease (CD), most T1D patients suffer from life-long insulin dependence because only the β cells have been eradicated. The genetic etiology is strongly associated with certain HLA-DQ class II heterodimers, which in part may explain the cell-specific loss as these proteins control antigen processing and presentation. Other etiologies include environmental factors such as virus and environmental or dietary toxins. The pathogenesis is closely associated with a number of autoimmune abnormalities, among them are autoantibodies and T cells to specific autoantigens. Autoantibody assays, standardized in international efforts, are used to identify autoantibodies against the islet autoantigens insulin, GAD65 and islet antigen-2 (IA-2). The presence of autoantibodies to these autoantigens predicts T1D. Other β-cell autoantigens have been reported but have failed confirmation especially because such antigens have failed to predict disease. The possible pathogenic importance of minor candidate autoantigens is typically not pursued. Reproducible and standardized T-cell tests of either CD4- or CD8-positive T cells are yet to be developed. Immunomodulating therapies with insulin and GAD65 are in progress, and preliminary data indicate that it may be possible to alter the T1D pathogenic process.

Keywords

Type 1 diabetes insulin glutamic acid decarboxylase GAD65 GAD67 IA-2 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rahier J, Goebbels RM, Henquin JC. Cellular composition of the human diabetic pancreas. Diabetologia 1983;24(5):366–71.PubMedGoogle Scholar
  2. 2.
    Greenbaum CJ, Sears KL, Kahn SE, Palmer JP. Relationship of beta-cell function and autoantibodies to progression and nonprogression of subclinical type 1 diabetes: follow-up of the Seattle Family Study. Diabetes 1999;48(1):170–5.PubMedGoogle Scholar
  3. 3.
    Sosenko JM, Palmer JP, Greenbaum CJ, et al. Patterns of metabolic progression to type 1 diabetes in the Diabetes Prevention Trial-Type 1. Diabetes Care 2006;29(3):643–9.PubMedGoogle Scholar
  4. 4.
    DPT-1. Effects of insulin in relatives of patients with type 1 diabetes mellitus. N Engl J Med 2002;346(22):1685–91.Google Scholar
  5. 5.
    Gale EA, Bingley PJ, Emmett CL, Collier T. European Nicotinamide Diabetes Intervention Trial (ENDIT): a randomised controlled trial of intervention before the onset of type 1 diabetes. Lancet 2004;363(9413):925–31.PubMedGoogle Scholar
  6. 6.
    Bingley PJ, Gale EA. Progression to type 1 diabetes in islet cell antibody-positive relatives in the European Nicotinamide Diabetes Intervention Trial: the role of additional immune, genetic and metabolic markers of risk. Diabetologia 2006;49(5):881–90.PubMedGoogle Scholar
  7. 7.
    Lernmark A. Type 1 diabetes as a model for prediction and diagnosis. Autoimmunity 2004;37(4):341–5.PubMedGoogle Scholar
  8. 8.
    Notkins AL. Type 1 diabetes as a model for autoantibodies as predictors of autoimmune diseases. Autoimmun Rev 2004;3(Suppl 1):S7–9.PubMedGoogle Scholar
  9. 9.
    Notkins AL, Lernmark A. Autoimmune type 1 diabetes: resolved and unresolved issues. J Clin Invest 2001;108(9):1247–52.PubMedGoogle Scholar
  10. 10.
    Lernmark A. Type 1 diabetes as a model for prediction and diagnosis. Autoimmunity 2004;37(4):341–5.PubMedGoogle Scholar
  11. 11.
    Gianani R, Eisenbarth GS. The stages of type 1A diabetes: 2005. Immunol Rev 2005;204:232–49.PubMedGoogle Scholar
  12. 12.
    Tsai EB, Sherry NA, Palmer JP, Herold KC. The rise and fall of insulin secretion in type 1 diabetes mellitus. Diabetologia 2006;49(2):261–70.PubMedGoogle Scholar
  13. 13.
    Gepts W. Pathologic anatomy of the pancreas in juvenile diabetes mellitus. Diabetes 1965;14(10):619–33.PubMedGoogle Scholar
  14. 14.
    Nerup J, Bendixen G, Binder C. Autoimmunity in diabetes mellitus. Lancet 1970;2(7673):610–1.PubMedGoogle Scholar
  15. 15.
    Nerup J, Andersen OO, Bendixen G, Egeberg J, Poulsen JE. Anti-pancreatic cellular hypersensitivity in diabetes mellitus. Diabetes 1971;20(6):424–7.PubMedGoogle Scholar
  16. 16.
    Singal DP, Blajchman MA. Histocompatibility (HL-A) antigens, lymphocytotoxic antibodies and tissue antibodies in patients with diabetes mellitus. Diabetes 1973;22(6):429–32.PubMedGoogle Scholar
  17. 17.
    Nerup J, Platz P, Andersen OO, et al. HL-A antigens and diabetes mellitus. Lancet 1974;2(7885):864–6.PubMedGoogle Scholar
  18. 18.
    Bottazzo GF, Florin-Christensen A, Doniach D. Islet-cell antibodies in diabetes mellitus with autoimmune polyendocrine deficiencies. Lancet 1974;2(7892):1279–83.PubMedGoogle Scholar
  19. 19.
    MacCuish AC, Irvine WJ, Barnes EW, Duncan LJ. Antibodies to pancreatic islet cells in insulin-dependent diabetics with coexistent autoimmune disease. Lancet 1974;2(7896):1529–31.PubMedGoogle Scholar
  20. 20.
    Lendrum R, Walker G, Gamble DR. Islet-cell antibodies in juvenile diabetes mellitus of recent onset. Lancet 1975;1(7912):880–2.PubMedGoogle Scholar
  21. 21.
    Gorsuch AN, Spencer KM, Lister J, et al. Evidence for a long prediabetic period in type I (insulin-dependent) diabetes mellitus. Lancet 1981;2(8260–61):1363–5.PubMedGoogle Scholar
  22. 22.
