Basic Mechanisms in Autoimmunity

  • Sonia Quaratino
Part of the Contemporary Endocrinology book series (COE)


Activation of self-reactive T cells is a critical step in the pathogenesis of autoimmune diseases. The mechanisms underpinning this remain elusive and difficult to prove in the complex human system. The most intriguing hypotheses and the mechanisms that control T-cell activation and regulation, which have been studied in vitro and in experimental animal models, will be discussed in this chapter together with their relevance to human diseases.


Autoimmune diseases molecular mimicry disease mechanisms T cells cryptic epitopes T-cell activation T-cell tolerance animal models 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Eisenberg R. Mechanisms of autoimmunity. Immunol Res 2003;27(2–3):203–18.PubMedCrossRefGoogle Scholar
  2. 2.
    Grimaldi CM, Hicks R, Diamond B. B cell selection and susceptibility to autoimmunity. J Immunol 2005;174(4):1775–81.PubMedGoogle Scholar
  3. 3.
    Shevach EM. Regulatory T cells in autoimmmunity*. Annu Rev Immunol 2000;18:423–49.PubMedCrossRefGoogle Scholar
  4. 4.
    Hogquist KA, Baldwin TA, Jameson SC. Central tolerance: learning self-control in the thymus. Nat Rev Immunol 2005;5(10):772–82.PubMedCrossRefGoogle Scholar
  5. 5.
    Sakaguchi S, Takahashi T, Yamazaki S, et al. Immunologic self tolerance maintained by T-cell-mediated control of self-reactive T cells: implications for autoimmunity and tumor immunity. Microbes Infect 2001;3(11):911–8.PubMedCrossRefGoogle Scholar
  6. 8.
    Goverman J, Woods A, Larson L, Weiner L, Hood L, Zaller D. Transgenic mice that express a myelin basic protein-specific T cell receptor develop spontaneous autoimmunity. Cell 1993;72:551–60.PubMedCrossRefGoogle Scholar
  7. 7.
    Quaratino S, Badami E, Pang YY, et al. Degenerate self-reactive human T-cell receptor causes spontaneous autoimmune disease in mice. Nat Med 2004;10(9):920–6.PubMedCrossRefGoogle Scholar
  8. 8.
    Candon S, McHugh RS, Foucras G, Natarajan K, Shevach EM, Margulies DH. Spontaneous organ-specific Th2-mediated autoimmunity in TCR transgenic mice. J Immunol 2004;172(5):2917–24.PubMedGoogle Scholar
  9. 9.
    Waldner H, Whitters MJ, Sobel RA, Collins M, Kuchroo VK. Fulminant spontaneous autoimmunity of the central nervous system in mice transgenic for the myelin proteolipid protein-specific T cell receptor. Proc Natl Acad Sci USA 2000;97(7):3412–7.PubMedCrossRefGoogle Scholar
  10. 10.
    Kouskoff V, Korganow AS, Duchatelle V, Degott C, Benoist C, Mathis D. Organ-specific disease provoked by systemic autoimmunity. Cell 1996;87(5):811–22.PubMedCrossRefGoogle Scholar
  11. 11.
    Badami E, Maiuri L, Quaratino S. High incidence of spontaneous autoimmune thyroiditis in immunocompetent self-reactive human T cell receptor transgenic mice. J Autoimmun 2005;24(2):85–91.PubMedCrossRefGoogle Scholar
  12. 12.
    Anderson MS, Venanzi ES, Chen Z, Berzins SP, Benoist C, Mathis D. The cellular mechanism of Aire control of T cell tolerance. Immunity 2005;23(2):227–39.PubMedCrossRefGoogle Scholar
  13. 13.
    Derbinski J, Schulte A, Kyewski B, Klein L. Promiscuous gene expression in medullary thymic epithelial cells mirrors the peripheral self. Nat Immunol 2001;2(11):1032–9.PubMedCrossRefGoogle Scholar
  14. 14.
    Peterson P, Nagamine K, Scott H, et al. APECED: a monogenic autoimmune disease providing new clues to self-tolerance. Immunol Today 1998;19(9):384–6.PubMedCrossRefGoogle Scholar
  15. 15.
