Aging of the Cornea

  • Luciano Cerulli
  • Filippo Missiroli
Part of the Aging Medicine book series (AGME)


Unlike other ocular structures, as well as most tissues in the body, the cornea does not show important changes with normal aging. A variety of corneal aging changes have, however, been reported. Few of them are clinically evident, while others are demonstrated by chemical, biological, and structural studies. Distinction has to be made between conditions considered within the normal limits of aging and those of true disease processes that commonly affect the cornea in the elderly. The difference with other ocular structures is that changes of cornea due to aging are mostly asymptomatic and do not usually affect vision, hence they do not require treatment. However, some changes occur and, for example, the aged cornea becomes more susceptible to infection because of a decreased ability to resist a variety of physiological stresses. Furthermore, it is sometimes difficult to distinguish age specific deterioration from degenerations modified by environmental and genetic factors. The well-known clinical conditions that occur with age in the cornea will be described first. Then, a review of the effect of age on shape and different aspects of the cornea and its structural (anatomical) changes will be reported.


Aging cornea corneal arcus deep crocodile shagreen astigmatism corneal thickness stroma keratocyte endothelium 


  1. 1.
    Phillips CI, Tsukahara S, Gore SM (1990) Corneal arcus: some morphology and applied pathophysiology. Jpn. J. Ophthalmol 34:440–442Google Scholar
  2. 2.
    Gaynor PM, Zhang WY, Salehizadeh B, Pettiford B and Kruth HS (1996) Cholesterol accumulation in human cornea: evidence that extracellular cholesteryl ester-rich lipid particles deposit independently of foam cells. J Lipid Res. 37(9):1849–61PubMedGoogle Scholar
  3. 3.
    Cooke NT (1981) Significance of arcus senilis in Caucasians. J R Soc Med 74:201–4PubMedGoogle Scholar
  4. 4.
    Moss SE, Klein R, Klein BE. (2000) Arcus senilis and mortality in a population with diabetes. Am J Ophthalmol 129:676–8PubMedCrossRefGoogle Scholar
  5. 5.
    McAndrew GM, Ogston D (1965) Arcus senilis and coronary artery disease. Am Heart J 70:838–40PubMedCrossRefGoogle Scholar
  6. 6.
    Duke-Elder S (1965) System of Ophthalmology, vol VIII, Part 2, Disease of the Outer Eye. London, Kimpton, p 869Google Scholar
  7. 7.
    Hogan MJ, Zimmermann LE (1962) Ophthalmic pathology. An Atlas and textbook. 2nd ed. Philadelphia, Saunders, pp 288–289Google Scholar
  8. 8.
    Asano K, Nomura H, Iwano M, Ando F, Niino N, Shimokata H (2005) Miyake Relationship between astigmatism and aging in middle-aged and elderly Japanese. Jpn J Ophthalmol 49(2):127–33PubMedCrossRefGoogle Scholar
  9. 9.
    Lam AK, Chan CC, Lee MH, Wong KM (1999) The aging effect on corneal curvature and the validity of Javal's rule in Hong Kong. Chinese Curr Eye Res. 18(2):83–90CrossRefGoogle Scholar
  10. 10.
    Hayashi K, Masumoto M, Fujino S, Hayashi F (1993) Changes in corneal astigmatism with aging. Nippon Ganka Gakkai Zasshi. 97 (10):1193–6PubMedGoogle Scholar
  11. 11.
    Topuz H, Ozdemir M, Cinal A, Gumusalan (2004) Age-related differences in normal corneal topography. Y Ophthalmic Surg Lasers Imaging 35(4):298–303Google Scholar
  12. 12.
    Hayashi K, Hayashi H, Hayashi F (1995) Topographic analysis of the changes in corneal shape due to aging cornea. 14(5):527–32Google Scholar
  13. 13.
    Dubbelman M, Sicam VADP, Van der Heijde GL (2006) The shape of the anterior and posterior surface of the aging human corne.a Vision Research 46:993–1001Google Scholar
  14. 14.
    Amano S, Honda N, Amano Y, Yamagami S, Miyai T, Samejima T, Ogata M, and Miyata K (2006) Comparison of central corneal thickness measurements by rotating Scheimpflug camera, ultrasonic pachymetry, and scanning-slit corneal topography. Ophthalmology. 113(6):937–41PubMedCrossRefGoogle Scholar
  15. 15.