    Lernmark A, Sehlin J, Taljedal IB, Kromann H, Nerup J. Possible toxic effects of normal and diabetic patient serum on pancreatic B-cells. Diabetologia 1978;14(1):25–31.PubMedGoogle Scholar
  23. 23.
    Lernmark A, Freedman ZR, Hofmann C, et al. Islet-cell-surface antibodies in juvenile diabetes mellitus. N Engl J Med 1978;299(8):375–80.PubMedGoogle Scholar
  24. 24.
    Dobersen MJ, Scharff JE, Ginsberg-Fellner F, Notkins AL. Cytotoxic autoantibodies to beta cells in the serum of patients with insulin-dependent diabetes mellitus. N Engl J Med 1980;303(26):1493–8.PubMedGoogle Scholar
  25. 25.
    Lernmark A, Baekkeskov S. Islet cell antibodies-theoretical and practical implications. Diabetologia 1981;21(5):431–5.PubMedGoogle Scholar
  26. 26.
    Baekkeskov S, Nielsen JH, Marner B, Bilde T, Ludvigsson J, Lernmark A. Autoantibodies in newly diagnosed diabetic children immunoprecipitate human pancreatic islet cell proteins. Nature 1982;298(5870):167–9.PubMedGoogle Scholar
  27. 27.
    Gerling I, Baekkeskov S, Lernmark A. Islet cell and 64K autoantibodies are associated with plasma IgG in newly diagnosed insulin-dependent diabetic children. J Immunol 1986;137(12):3782–5.PubMedGoogle Scholar
  28. 28.
    Christie M, Landin-Olsson M, Sundkvist G, Dahlquist G, Lernmark A, Baekkeskov S. Antibodies to a Mr-64,000 islet cell protein in Swedish children with newly diagnosed type 1 (insulin-dependent) diabetes. Diabetologia 1988;31(8):597–602.PubMedGoogle Scholar
  29. 29.
    Palmer JP, Asplin CM, Clemons P, et al. Insulin antibodies in insulin-dependent diabetics before insulin treatment. Science 1983;222(4630):1337–9.PubMedGoogle Scholar
  30. 30.
    Kuglin B, Gries FA, Kolb H. Evidence of IgG autoantibodies against human proinsulin in patients with IDDM before insulin treatment. Diabetes 1988;37(1):130–2.PubMedGoogle Scholar
  31. 31.
    Baekkeskov S, Aanstoot HJ, Christgau S, et al. Identification of the 64K autoantigen in insulin-dependent diabetes as the GABA-synthesizing enzyme glutamic acid decarboxylase. Nature 1990;347(6289):151–6.PubMedGoogle Scholar
  32. 32.
    Karlsen AE, Hagopian WA, Grubin CE, et al. Cloning and primary structure of a human islet isoform of glutamic acid decarboxylase from chromosome 10. Proc Natl Acad Sci USA 1991;88(19): 8337–41.PubMedGoogle Scholar
  33. 33.
    Hagopian WA, Michelsen B, Karlsen AE, et al. Autoantibodies in IDDM primarily recognize the 65,000-M(r) rather than the 67,000-M(r) isoform of glutamic acid decarboxylase. Diabetes 1993;42(4):631–6.PubMedGoogle Scholar
  34. 34.
    Kim J, Richter W, Aanstoot HJ, et al. Differential expression of GAD65 and GAD67 in human, rat, and mouse pancreatic islets. Diabetes 1993;42(12):1799–808.PubMedGoogle Scholar
  35. 35.
    Lan MS, Lu J, Goto Y, Notkins AL. Molecular cloning and identification of a receptor-type protein tyrosine phosphatase, IA-2, from human insulinoma. DNA Cell Biol 1994;13(5):505–14.PubMedGoogle Scholar
  36. 36.
    Lan MS, Wasserfall C, Maclaren NK, Notkins AL. IA-2, a transmembrane protein of the protein tyrosine phosphatase family, is a major autoantigen in insulin-dependent diabetes mellitus. Proc Natl Acad Sci USA 1996;93(13):6367–70.PubMedGoogle Scholar
  37. 37.
    Payton MA, Hawkes CJ, Christie MR. Relationship of the 37,000- and 40,000-M(r) tryptic fragments of islet antigens in insulin-dependent diabetes to the protein tyrosine phosphatase-like molecule IA-2 (ICA512). J Clin Invest 1995;96(3):1506–11.PubMedGoogle Scholar
  38. 38.
    Wasmeier C, Hutton JC. Molecular cloning of phogrin, a protein-tyrosine phosphatase homologue localized to insulin secretory granule membranes. J Biol Chem 1996;271(30):18161–70.PubMedGoogle Scholar
  39. 39.
    Bingley PJ, Bonifacio E, Mueller PW. Diabetes Antibody Standardization Program: first assay proficiency evaluation. Diabetes 2003;52(5):1128–36.PubMedGoogle Scholar
  40. 40.
    Mire-Sluis AR, Gaines Das R, Lernmark A. The World Health Organization International Collaborative Study for islet cell antibodies. Diabetologia 2000;43(10):1282–92.PubMedGoogle Scholar
  41. 41.
    Greenbaum CJ, Wilkin TJ, Palmer JP. Fifth International Serum Exchange Workshop for Insulin Autoantibody (IAA) Standardization. The Immunology and Diabetes Workshops and participating laboratories. Diabetologia 1992;35(8):798–800.PubMedGoogle Scholar
  42. 42.
    Karlsson Faresjo M, Vaarala O, Thuswaldner S, Ilonen J, Hinkkanen A, Ludvigsson J. Diminished IFN-gamma response to diabetes-associated autoantigens in children at diagnosis and during follow up of type 1 diabetes. Diabetes Metab Res Rev 2006.Google Scholar
  43. 43.
    Toma A, Haddouk S, Briand JP, et al. Recognition of a subregion of human proinsulin by class I-restricted T cells in type 1 diabetic patients. Proc Natl Acad Sci USA 2005;102(30):10581–6.PubMedGoogle Scholar
  44. 44.