    Anderson MS, Venanzi ES, Klein L, et al. Projection of an immunological self shadow within the thymus by the aire protein. Science 2002;298(5597):1395–401.PubMedCrossRefGoogle Scholar
  16. 16.
    Villasenor J, Benoist C, Mathis D. AIRE and APECED: molecular insights into an autoimmune disease. Immunol Rev 2005;204:156–64.PubMedCrossRefGoogle Scholar
  17. 17.
    Anderson AC, Kuchroo VK. Expression of self-antigen in the thymus: a little goes a long way. J Exp Med 2003;198(11):1627–9.PubMedCrossRefGoogle Scholar
  18. 18.
    Li HS, Carayanniotis G. Detection of thyroglobulin mRNA as truncated isoform(s) in mouse thymus. Immunology 2005;115(1):85–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Kuchroo VK, Anderson AC, Waldner H, Munder M, Bettelli E, Nicholson LB. T cell response in experimental autoimmune encephalomyelitis (EAE): role of self and cross-reactive antigens in shaping, tuning, and regulating the autopathogenic T cell repertoire. Annu Rev Immunol 2002;20(1):101–23.PubMedCrossRefGoogle Scholar
  20. 20.
    Klein L, Klugmann M, Nave K-A, Tuohy VK, Kyewski B. Shaping of the autoreactive T-cell repertoire by a splice variant of self protein expressed in thymic epithelial cells. Nat Med 2000;6(1):56–61.PubMedCrossRefGoogle Scholar
  21. 21.
    Mathisen PM, Pease S, Garvey J, Hood L, Readhead C. Identification of an embryonic isoform of myelin basic protein that is expressed widely in the mouse embryo. PNAS 1993;90(21):10125–9.PubMedCrossRefGoogle Scholar
  22. 22.
    Liu GY, Fairchild PJ, Smith RM, Prowle JR, Kioussis D, Wraith DC. Low avidity recognition of self-antigen by T cells permits escape from central tolerance. Immunity 1995;3:407–15.Google Scholar
  23. 23.
    Carrasco-Marin E, Shimizu J, Kanagawa O, Unanue ER. The class II MHC I-Ag7 molecules from non-obese diabetic mice are poor peptide binders. J Immunol 1996;156(2):450–8.PubMedGoogle Scholar
  24. 24.
    Peterson M, Sant AJ. The inability of the nonobese diabetic class II molecule to form stable peptide complexes does not reflect a failure to interact productively with DM. J Immunol 1998;161(6):2961–7.PubMedGoogle Scholar
  25. 25.
    Larsen CE, Alper CA. The genetics of HLA-associated disease. Curr Opin Immunol 2004;16(5):660–7.PubMedCrossRefGoogle Scholar
  26. 26.
    Prummel MF, Strieder T, Wiersinga WM. The environment and autoimmune thyroid diseases. Eur J Endocrinol 2004;150(5):605–18.PubMedCrossRefGoogle Scholar
  27. 27.
    McDevitt HO. The role of MHC class II molecules in susceptibility and resistance to autoimmunity. Curr Opin Immunol 1998;10(6):677–81.PubMedCrossRefGoogle Scholar
  28. 28.
    Das P, Abraham R, David C. HLA transgenic mice as models of human autoimmune diseases. Rev Immunogenet 2000;2(1):105–14.PubMedGoogle Scholar
  29. 29.
    Stratmann T, Apostolopoulos V, Mallet-Designe V, et al. The I-Ag7 MHC class II molecule linked to murine diabetes is a promiscuous peptide binder. J Immunol 2000;165(6):3214–25.PubMedGoogle Scholar
  30. 30.
    Pociot F, McDermott MF. Genetics of type 1 diabetes mellitus. Genes Immun 2002;3(5):235–49.PubMedCrossRefGoogle Scholar
  31. 31.
    Cucca F, Lampis R, Congia M, et al. A correlation between the relative predisposition of MHC class II alleles to type 1 diabetes and the structure of their proteins. Hum Mol Genet 2001;10(19):2025–37.PubMedCrossRefGoogle Scholar
  32. 32.
