Glial and Mobile Cells in the Iris of the Aging Human Eye

  • Carlo A. P. Cavallotti
  • Angelica Cerulli
Part of the Aging Medicine book series (AGME)


This chapter describes the glial and mobile cells that can be found in the iris of the aging human eye. The glial cells of the eye can be divided in two principle classes: Macroglia and Microglia.

The Macroglia is of neuroectodermic origin and includes olygodendrocytes, Schwann cells, and astrocytes. Macroglia contains cells that regulate the neuronal metabolism and modulate neuronal functions. Moreover, macroglia regulates also the eye blood vessels functions. In the eye bulb, two cell types can be found as part of the macroglia: Müller cells and astrocytes.

Microglial cells are similar to the tissue macrophages. These cells are normally resting, but are sensitive to the pathological changes in the homeostasis of the various components of the eye. When the eye tissues undergo pathological changes, the microglial cells rapidly change into phagocytes capable of mobility. Moreover, the eye contains some types of cells, nonstructurally connected with the other, adjacent cells by mean of junctions, capability of migration, mobility, production of cytochines, and phagocytosis. These cells are named mobile or floating cells. Finally, endothelial cells and pericytes can be found in the eye, which flank the nerve cells and glial cells, or arrange themselves around the blood vessel walls. All these cells show strong age-related changes.


human eye iris macroglia microglia astrocytes floating cells phagocytes-Lymphocytes 


  1. 1.
    William D, Willis J (1995) II sistema nervoso. In: Berne RM, Levy MN (eds.) Fisiologia. Milano, Casa Editrice Ambrosiana. p 101–117Google Scholar
  2. 2.
    Kandel E (2003) Principi di Neuroscienze. Milano, Editrice Ambrosiana, p 20–22Google Scholar
  3. 3.
    Ascenzi A (1997) Sistema nervoso. In: Ascenzi A, Mottura G (eds) Anatomia Patologica, vol. 2. Torino, UTET, pi 184–1186Google Scholar
  4. 4.
    Barr M, Kiernan JA (1995) Cellule del sistema nervoso. In: Barr M, Kiernan JA (eds) Anatomia del sistema nervoso umano. McGraw-Hill, Milano, p 26–30Google Scholar
  5. 5.
    Burt AM (1996) Trattato di neuroanatomia. Piccin, Milano, p 50–52Google Scholar
  6. 6.
    Monesi V (1998) Tessuto nervoso e neuroglia. In: Monesi V (ed) Istologia. Piccin, Padova, p 830–834Google Scholar
  7. 7.
    Nobak CR, Strominger NL, Demarest RJ (1999) La neuroglia. In: Nobak CR, Strominger NL (eds) Sistema nervoso. Piccano, Milano, p 25–27Google Scholar
  8. 8.
    Fazio C et al (2003) Neuroanatomia. SEU, Roma, p 550–557Google Scholar
  9. 9.
    Vernadakis, A, (1986) Changes in astrocytes with aging. In: Federoff S, Vernadakys A (eds) Biochemistry, Physiology and Pharmacology of Astrocytes. Academic Press, Orlando, USA, p 377–407Google Scholar
  10. 10.
    Chen L, Yang P, Kijlstra A, (2002) Distribution, markers, and functions of retinal microglia. Ocul. Immunol. Inflamm. 10:27–39PubMedCrossRefGoogle Scholar
  11. 11.
    Madigan WP, Wertz D, Cockerham GC, Thach AB (1994) Retinal detachement in ostegenesis imperfecta. J. Pediatr. Ophthalmol Strabismus 31:268–269PubMedGoogle Scholar
  12. 12.
    Janeway C, Travers P (1996) Immunobiologia. Piccin, Padova 7 Glial and Mobile Cells in the Iris of the Aging Human EyeGoogle Scholar
  13. 13.
    Salerno A (1996) Le immunodeficienze. In: Pontieri M (ed) Patologia generale. Piccin, Padova p 567–612Google Scholar