    Tree TI, Duinkerken G, Willemen S, de Vries RR, Roep BO. HLA-DQ-regulated T-cell responses to islet cell autoantigens insulin and GAD65. Diabetes 2004;53(7):1692–9.PubMedGoogle Scholar
  45. 45.
    Kent SC, Chen Y, Bregoli L, et al. Expanded T cells from pancreatic lymph nodes of type 1 diabetic subjects recognize an insulin epitope. Nature 2005;435(7039):224–8.PubMedGoogle Scholar
  46. 46.
    Chatenoud L, Bach JF. Regulatory T cells in the control of autoimmune diabetes: the case of the NOD mouse. Int Rev Immunol 2005;24(3–4):247–67.PubMedGoogle Scholar
  47. 47.
    Mathis D, Vence L, Benoist C. beta-Cell death during progression to diabetes. Nature 2001;414(6865):792–8.PubMedGoogle Scholar
  48. 48.
    Leiter EH, von Herrath M. Animal models have little to teach us about type 1 diabetes: 2. In opposition to this proposal. Diabetologia 2004;47(10):1657–60.PubMedGoogle Scholar
  49. 49.
    Keskinen P, Korhonen S, Kupila A, et al. First-phase insulin response in young healthy children at genetic and immunological risk for Type I diabetes. Diabetologia 2002;45(12):1639–48.PubMedGoogle Scholar
  50. 50.
    Krischer JP, Cuthbertson DD, Greenbaum C. Male sex increases the risk of autoimmunity but not type 1 diabetes. Diabetes Care 2004;27(8):1985–90.PubMedGoogle Scholar
  51. 51.
    Roep BO, Arden SD, de Vries RR, Hutton JC. T-cell clones from a type-1 diabetes patient respond to insulin secretory granule proteins. Nature 1990;345(6276):632–4.PubMedGoogle Scholar
  52. 52.
    Vafiadis P, Ounissi-Benkalha H, Palumbo M, et al. Class III alleles of the variable number of tandem repeat insulin polymorphism associated with silencing of thymic insulin predispose to type 1 diabetes. J Clin Endocrinol Metab 2001;86(8):3705–10.PubMedGoogle Scholar
  53. 53.
    Pugliese A, Brown D, Garza D, et al. Self-antigen-presenting cells expressing diabetes-associated autoantigens exist in both thymus and peripheral lymphoid organs. J Clin Invest 2001;107(5): 555–64.PubMedGoogle Scholar
  54. 54.
    Ueno H. Enzymatic and structural aspects on glutamate decarboxylase. J Mol Catal B: Enzymatic 2000;10:67–79.Google Scholar
  55. 55.
    Bu DF, Erlander MG, Hitz BC, et al. Two human glutamate decarboxylases, 65-kDa GAD and 67-kDa GAD, are each encoded by a single gene. Proc Natl Acad Sci USA 1992;89(6):2115–9.PubMedGoogle Scholar
  56. 56.
    Bosma PT, Blazquez M, Collins MA, et al. Multiplicity of glutamic acid decarboxylases (GAD) in vertebrates: molecular phylogeny and evidence for a new GAD paralog. Mol Biol Evol 1999;16(3):397–404.PubMedGoogle Scholar
  57. 57.
    Bu DF, Tobin AJ. The exon-intron organization of the genes (GAD1 and GAD2) encoding two human glutamate decarboxylases (GAD67 and GAD65) suggests that they derive from a common ancestral GAD. Genomics 1994;21(1):222–8.PubMedGoogle Scholar
  58. 58.
    Strausbauch PH, Fischer EHB. Structure of the binding site of pyridoxal 5’-phosphate to Escherichia coli glutamate decarboxylase. Biochemistry 1970;20:233–8.Google Scholar
  59. 59.
    Dutyshev DI, Darii EL, Fomenkova NP, et al. Structure of Escherichia coli glutamate decarboxylase (GADalpha) in complex with glutarate at 2.05 angstroms resolution. Acta Crystallogr D Biol Crystallogr 2005;61(Pt 3):230–5.PubMedGoogle Scholar
  60. 60.
    Capitani G, De Biase D, Aurizi C, Gut H, Bossa F, Grutter MG. Crystal structure and functional analysis of Escherichia coli glutamate decarboxylase. EMBO J 2003;22(16):4027–37.PubMedGoogle Scholar
  61. 61.
    Schwartz HL, Chandonia JM, Kash SF, et al. High-resolution autoreactive epitope mapping and structural modeling of the 65 kDa form of human glutamic acid decarboxylase. J Mol Biol 1999;287(5):983–99.PubMedGoogle Scholar
  62. 62.
    Padoa CJ, Banga JP, Madec AM, et al. Recombinant Fabs of human monoclonal antibodies specific to the middle epitope of GAD65 inhibit type 1 diabetes-specific GAD65Abs. Diabetes 2003;52(11):2689–95.PubMedGoogle Scholar
  63. 63.
    Chen CH, Battaglioli G, Martin DL, Hobart SA, Colon W. Distinctive interactions in the holoenzyme formation for two isoforms of glutamate decarboxylase. Biochim Biophys Acta 2003;1645(1):63–71.PubMedGoogle Scholar
  64. 64.
    Kanaani J, Lissin D, Kash SF, Baekkeskov S. The hydrophilic isoform of glutamate decarboxylase, GAD67, is targeted to membranes and nerve terminals independent of dimerization with the hydrophobic membrane-anchored isoform, GAD65. J Biol Chem 1999;274(52):37200–9.PubMedGoogle Scholar
  65. 65.
    Namchuk M, Lindsay L, Turck CW, Kanaani J, Baekkeskov S. Phosphorylation of serine residues 3, 6, 10, and 13 distinguishes membrane anchored from soluble glutamic acid decarboxylase 65 and is restricted to glutamic acid decarboxylase 65alpha. J Biol Chem 1997;272(3):1548–57.PubMedGoogle Scholar
  66. 66.