    Jonsson M, Markstro K and Behndig (2006) A Slit-scan tomography evaluation of the anterior chamber and corneal configurations at different ages. Acta Ophthalmol. Scand. 84: 116–120PubMedCrossRefGoogle Scholar
  16. 16.
    Rufer F, Schroder A, Bader C, Erb C (2007) Age-related changes in central and peripheral corneal thickness: determination of normal values with the Orbscan II topography system. Cornea. 26(l):l–5Google Scholar
  17. 17.
    Foster PJ, Baasanhu J, Alsbirk PH, Munkhbayar D, Uranchimeg D, Johnson GJ (1998) Central corneal thickness and intraocular pressure in a Mongolian population. Ophthalmology. 105(6):969–73PubMedCrossRefGoogle Scholar
  18. 18.
    Price FW Jr, Koller DL, Price MO (1999) Central corneal pachymetry in patients undergoing laser in situ keratomileusis. Ophthalmology. 106(11):2216–20PubMedCrossRefGoogle Scholar
  19. 19.
    Hahn S, Azen S, Ying-Lai M, Varma R (2003) Los Angeles Latino Eye Study Group. Central corneal thickness in Latinos. Invest Ophthalmol Vis Sci. 44(4): 1508–12PubMedCrossRefGoogle Scholar
  20. 20.
    Pfeiffer N, Torri V, Miglior S, Zeyen T, Adamsons I, Cunha-Vaz J (2007) European Glaucoma Prevention Study Group: Central corneal thickness in the European Glaucoma Prevention Study. Ophthalmology. 114(3):454–9PubMedCrossRefGoogle Scholar
  21. 21.
    Aghaian E, Choe JE, Lin S, Stamper RL (2004) Central Corneal Thickness of Caucasians, Chinese, Hispanics, Filipinos, African Americans, and Japanese in a Glaucoma Clinic. Ophthalmology 111:2211–2219PubMedCrossRefGoogle Scholar
  22. 22.
    Sanchis-Gimeno JA, Lleo-Perez A, Alonso L, Rahhal MS (2004) Caucasian emmetropic aged subjects have reduced corneal thickness values. Int Ophthalmol. 25(4):243–6PubMedCrossRefGoogle Scholar
  23. 23.
    Brown N (1974) The changes in lens curvature with age. Exp Eye Res 19:175–183PubMedCrossRefGoogle Scholar
  24. 24.
    Dubbelman M, Van der Heijde GL (2001) The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox. Vis Res 41:1867–1877PubMedCrossRefGoogle Scholar
  25. 25.
    Smith G, Atchison DA, Pierscionek BK (1992) Modeling the power of the aging human eye. J Opt Soc Am A 9: 2111–2117PubMedCrossRefGoogle Scholar
  26. 26.
    Guirao A, Redondo M, Artal P (2000) Optical aberrations of the human cornea as a function of age. J Opt Soc Am A Opt Image Sci Vis 17:1697–1702PubMedCrossRefGoogle Scholar
  27. 27.
    de Kruijf EJ, Boot JP, Laterveer L, van Best JA, Ramselaar JA, Oosterhuis JA (1987) A simple method for determination of corneal epithelial permeability in humans. Curr Eye Res. 6(ll):1327–34PubMedCrossRefGoogle Scholar
  28. 28.
    Chang SW, Hu FR (1993) Changes in corneal autofluorescence and corneal epithelial barrier function with aging. Cornea 12:493–499PubMedCrossRefGoogle Scholar
  29. 29.
    Nzekwe EU, Maurice DM (1994) The effect of age on the penetration of fluorescein into the human eye. J Ocular Pharm. 10:521–523CrossRefGoogle Scholar
  30. 30.
    Trinkaus-Randall V, Tong M, Thomas P, Cornell-Bell A (1993) Confocal imaging of the alpha 6 and beta 4 integrin subunits in the human cornea with aging. Invest Ophthalmol Vis Sci 34:3103–3109PubMedGoogle Scholar
  31. 31.
    Hazlett LD, Kreindler FB, Berk RS, Barrett R (1990) Aging alters the phagocytic capability of inflammatory cells induced into cornea. Curr. Eye Res. 9:129–138PubMedCrossRefGoogle Scholar
  32. 32.