    Lee KH, Wucherpfennig KW, Wiley DC. Structure of a human insulin peptide-HLA-DQ8 complex and susceptibility to type 1 diabetes. Nat Immunol 2001;2(6):501–7.PubMedCrossRefGoogle Scholar
  33. 33.
    Weetman AP. Determinants of autoimmune thyroid disease. Nat Immunol 2001;2(9):769–70.PubMedCrossRefGoogle Scholar
  34. 34.
    Steck AK, Bugawan TL, Valdes AM, et al. Association of non-HLA genes with type 1 diabetes autoimmunity. Diabetes 2005;54(8):2482–6.PubMedCrossRefGoogle Scholar
  35. 35.
    Gough SC, Walker LS, Sansom DM. CTLA4 gene polymorphism and autoimmunity. Immunol Rev 2005;204:102–15.PubMedCrossRefGoogle Scholar
  36. 36.
    Haller K, Kisand K, Nemvalts V, Laine AP, Ilonen J, Uibo R. Type 1 diabetes is insulin-2221 MspI and CTLA-4 +49 A/G polymorphism dependent. Eur J Clin Invest 2004;34(8):543–8.PubMedCrossRefGoogle Scholar
  37. 37.
    Barreto M, Santos E, Ferreira R, et al. Evidence for CTLA4 as a susceptibility gene for systemic lupus erythematosus. Eur J Hum Genet 2004;12(8):620–6.PubMedCrossRefGoogle Scholar
  38. 38.
    Badenhoop K, Seidl C. Fine-tuning of T lymphocytes in autoimmunity: genetic association of CTLA-4 variants and Graves’ disease revisited. Clin Endocrinol (Oxf) 2003;59(5):555–7.CrossRefGoogle Scholar
  39. 39.
    Chistiakov DA, Turakulov RI. CTLA-4 and its role in autoimmune thyroid disease. J Mol Endocrinol 2003;31(1):21–36.PubMedCrossRefGoogle Scholar
  40. 40.
    Kristiansen OP, Larsen ZM, Pociot F. CTLA-4 in autoimmune diseases – a general susceptibility gene to autoimmunity? Genes Immun 2000;1(3):170–84.PubMedCrossRefGoogle Scholar
  41. 41.
    Nagamine K, Peterson P, Scott HS, et al. Positional cloning of the APECED gene. Nat Genet 1997;17(4):393–8.PubMedCrossRefGoogle Scholar
  42. 42.
    Kudoh J, Nagamine K, Asakawa S, et al. Localization of 16 exons to a 450-kb region involved in the autoimmune polyglandular disease type I (APECED) on human chromosome 21q22.3. DNA Res 1997;4(1):45–52.PubMedCrossRefGoogle Scholar
  43. 43.
    Halonen M, Kangas H, Rüppell T, et al. APECED-causing mutations in AIRE reveal the functional domains of the protein. Hum Mutat 2004;23(3):245–57.PubMedCrossRefGoogle Scholar
  44. 44.
    Nolsoe RL, Kelly JA, Pociot F, et al. Functional promoter haplotypes of the human FAS gene are associated with the phenotype of SLE characterized by thrombocytopenia. Genes Immun 2005;6(8):699–706.PubMedGoogle Scholar
  45. 45.
    Siegel RM, Ka-Ming Chan F, Chun HJ, Lenardo MJ. The multifaceted role of Fas signaling in immune cell homeostasis and autoimmunity. Nat Immunol 2000;1(6):469–74.PubMedCrossRefGoogle Scholar
  46. 46.
    Giordano C, Stassi G, De Maria R, et al. Potential involvement of Fas and its ligand in the pathogenesis of Hashimoto’s thyroiditis. Science 1997;275(5302):960–3.PubMedGoogle Scholar
  47. 47.
    Stassi G, De Maria R. Autoimmune thyroid disease: new models of cell death in autoimmunity. Nat Rev Immunol 2002;2(3):195–204.PubMedCrossRefGoogle Scholar
  48. 48.
    Fraga MF, Ballestar E, Paz MF, et al. From the cover: epigenetic differences arise during the lifetime of monozygotic twins. PNAS 2005;102(30):10604–9.PubMedCrossRefGoogle Scholar
  49. 49.