    Dirkx R, Jr., Thomas A, Li L, et al. Targeting of the 67-kDa isoform of glutamic acid decarboxylase to intracellular organelles is mediated by its interaction with the NH2-terminal region of the 65-kDa isoform of glutamic acid decarboxylase. J Biol Chem 1995;270(5):2241–6.PubMedGoogle Scholar
  67. 67.
    Shi Y, Veit B, Baekkeskov S. Amino acid residues 24–31 but not palmitoylation of cysteines 30 and 45 are required for membrane anchoring of glutamic acid decarboxylase, GAD65. J Cell Biol 1994;124(6):927–34.PubMedGoogle Scholar
  68. 68.
    Rorsman P, Berggren PO, Bokvist K, et al. Glucose-inhibition of glucagon secretion involves activation of GABAA-receptor chloride channels. Nature 1989;341(6239):233–6.PubMedGoogle Scholar
  69. 69.
    Wendt A, Birnir B, Buschard K, et al. Glucose inhibition of glucagon secretion from rat alpha-cells is mediated by GABA released from neighboring beta-cells. Diabetes 2004;53(4):1038–45.PubMedGoogle Scholar
  70. 70.
    Wang C, Kerckhofs K, Van de Casteele M, Smolders I, Pipeleers D, Ling Z. Glucose inhibits GABA release by pancreatic beta-cells through an increase in GABA shunt activity. Am J Physiol Endocrinol Metab 2006;290(3):E494–9.PubMedGoogle Scholar
  71. 71.
    Hawa MI, Leslie RD. GAD antigen and its significance in type I diabetes. J Endocrinol Invest 2002;25(7):576.PubMedGoogle Scholar
  72. 72.
    Pihoker C, Gilliam LK, Hampe CS, Lernmark A. Autoantibodies in diabetes. Diabetes 2005;54(Suppl 2):S52–61.PubMedGoogle Scholar
  73. 73.
    Graham J, Hagopian WA, Kockum I, et al. Genetic effects on age-dependent onset and islet cell autoantibody markers in type 1 diabetes. Diabetes 2002;51(5):1346–55.PubMedGoogle Scholar
  74. 74.
    Leslie RD, Atkinson MA, Notkins AL. Autoantigens IA-2 and GAD in type I (insulin-dependent) diabetes. Diabetologia 1999;42(1):3–14.PubMedGoogle Scholar
  75. 75.
    Rolandsson O, Hagg E, Hampe C, et al. Glutamate decarboxylase (GAD65) and tyrosine phosphatase-like protein (IA-2) autoantibodies index in a regional population is related to glucose intolerance and body mass index. Diabetologia 1999;42(5):555–9.PubMedGoogle Scholar
  76. 76.
    Weets I, Van Autreve J, Van der Auwera BJ, et al. Male-to-female excess in diabetes diagnosed in early adulthood is not specific for the immune-mediated form nor is it HLA-DQ restricted: possible relation to increased body mass index. Diabetologia 2001;44(1):40–7.PubMedGoogle Scholar
  77. 77.
    Solimena M, Folli F, Aparisi R, Pozza G, De Camilli P. Autoantibodies to GABA-ergic neurons and pancreatic beta cells in stiff-man syndrome. N Engl J Med 1990;322(22):1555–60.PubMedGoogle Scholar
  78. 78.
    Murinson BB. Stiff-person syndrome. Neurologist 2004;10(3):131–7.PubMedGoogle Scholar
  79. 79.
    Lernmark A. Glutamic acid decarboxylase–gene to antigen to disease. J Intern Med 1996;240(5):259–77.PubMedGoogle Scholar
  80. 80.
    Raju R, Foote J, Banga JP, et al. Analysis of GAD65 autoantibodies in Stiff-Person syndrome patients. J Immunol 2005;175(11):7755–62.PubMedGoogle Scholar
  81. 81.
    Kim J, Namchuk M, Bugawan T, et al. Higher autoantibody levels and recognition of a linear NH2-terminal epitope in the autoantigen GAD65, distinguish stiff-man syndrome from insulin-dependent diabetes mellitus. J Exp Med 1994;180(2):595–606.PubMedGoogle Scholar
  82. 82.
    Grubin CE, Daniels T, Toivola B, et al. A novel radioligand binding assay to determine diagnostic accuracy of isoform-specific glutamic acid decarboxylase antibodies in childhood IDDM. Diabetologia 1994;37(4):344–50.PubMedGoogle Scholar
  83. 83.
    Akamine H, Komiya I, Shimabukuro T, et al. High prevalence of GAD65 (and IA-2) antibodies in Japanese IDDM patients by a new immunoprecipitation assay based on recombinant human GAD65. Diabet Med 1997;14(9):778–84.PubMedGoogle Scholar
  84. 84.
    Tuomi T, Groop LC, Zimmet PZ, Rowley MJ, Knowles W, Mackay IR. Antibodies to glutamic acid decarboxylase reveal latent autoimmune diabetes mellitus in adults with a non-insulin-dependent onset of disease. Diabetes 1993;42(2):359–62.PubMedGoogle Scholar
  85. 85.
    Hagopian WA, Karlsen AE, Gottsater A, et al. Quantitative assay using recombinant human islet glutamic acid decarboxylase (GAD65) shows that 64K autoantibody positivity at onset predicts diabetes type. J Clin Invest 1993;91(1):368–74.PubMedGoogle Scholar
  86. 86.
    Brooking H, Ananieva-Jordanova R, Arnold C, et al. A sensitive non-isotopic assay for GAD65 autoantibodies. Clin Chim Acta 2003;331(1–2):55–9.PubMedGoogle Scholar
  87. 87.
    Chen S, Willis J, Maclean C, et al. Sensitive non-isotopic assays for autoantibodies to IA-2 and to a combination of both IA-2 and GAD65. Clin Chim Acta 2005;357(1):74–83.PubMedGoogle Scholar
  88. 88.