Other Linked and Recent References

  1. 1.
    McMenamin PG, Holthouse I (1992) Immunohistochemical characterization of dendritic cells and macrophages in the aqueous outflow pathways of the rat eye. Exp Eye Res. August 55(2):315–24CrossRefGoogle Scholar
  2. 2.
    Camelo S, Shanley AC, Voon AS, McMenamin PG (2004) An intravital and confocal microscopic study of the distribution of intracameral antigen in the aqueous outflow pathways and limbus of the rat eye. Exp Eye Res 79(4):455–64PubMedCrossRefGoogle Scholar
  3. 3.
    McMenamin PG, Crewe J (1995) Endotoxin-induced uveitis. Kinetics and phenotype of the inflammatory cell infiltrate and the response of the resident tissue macrophages and dendritic cells in the iris and ciliary body. Invest Ophthalmol Vis Sci. 36(10):1949–59PubMedGoogle Scholar
  4. 4.
    Yang P, Das PK, Kijlstra A (2000) Localization and characterization of immunocompetent cells in the human retina. Ocul Immunol Inflamm. 8(3): 149–57PubMedGoogle Scholar
  5. 6.
    Butler TL, McMenamin PG (1996) Resident and infiltrating immune cells in the uveal tract in the early and late stages of experimental autoimmune uveoretinitis. Invest Ophthalmol Vis Sci. 37(ll):2195–210PubMedGoogle Scholar
  6. 7.
    Diaz-Araya CM, Madigan MC, Provis JM, Penfold PL (1995) Immunohistochemical and topographic studies of dendritic cells and macrophages in human fetal cornea. Invest Ophthalmol Vis Sci. 36(3):644–56PubMedGoogle Scholar
  7. 8.
    Becker MD, Planck SR, Crespo S, Garman K, Fleischman RJ, Dullforce P, Seitz GW, Martin TM, Parker DC, Rosenbaum JT (2003) Immunohistology of antigen-presenting cells in vivo: a novel method for serial observation of fluorescently labeled cells. Invest Ophthalmol Vis Sci. 44(5):2004–9PubMedCrossRefGoogle Scholar
  8. 9.
    Poulter LW, Campbell DA, Munro C, Janossy G (1986) Discrimination of human macrophages and dendritic cells by means of monoclonal antibodies. Scand J Immunol. 24(3):351–7PubMedCrossRefGoogle Scholar
  9. 10.
    Takase H, Sugita S, Rhee DJ, Imai Y, Taguchi C, Sugamoto Y, Tagawa Y,Nishihira J, Russell P, Mochizuki M (2002) The presence of macrophage migration inhibitory factor in human trabecular meshwork and its upregulatory effects on the T helper 1 cytokine. Invest Ophthalmol Vis Sci. 43(8):2691–6PubMedGoogle Scholar
  10. 11.
    Romeike A, Brugmann M, Drommer W (1998) Immunohistochemical studies in equine recurrent uveitis (ERU). Vet Pathol. 35(6):515–26PubMedCrossRefGoogle Scholar
  11. 12.
    Weinstein BI, Iyer RB, Binstock JM, Hamby CV, Schwartz IS, Moy FH, Wandel T, Southren AL (1996) Decreased 3 alpha-hydroxysteroid dehydrogenase activity in peripheral blood lymphocytes from patients with primary open angle glaucoma. Exp Eye Res. 62(l):39–45PubMedCrossRefGoogle Scholar
  12. 13.
    Ueno H, Tamai A, Iyota K, Moriki T (1989) Electron microscopic observation of the cells floating in the anterior chamber in a case of phacolytic glaucoma. Jpn J Ophthalmol. 33(1): 103–13PubMedGoogle Scholar
  13. 14.
    Latina M, Flotte T, Crean E, Sherwood ME, Granstein RD (1988) Immunohistochemical staining of the human anterior segment. Evidence that resident cells play a role in immunologic responses. Arch Ophthalmol. 106(l):95–9PubMedGoogle Scholar
  14. 15.
    Lutjen-Drecoll E, Kaufman PL, Barany EH (1977) Light and electron microscopy of the anterior chamber angle structures following surgical disinsertion of the ciliary muscle in the cynomolgus monkey. Invest Ophthalmol Vis Sci. 16(3):218–25PubMedGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Carlo A. P. Cavallotti
    • 1
  • Angelica Cerulli
    • 2
  1. 1.European Ophthalmic Neuroscience Program (Local Research Unit)University of Rome “La Sapienza,”RomeItaly
  2. 2.Department of OphthalmologyUniversity of Rome “Tor Vergata,”RomeItaly

Personalised recommendations