    Brooks WH. Autoimmune disorders result from loss of epigenetic control following chromosome damage. Med Hypotheses 2005;64(3):590–8.PubMedCrossRefGoogle Scholar
  50. 50.
    Januchowski R, Prokop J, Jagodzinski PP. Role of epigenetic DNA alterations in the pathogenesis of systemic lupus erythematosus. J Appl Genet 2004;45(2):237–48.PubMedGoogle Scholar
  51. 51.
    Sekigawa I, Okada M, Ogasawara H, Kaneko H, Hishikawa T, Hashimoto H. DNA methylation in systemic lupus erythematosus. Lupus 2003;12(2):79–85.PubMedCrossRefGoogle Scholar
  52. 52.
    Oldstone MB, Nerenberg M, Southern P, Price J, Lewicki H. Virus infection triggers insulin-dependent diabetes mellitus in a transgenic model: role of anti-self (virus) immune response. Cell 1991;65(2):319–31.PubMedCrossRefGoogle Scholar
  53. 53.
    Rose NR. The role of infection in the pathogenesis of autoimmune disease. Semin Immunol 1998;10(1):5–13.PubMedCrossRefGoogle Scholar
  54. 54.
    von Herrath MG, Holz A, Homann D, Oldstone MB. Role of viruses in type I diabetes. Semin Immunol 1998;10(1):87–100.CrossRefGoogle Scholar
  55. 55.
    Oldstone MB. Molecular mimicry and immune-mediated diseases. FASEB J 1998;12(13):1255–65.PubMedGoogle Scholar
  56. 56.
    Oldstone MBA. Molecular mimicry and autimmune disease. Cell 1987;50:819–20.PubMedCrossRefGoogle Scholar
  57. 57.
    Rose NR, Mackay IR. Molecular mimicry: a critical look at exemplary instances in human diseases. Cell Mol Life Sci 2000;57(4):542–51.PubMedCrossRefGoogle Scholar
  58. 58.
    Evavold BD, Sloan-Lancaster J, Wilson KJ, Rothbard JB, Allen PM. Specific T cell recognition of minimally homologous peptides: evidence for multiple endogenous ligands. Immunity 1995;2(6):655–63.PubMedCrossRefGoogle Scholar
  59. 59.
    Ford ML, Evavold BD. Degenerate recognition of T cell epitopes: impact of T cell receptor reserve and stability of peptide:MHC complexes. Mol Immunol 2004;40(14–15):1019–25.PubMedCrossRefGoogle Scholar
  60. 60.
    Quaratino S, Thorpe CJ, Travers PJ, Londei M. Similar antigenic surfaces, rather than sequence homology, dictate T-cell epitope molecular mimicry. Proc Natl Acad Sci USA 1995;92(22):10398–402.PubMedCrossRefGoogle Scholar
  61. 61.
    Bankovich AJ, Girvin AT, Moesta AK, Garcia KC. Peptide register shifting within the MHC groove: theory becomes reality. Mol Immunol 2004;40(14–15):1033–9.PubMedCrossRefGoogle Scholar
  62. 62.
    Zhao ZS, Granucci F, Yeh L, Schaffer PA, Cantor H. Molecular mimicry by herpes simplex virus-type 1: autoimmune disease after viral infection. Science 1998;279(5355):1344–7.PubMedCrossRefGoogle Scholar
  63. 63.
    Wucherpfennig KW, Strominger JL. Molecular mimicry in T cell-mediated autoimmunity: viral peptides activate human T cell clones specific for myelin basic protein. Cell 1995;80(5):695–705.PubMedCrossRefGoogle Scholar
  64. 64.
    Lang HL, Jacobsen H, Ikemizu S, et al. A functional and structural basis for TCR cross-reactivity in multiple sclerosis. Nat Immunol 2002;3(10):940–3.PubMedCrossRefGoogle Scholar
  65. 65.
    Markovic-Plese S, Hemmer B, Zhao Y, Simon R, Pinilla C, Martin R. High level of cross-reactivity in influenza virus hemagglutinin-specific CD4+ T-cell response: implications for the initiation of autoimmune response in multiple sclerosis. J Neuroimmunol 2005;169(1–2):31–8.PubMedCrossRefGoogle Scholar
  66. 66.