    Verge CF, Stenger D, Bonifacio E, et al. Combined use of autoantibodies (IA-2 autoantibody, GAD autoantibody, insulin autoantibody, cytoplasmic islet cell antibodies) in type 1 diabetes: Combinatorial Islet Autoantibody Workshop. Diabetes 1998;47(12):1857–66.PubMedGoogle Scholar
  89. 89.
    Atkinson MA, Bowman MA, Campbell L, Darrow BL, Kaufman DL, Maclaren NK. Cellular immunity to a determinant common to glutamate decarboxylase and coxsackie virus in insulin-dependent diabetes. J Clin Invest 1994;94(5):2125–9.PubMedGoogle Scholar
  90. 90.
    Bergholdt R, Heding P, Nielsen K, et al. Type 1 database mellitus: an inflammatory disease of the islet. Adv Exp Med Biol 2004;552:129–53.PubMedGoogle Scholar
  91. 91.
    Hampe CS, Hammerle LP, Bekris L, et al. Recognition of glutamic acid decarboxylase (GAD) by autoantibodies from different GAD antibody-positive phenotypes. J Clin Endocrinol Metab 2000;85(12):4671–9.PubMedGoogle Scholar
  92. 92.
    Ronkainen MS, Savola K, Knip M. Antibodies to GAD65 epitopes at diagnosis and over the first 10 years of clinical type 1 diabetes mellitus. Scand J Immunol 2004;59(3):334–40.PubMedGoogle Scholar
  93. 93.
    Sanjeevi CB, Falorni A, Kockum I, Hagopian WA, Lernmark A. HLA and glutamic acid decarboxylase in human insulin-dependent diabetes mellitus. Diabet Med 1996;13(3):209–17.PubMedGoogle Scholar
  94. 94.
    Borg H, Gottsater A, Fernlund P, Sundkvist G. A 12-year prospective study of the relationship between islet antibodies and beta-cell function at and after the diagnosis in patients with adult-onset diabetes. Diabetes 2002;51(6):1754–62.PubMedGoogle Scholar
  95. 95.
    Vandewalle CL, Falorni A, Svanholm S, Lernmark A, Pipeleers DG, Gorus FK. High diagnostic sensitivity of glutamate decarboxylase autoantibodies in insulin-dependent diabetes mellitus with clinical onset between age 20 and 40 years. The Belgian Diabetes Registry. J Clin Endocrinol Metab 1995;80(3):846–51.PubMedGoogle Scholar
  96. 96.
    Hallengren B, Falorni A, Landin-Olsson M, Lernmark A, Papadopoulos KI, Sundkvist G. Islet cell and glutamic acid decarboxylase antibodies in hyperthyroid patients: at diagnosis and following treatment. J Intern Med 1996;239(1):63–8.PubMedGoogle Scholar
  97. 97.
    Ou D, Jonsen LA, Metzger DL, Tingle AJ. CD4+ and CD8+ T-cell clones from congenital rubella syndrome patients with IDDM recognize overlapping GAD65 protein epitopes. Implications for HLA class I and II allelic linkage to disease susceptibility. Hum Immunol 1999;60(8):652–64.PubMedGoogle Scholar
  98. 98.
    Kallan AA, Roep BO, Arden SD, Hutton JC, de Vries RR. Beta-cell reactive T-cell clones from type I diabetes patients are not beta cell specific and recognize multiple antigens. J Autoimmun 1995;8(6):887–99.PubMedGoogle Scholar
  99. 99.
    Reijonen H, Daniels TL, Lernmark A, Nepom GT. GAD65-specific autoantibodies enhance the presentation of an immunodominant T-cell epitope from GAD65. Diabetes 2000;49(10):1621–6.PubMedGoogle Scholar
  100. 100.
    Jaume JC, Parry SL, Madec AM, Sonderstrup G, Baekkeskov S. Suppressive effect of glutamic acid decarboxylase 65-specific autoimmune B lymphocytes on processing of T cell determinants located within the antibody epitope. J Immunol 2002;169(2):665–72.PubMedGoogle Scholar
  101. 101.
    Reijonen H, Novak EJ, Kochik S, et al. Detection of GAD65-specific T-cells by major histocompatibility complex class II tetramers in type 1 diabetic patients and at-risk subjects. Diabetes 2002;51(5):1375–82.PubMedGoogle Scholar
  102. 102.
    Oling V, Marttila J, Ilonen J, et al. GAD65- and proinsulin-specific CD4+ T-cells detected by MHC class II tetramers in peripheral blood of type 1 diabetes patients and at-risk subjects. J Autoimmun 2005;25(3):235–43.PubMedGoogle Scholar
  103. 103.
    Schloot NC, Meierhoff G, Karlsson Faresjo M, et al. Comparison of cytokine ELISpot assay formats for the detection of islet antigen autoreactive T cells. Report of the third immunology of diabetes society T-cell workshop. J Autoimmun 2003;21(4):365–76.PubMedGoogle Scholar
  104. 104.
    Nagata M, Kotani R, Moriyama H, Yokono K, Roep BO, Peakman M. Detection of autoreactive T cells in type 1 diabetes using coded autoantigens and an immunoglobulin-free cytokine ELISPOT assay: report from the fourth immunology of diabetes society T cell workshop. Ann N Y Acad Sci 2004;1037:10–5.PubMedGoogle Scholar
  105. 105.
    Kaufman DL, Clare-Salzler M, Tian J, et al. Spontaneous loss of T-cell tolerance to glutamic acid decarboxylase in murine insulin-dependent diabetes. Nature 1993;366(6450):69–72.PubMedGoogle Scholar
  106. 106.
    Tisch R, Yang XD, Singer SM, Liblau RS, Fugger L, McDevitt HO. Immune response to glutamic acid decarboxylase correlates with insulitis in non-obese diabetic mice. Nature 1993;366(6450):72–5.PubMedGoogle Scholar
  107. 107.
    McDevitt H. Specific antigen vaccination to treat autoimmune disease. Proc Natl Acad Sci USA 2004;101(Suppl 2):14627–30.PubMedGoogle Scholar
  108. 108.
    Li A, Ojogho O, Franco E, Baron P, Iwaki Y, Escher A. Pro-apoptotic DNA vaccination ameliorates new onset of autoimmune diabetes in NOD mice and induces foxp3+ regulatory T cells in vitro. Vaccine 2006;24(23):5036–46.PubMedGoogle Scholar
  109. 109.
    Lernmark A, Agardh CD. Immunomodulation with human recombinant autoantigens. Trends Immunol 2005;26(11):608–12.PubMedGoogle Scholar
  110. 110.
    Agardh CD, Cilio CM, Lethagen A, et al. Clinical evidence for the safety of GAD65 immunomodulation in adult-onset autoimmune diabetes. J Diabetes Complications 2005;19(4):238–46.PubMedGoogle Scholar
  111. 111.
    Rabin DU, Pleasic SM, Palmer-Crocker R, Shapiro JA. Cloning and expression of IDDM-specific human autoantigens. Diabetes 1992;41(2):183–6.PubMedGoogle Scholar
  112. 112.
    Lan MS, Modi WS, Xie H, Notkins AL. Assignment of the IA-2 gene encoding an autoantigen in IDDM to chromosome 2q35. Diabetologia 1996;39(8):1001–2.PubMedGoogle Scholar
  113. 113.
    Dirkx R, Jr., Hermel JM, Rabin DU, Solimena M. ICA 512, a receptor tyrosine phosphatase-like protein, is concentrated in neurosecretory granule membranes. Adv Pharmacol 1998;42:243–6.PubMedGoogle Scholar
  114. 114.
    Notkins AL, Lu J, Li Q, et al. IA-2 and IA-2 beta are major autoantigens in IDDM and the precursors of the 40 kDa and 37 kDa tryptic fragments. J Autoimmun 1996;9(5):677–82.PubMedGoogle Scholar
  115. 115.
    Xie H, Notkins AL, Lan MS. IA-2, a transmembrane protein tyrosine phosphatase, is expressed in human lung cancer cell lines with neuroendocrine phenotype. Cancer Res 1996;56(12):2742–4.PubMedGoogle Scholar
  116. 116.
    Magistrelli G, Toma S, Isacchi A. Substitution of two variant residues in the protein tyrosine phosphatase-like PTP35/IA-2 sequence reconstitutes catalytic activity. Biochem Biophys Res Commun 1996;227(2):581–8.PubMedGoogle Scholar
  117. 117.
    Verge CF, Gianani R, Yu L, et al. Late progression to diabetes and evidence for chronic beta-cell autoimmunity in identical twins of patients with type I diabetes. Diabetes 1995;44(10):1176–9.PubMedGoogle Scholar
  118. 118.
    Morgenthaler NG, Lobner K, Morgenthaler UY, Christie MR, Seissler J, Scherbaum WA. Recombinant IA-2 expressed in E. coli can be used for the routine detection of autoantibodies in type-I diabetes. Horm Metab Res 1998;30(9):559–64.PubMedGoogle Scholar
  119. 119.
    Westerlund A, Ankelo M, Ilonen J, Knip M, Simell O, Hinkkanen AE. Absence of avidity maturation of autoantibodies to the protein tyrosine phosphatase-like IA-2 molecule and glutamic acid decarboxylase (GAD65) during progression to type 1 diabetes. J Autoimmun 2005;24(2):153–67.PubMedGoogle Scholar
  120. 120.
    Zhang B, Lan MS, Notkins AL. Autoantibodies to IA-2 in IDDM: location of major antigenic determinants. Diabetes 1997;46(1):40–3.PubMedGoogle Scholar
  121. 121.
    Bearzatto M, Lampasona V, Belloni C, Bonifacio E. Fine mapping of diabetes-associated IA-2 specific autoantibodies. J Autoimmun 2003;21(4):377–82.PubMedGoogle Scholar
  122. 122.
    Vandewalle CL, Falorni A, Lernmark A, et al. Associations of GAD65- and IA-2-autoantibodies with genetic risk markers in new-onset IDDM patients and their siblings. The Belgian Diabetes Registry. Diabetes Care 1997;20(10):1547–52.PubMedGoogle Scholar
  123. 123.
    Genovese S, Bonfanti R, Bazzigaluppi E, et al. Association of IA-2 autoantibodies with HLA DR4 phenotypes in IDDM. Diabetologia 1996;39(10):1223–6.PubMedGoogle Scholar
  124. 124.
    Hawkes CJ, Schloot NC, Marks J, et al. T-cell lines reactive to an immunodominant epitope of the tyrosine phosphatase-like autoantigen IA-2 in type 1 diabetes. Diabetes 2000;49(3):356–66.PubMedGoogle Scholar
  125. 125.
    Honeyman MC, Stone NL, Harrison LC. T-cell epitopes in type 1 diabetes autoantigen tyrosine phosphatase IA-(2): potential for mimicry with rotavirus and other environmental agents. Mol Med 1998;4(4):231–9.PubMedGoogle Scholar
  126. 126.
    Herzog BA, Ott PA, Dittrich MT, et al. Increased in vivo frequency of IA-2 peptide-reactive IFNgamma+/IL-4- T cells in type 1 diabetic subjects. J Autoimmun 2004;23(1):45–54.PubMedGoogle Scholar
  127. 127.
    Williams AJ, Bingley PJ, Chance RE, Gale EA. Insulin autoantibodies: more specific than proinsulin autoantibodies for prediction of type 1 diabetes. J Autoimmun 1999;13(3):357–63.PubMedGoogle Scholar
  128. 128.
    Uchigata Y, Hirata Y. Insulin autoimmune syndrome (IAS, Hirata disease). Ann Med Interne (Paris) 1999;150(3):245–53.Google Scholar
  129. 129.
    Hagopian WA, Sanjeevi CB, Kockum I, et al. Glutamate decarboxylase-, insulin-, and islet cell-antibodies and HLA typing to detect diabetes in a general population-based study of Swedish children. J Clin Invest 1995;95(4):1505–11.PubMedGoogle Scholar
  130. 130.