    Reiser JB, Darnault C, Gregoire C, et al. CDR3 loop flexibility contributes to the degeneracy of TCR recognition. Nat Immunol 2003;4(3):241–7.PubMedCrossRefGoogle Scholar
  67. 67.
    Padovan E, Casorati G, Dellabona P, Meyer S, Brockhaus M, Lanzavecchia A. Expression of two T cell receptor a chains: dual receptor T cells. Science 1993;262:422–4.PubMedCrossRefGoogle Scholar
  68. 68.
    Heath WR, Miller JF. Expression of two alpha chains on the surface of T cells in T cell receptor transgenic mice. J Exp Med 1993;178(5):1807–11.PubMedCrossRefGoogle Scholar
  69. 69.
    Padovan E, Casorati G, Dellabona P, Giachino C, Lanzavecchia A. Dual receptor T-cells. Implications for alloreactivity and autoimmunity. Ann NY Acad Sci 1995;756:66–70.PubMedCrossRefGoogle Scholar
  70. 70.
    Zal T, Weiss S, Mellor A, Stockinger B. Expression of a second receptor rescues self-specific T cells from thymic deletion and allows activation of autoreactive effector function. Proc Natl Acad Sci USA 1996;93(17):9102–7.PubMedGoogle Scholar
  71. 71.
    Benoist C, Mathis D. Autoimmunity provoked by infection: how good is the case for T cell epitope mimicry? Nat Immunol 2001;2(9):797–801.PubMedCrossRefGoogle Scholar
  72. 72.
    Wucherpfennig KW. Mechanisms for the induction of autoimmunity by infectious agents. J Clin Invest 2001;108(8):1097–104.PubMedCrossRefGoogle Scholar
  73. 73.
    Horwitz MS, Sarvetnick N. Viruses, host responses, and autoimmunity. Immunol Rev 1999;169:241–53.PubMedCrossRefGoogle Scholar
  74. 74.
    Sercarz EE, Lehmann PV, Ametani A, Benichou G, Miller A, Moudgil K. Dominance and crypticity of T cell antigenic determinants. Annu Rev Immunol 1993;11:729–66.PubMedCrossRefGoogle Scholar
  75. 75.
    Moudgil KD, Ametani A, Grewal IS, Kumar V, Sercarz EE. Processing of self-proteins and its impact on shaping the T cell repertoire, autoimmunity and immune regulation. Int Rev Immunol 1993;10(4):365–77.PubMedCrossRefGoogle Scholar
  76. 76.
    Moudgil KD, Sercarz EE. Understanding crypticity is the key to revealing the pathogenesis of autoimmunity. Trends Immunol 2005;26(7):355–9.PubMedCrossRefGoogle Scholar
  77. 77.
    Manoury B, Mazzeo D, Fugger L, et al. Destructive processing by asparagine endopeptidase limits presentation of a dominant T cell epitope in MBP. Nat Immunol 2002;3(2):169–74.PubMedCrossRefGoogle Scholar
  78. 78.
    Moss CX, Matthews SP, Lamont DJ, Watts C. Asparagine deamidation perturbs antigen presentation on class II major histocompatibility complex molecules. J Biol Chem 2005;280(18):18498–503.PubMedCrossRefGoogle Scholar
  79. 79.
    Moudgil KD, Deng H, Nanda NK, Grewal IS, Ametani A, Sercarz EE. Antigen processing and T cell repertoires as crucial aleatory features in induction of autoimmunity. J Autoimmun 1996;9(2):227–34.PubMedCrossRefGoogle Scholar
  80. 80.
    Soares L, Deng H, Grewal IS, et al. Determinant flanking regions and the design of appropriate vaccines. Ann NY Acad Sci 1995;754:48–56.PubMedCrossRefGoogle Scholar
  81. 81.
    Lehmann PV, Forsthuber T, Miller A, Sercarz EE. Spreading of T-cell autoimmunity to cryptic determinants of an autoantigen. Nature 1992;358(6382):155–7.PubMedCrossRefGoogle Scholar
  82. 82.