    Castano L, Ziegler AG, Ziegler R, Shoelson S, Eisenbarth GS. Characterization of insulin autoantibodies in relatives of patients with type I diabetes. Diabetes 1993;42(8):1202–9.PubMedGoogle Scholar
  131. 131.
    Williams AJ, Bingley PJ, Moore WP, Gale EA. Islet autoantibodies, nationality and gender: a multinational screening study in first-degree relatives of patients with Type I diabetes. Diabetologia 2002;45(2):217–23.PubMedGoogle Scholar
  132. 132.
    Nakayama M, Abiru N, Moriyama H, et al. Prime role for an insulin epitope in the development of type 1 diabetes in NOD mice. Nature 2005;435(7039):220–3.PubMedGoogle Scholar
  133. 133.
    Alleva DG, Crowe PD, Jin L, et al. A disease-associated cellular immune response in type 1 diabetics to an immunodominant epitope of insulin. J Clin Invest 2001;107(2):173–80.PubMedGoogle Scholar
  134. 134.
    Lee KH, Wucherpfennig KW, Wiley DC. Structure of a human insulin peptide-HLA-DQ8 complex and susceptibility to type 1 diabetes. Nat Immunol 2001;2(6):501–7.PubMedGoogle Scholar
  135. 135.
    Kimura K, Kawamura T, Kadotani S, Inada H, Niihira S, Yamano T. Peptide-specific cytotoxicity of T lymphocytes against glutamic acid decarboxylase and insulin in type 1 diabetes mellitus. Diabetes Res Clin Pract 2001;51(3):173–9.PubMedGoogle Scholar
  136. 136.
    Skyler JS, Krischer JP, Wolfsdorf J, et al. Effects of oral insulin in relatives of patients with type 1 diabetes: The Diabetes Prevention Trial–Type 1. Diabetes Care 2005;28(5):1068–76.PubMedGoogle Scholar
  137. 137.
    Roep BO, Atkinson MA, van Endert PM, Gottlieb PA, Wilson SB, Sachs JA. Autoreactive T cell responses in insulin-dependent (Type 1) diabetes mellitus. Report of the first international workshop for standardization of T cell assays. J Autoimmun 1999;13(2):267–82.PubMedGoogle Scholar
  138. 138.
    Peakman M, Tree TI, Endl J, van Endert P, Atkinson MA, Roep BO. Characterization of preparations of GAD65, proinsulin, and the islet tyrosine phosphatase IA-2 for use in detection of autoreactive T-cells in type 1 diabetes: report of phase II of the Second International Immunology of Diabetes Society Workshop for Standardization of T-cell assays in type 1 diabetes. Diabetes 2001;50(8):1749–54.PubMedGoogle Scholar
  139. 139.
    Pietropaolo M, Castano L, Babu S, et al. Islet cell autoantigen 69 kD (ICA69). Molecular cloning and characterization of a novel diabetes-associated autoantigen. J Clin Invest 1993;92(1):359–71.PubMedGoogle Scholar
  140. 140.
    Mally MI, Cirulli V, Hayek A, Otonkoski T. ICA69 is expressed equally in the human endocrine and exocrine pancreas. Diabetologia 1996;39(4):474–80.PubMedGoogle Scholar
  141. 141.
    Pilon M, Peng XR, Spence AM, Plasterk RH, Dosch HM. The diabetes autoantigen ICA69 and its Caenorhabditis elegans homologue, ric-19, are conserved regulators of neuroendocrine secretion. Mol Biol Cell 2000;11(10):3277–88.PubMedGoogle Scholar
  142. 142.
    Kasimiotis H, Fida S, Rowley MJ, et al. Antibodies to SOX13 (ICA12) are associated with type 1 diabetes. Autoimmunity 2001;33(2):95–101.PubMedGoogle Scholar
  143. 143.
    Fida S, Myers MA, Whittingham S, Rowley MJ, Ozaki S, Mackay IR. Autoantibodies to the transcriptional factor SOX13 in primary biliary cirrhosis compared with other diseases. J Autoimmun 2002;19(4):251–7.PubMedGoogle Scholar
  144. 144.
    Davis TM, Mehta Z, Mackay IR, et al. Autoantibodies to the islet cell antigen SOX-13 are associated with duration but not type of diabetes. Diabet Med 2003;20(3):198–204.PubMedGoogle Scholar
  145. 145.
    Alcalde L, Tonacchera M, Costagliola S, Jaraquemada D, Pujol-Borrell R, Ludgate M. Cloning of candidate autoantigen carboxypeptidase H from a human islet library: sequence identity with human brain CPH. J Autoimmun 1996;9(4):525–8.PubMedGoogle Scholar
  146. 146.
    Zhou ZG, Yang L, Huang G. Diagnostic value of carboxypeptidase-H autoantibodies in detecting latent autoimmune diabetes in adults. Hunan Yi Ke Da Xue Xue Bao 2003;28(6):549–52.PubMedGoogle Scholar
  147. 147.
    Buschard K, Blomqvist M, Osterbye T, Fredman P. Involvement of sulfatide in beta cells and type 1 and type 2 diabetes. Diabetologia 2005;48(10):1957–62.PubMedGoogle Scholar
  148. 148.
    Andersson K, Buschard K, Fredman P, et al. Patients with insulin-dependent diabetes but not those with non-insulin-dependent diabetes have anti-sulfatide antibodies as determined with a new ELISA assay. Autoimmunity 2002;35(7):463–8.PubMedGoogle Scholar
  149. 149.
    Ilyas AA, Mithen FA, Dalakas MC, et al. Antibodies to sulfated glycolipids in Guillain-Barre syndrome. J Neurol Sci 1991;105(1):108–17.PubMedGoogle Scholar
  150. 150.