    Lanzavecchia A. How can cryptic epitopes trigger autoimmunity. J Exp Med 1995;181:1945–8.PubMedCrossRefGoogle Scholar
  83. 83.
    Ding L, Shevach EM. Activation of CD4+ T cells by delivery of the B7 costimulatory signal on bystander antigen-presenting cells (trans-costimulation). Eur J Immunol 1994;24(4):859–66.PubMedCrossRefGoogle Scholar
  84. 84.
    Gammon G, Sercarz E. How some T cells escape tolerance induction. Nature 1989;342 (6246):183–5.PubMedCrossRefGoogle Scholar
  85. 85.
    Fairchild PJ, Pope H, Wraith DC. The nature of cryptic epitopes within the self-antigen myelin basic protein. Int Immunol 1996;8(7):1035–43.PubMedCrossRefGoogle Scholar
  86. 86.
    Anderton SM, Viner NJ, Matharu P, Lowrey PA, Wraith DC. Influence of a dominant cryptic epitope on autoimmune T cell tolerance. Nat Immunol 2002;3(2):175–81.PubMedCrossRefGoogle Scholar
  87. 87.
    Carayanniotis G. The cryptic self in thyroid autoimmunity: the paradigm of thyroglobulin. Autoimmunity 2003;36(6–7):423–8.PubMedCrossRefGoogle Scholar
  88. 88.
    Dai YD, Eliades P, Carayanniotis KA, et al. Thyroxine-binding antibodies inhibit T cell recognition of a pathogenic thyroglobulin epitope. J Immunol 2005;174(5):3105–10.PubMedGoogle Scholar
  89. 89.
    Quaratino S, Feldmann M, Dayan CM, Acuto O, Londei M. Human self-reactive T cell clones expressing identical T cell receptor beta chains differ in their ability to recognize a cryptic self-epitope. J Exp Med 1996;183(2):349–58.PubMedCrossRefGoogle Scholar
  90. 90.
    Quaratino S, Duddy LP, Londei M. Fully competent dendritic cells as inducers of T cell anergy in autoimmunity. Proc Natl Acad Sci USA 2000;97(20):10911–6.PubMedCrossRefGoogle Scholar
  91. 91.
    Quaratino S, Ruf J, Osman M, et al. Human autoantibodies modulate the T cell epitope repertoire but fail to unmask a pathogenic cryptic epitope. J Immunol 2005;174(1):557–63.PubMedGoogle Scholar
  92. 92.
    Sakaguchi S. Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat Immunol 2005;6(4):345–52.PubMedCrossRefGoogle Scholar
  93. 93.
    Sakaguchi S. Naturally arising CD4+ regulatory T cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol 2004;22:531–62.PubMedCrossRefGoogle Scholar
  94. 94.
    Walker LS. Antigen-dependent proliferation of CD4+ CD25+ regulatory T cells in vivo. J Exp Med 2003;198:249–58.PubMedCrossRefGoogle Scholar
  95. 95.
    Green EA, Choi Y, Flavell RA. Pancreatic lymph node-derived CD4(+)CD25(+) Treg cells: highly potent regulators of diabetes that require TRANCE-RANK signals. Immunity 2002;16(2):183–91.PubMedCrossRefGoogle Scholar
  96. 96.
    Eggena MP, Walker LSK, Nagabhushanam V, Barron L, Chodos A, Abbas AK. Cooperative roles of CTLA-4 and regulatory T cells in tolerance to an islet cell antigen. J Exp Med 2004;199(12):1725–30.PubMedCrossRefGoogle Scholar
  97. 97.
    Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor foxp3. Science 2003;299(5609):1057–61.PubMedCrossRefGoogle Scholar
  98. 98.
    Takahashi T. Immunologic self-tolerance maintained by CD25+CD4+ regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J Exp Med 2000;192:303–10.PubMedCrossRefGoogle Scholar
  99. 99.
    Ueda H. Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature 2003;423:506–11.PubMedCrossRefGoogle Scholar
  100. 100.
    Brunkow ME. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat Genet 2001;27:68–73.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  • Sonia Quaratino

There are no affiliations available

Personalised recommendations