    Pestronk A, Li F, Griffin J, et al. Polyneuropathy syndromes associated with serum antibodies to sulfatide and myelin-associated glycoprotein. Neurology 1991;41(3):357–62.PubMedGoogle Scholar
  151. 151.
    Dotta F, Previti M, Neerman-Arbez M, et al. The GM2–1 ganglioside islet autoantigen in insulin-dependent diabetes mellitus is expressed in secretory granules and is not beta-cell specific. Endocrinology 1998;139(1):316–9.PubMedGoogle Scholar
  152. 152.
    Dotta F, Falorni A, Tiberti C, et al. Autoantibodies to the GM2–1 islet ganglioside and to GAD-65 at type 1 diabetes onset. J Autoimmun 1997;10(6):585–8.PubMedGoogle Scholar
  153. 153.
    Geluk A, van Meijgaarden KE, Roep BO, Ottenhoff TH. Altered peptide ligands of islet autoantigen Imogen 38 inhibit antigen specific T cell reactivity in human type-1 diabetes. J Autoimmun 1998;11(4):353–61.PubMedGoogle Scholar
  154. 154.
    Arden SD, Roep BO, Neophytou PI, et al. Imogen 3(8): a novel 38-kD islet mitochondrial autoantigen recognized by T cells from a newly diagnosed type 1 diabetic patient. J Clin Invest 1996;97(2): 551–61.PubMedGoogle Scholar
  155. 155.
    Aanstoot HJ, Kang SM, Kim J, et al. Identification and characterization of glima 38, a glycosylated islet cell membrane antigen, which together with GAD65 and IA2 marks the early phases of autoimmune response in type 1 diabetes. J Clin Invest 1996;97(12):2772–83.PubMedGoogle Scholar
  156. 156.
    Winnock F, Christie MR, Batstra MR, et al. Autoantibodies to a 38-kDa glycosylated islet cell membrane-associated antigen in (pre)type 1 diabetes: association with IA-2 and islet cell autoantibodies. Diabetes Care 2001;24(7):1181–6.PubMedGoogle Scholar
  157. 157.
    Arden SD, Zahn T, Steegers S, et al. Molecular cloning of a pancreatic islet-specific glucose-6-phosphatase catalytic subunit-related protein. Diabetes 1999;48(3):531–42.PubMedGoogle Scholar
  158. 158.
    Lieberman SM, Evans AM, Han B, et al. Identification of the beta cell antigen targeted by a prevalent population of pathogenic CD8+ T cells in autoimmune diabetes. Proc Natl Acad Sci USA 2003;100(14):8384–8.PubMedGoogle Scholar
  159. 159.
    Yang J, Danke NA, Berger D, et al. Islet-specific glucose-6-phosphatase catalytic subunit-related protein-reactive CD4+ T cells in human subjects. J Immunol 2006;176(5):2781–9.PubMedGoogle Scholar
  160. 160.
    Li M, Fisher WE, Kim HJ, et al. Somatostatin, somatostatin receptors, and pancreatic cancer. World J Surg 2005;29(3):293–6.PubMedGoogle Scholar
  161. 161.
    Patel YC, Greenwood MT, Panetta R, Demchyshyn L, Niznik H, Srikant CB. The somatostatin receptor family. Life Sci 1995;57(13):1249–65.PubMedGoogle Scholar
  162. 162.
    Krantic S. Peptides as regulators of the immune system: emphasis on somatostatin. Peptides 2000;21(12):1941–64.PubMedGoogle Scholar
  163. 163.
    Wang XP, Norman MA, Brunicardi FC. Somatostatin receptors and autoimmune-mediated diabetes. Diabetes Metab Res Rev 2005;21(1):15–30.PubMedGoogle Scholar
  164. 164.
    Haskins K. Pathogenic T-cell clones in autoimmune diabetes: more lessons from the NOD mouse. Adv Immunol 2005;87:123–62.PubMedGoogle Scholar
  165. 165.
    Tisch R, Wang B, Atkinson MA, Serreze DV, Friedline R. A glutamic acid decarboxylase 65-specific Th2 cell clone immunoregulates autoimmune diabetes in nonobese diabetic mice. J Immunol 2001;166(11):6925–36.PubMedGoogle Scholar
  166. 166.
    Achenbach P, Kelemen K, Wegmann DR, Hutton JC. Spontaneous peripheral T-cell responses to the IA-2beta (phogrin) autoantigen in young nonobese diabetic mice. J Autoimmun 2002;19(3):111–6.PubMedGoogle Scholar
  167. 167.
    Kelemen K, Wegmann DR, Hutton JC. T-cell epitope analysis on the autoantigen phogrin (IA-2beta) in the nonobese diabetic mouse. Diabetes 2001;50(8):1729–34.PubMedGoogle Scholar
  168. 168.
    Trigwell SM, Radford PM, Page SR, et al. Islet glutamic acid decarboxylase modified by reactive oxygen species is recognized by antibodies from patients with type 1 diabetes mellitus. Clin Exp Immunol 2001;126(2):242–9.PubMedGoogle Scholar
  169. 169.
    van Gaalen F, Ioan-Facsinay A, Huizinga TW, Toes RE. The devil in the details: the emerging role of anticitrulline autoimmunity in rheumatoid arthritis. J Immunol 2005;175(9):5575–80.PubMedGoogle Scholar
  170. 170.
    Westman E, Harris HE. Alteration of an autoantigen by chlorination, a process occurring during inflammation, can overcome adaptive immune tolerance. Scand J Immunol 2004;59(5):458–63.PubMedGoogle Scholar
  171. 171.
    Sollid LM. Coeliac disease: dissecting a complex inflammatory disorder. Nat Rev Immunol 2002;2(9):647–55.PubMedGoogle Scholar
  172. 172.
    Binder CJ, Shaw PX, Chang MK, et al. The role of natural antibodies in atherogenesis. J Lipid Res 2005;46(7):1353–63.PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  • Anastasia Katsarou
  • Barbro Holm
  • Kristian Lynch
  • Åke Lernmark

There are no affiliations available

Personalised recommendations