    Taylor HR and Kimsey RA (1981) Corneal epithelial basement membrane changes in diabetes. Invest Ophthalmol Vis Sci. 20:548PubMedGoogle Scholar
  33. 33.
    Alvarado J, Murphy C, Juster R (1983) Age-related changes in the basement membrane of the human corneal epithelium. Invest Ophthalmol Vis Sci. 24(8): 1015–28PubMedGoogle Scholar
  34. 34.
    Oliveira-Soto LM, Efron N (2001) Morphology of cornea nerves using confocal microscopy. Cornea 20:374–384PubMedCrossRefGoogle Scholar
  35. 35.
    Grupcheva CN, Wong T, Riley AF, et al. (2002) Assessing the sub-basal nerve plexus of the living healthy human cornea by in vivo confocal microscopy. Clin Exp Ophthalmol. 30:187–190CrossRefGoogle Scholar
  36. 36.
    Erie JC, McLaren JW, Hodge DO, Bourne WM (2005) The effect of age on the corneal subbasal nerve plexus. Cornea. 24(6):705–9PubMedCrossRefGoogle Scholar
  37. 37.
    Boberg-Ans J (1955) Experience in clinical examination of corneal sensitivity. Br J Ophthalmol 39:705–726PubMedCrossRefGoogle Scholar
  38. 38.
    Lawrenson JG, Ruskell GL (1993) Investigation of limbal touch sensitivity using a Cochet-Bonnet aesthesiometer. Br J Ophthalmol. 77:339–343PubMedCrossRefGoogle Scholar
  39. 39.
    Millodot M (1977) the influence of age on the sensitivity of the cornea. Invest Ophthalmol Vis Sci. 16:240–242PubMedGoogle Scholar
  40. 40.
    Roszkowska AM, Colosi P, Ferreri FM, Galasso S (2004) Age-related modifications of corneal sensitivity. Ophthalmologica. 218(5):350–5PubMedCrossRefGoogle Scholar
  41. 41.
    Daxer A, Misof K, Grabner B, Ettl A, Fratzl P (1998) Collagen fibrils in the human corneal stroma: structure and aging. Invest Ophthalmol Vis Sci. 39(3):644.8PubMedGoogle Scholar
  42. 42.
    Malik NS, Moss SJ, Ahmed N, et al. (1992) Ageing of the human corneal stroma: structural and biochemical changes. Biochim Biophys Acta 1138:222–228PubMedGoogle Scholar
  43. 43.
    Kanai A, Kaufman HE (1973) Electron microscopic studies of corneal stroma: aging changes of collagen fibers. Ann Ophthalmol. 5(3):285–292PubMedGoogle Scholar
  44. 44.
    Elsheikh A, Wang D, Brown M, Rama P, Campanelli M, Pye D (2007) Assessment of corneal biomechanical properties and their variation with age. Curr Eye Res. 32(1):11-9PubMedCrossRefGoogle Scholar
  45. 45.
    Kotecha A, Elsheikh A, Roberts CR, Zhu H, Garway-Heath DF (2006) Corneal thickness- and age-related biomechanical properties of the cornea measured with the ocular response analyzer. Invest Ophthalmol Vis Sci. 47(12): 5337-47PubMedCrossRefGoogle Scholar
  46. 46.
    Erie JC, Patel SV, McLaren JW, Maguire LJ, Ramirez M, Bourne WM, (1999) Keratocyte density in vivo after photorefractive keratectomy in humans. Trans. Am. Ophthalmol. Soc. 97:221–236PubMedGoogle Scholar
  47. 47.
    Patel S, McLaren J, Hodge D, Bourne W (2001) Normal human keratocyte density and corneal thickness measurement by using confocal microscopy in vivo. Invest Ophthalmol Vis Sci. 42(2):333–9PubMedGoogle Scholar
  48. 48.
    Moller-Pedersen T (1997) A comparative study of human corneal keratocyte and endothelial cell density during aging. Cornea. 16(3):333–8.PubMedGoogle Scholar
  49. 49.
    M0ller-Pedersen T, Ehlers N (1995) A three-dimensional study of the human corneal keratocyte density. Curr Eye Res 14:459–464PubMedCrossRefGoogle Scholar
  50. 50.
    Berlau J, Becker HH, Stave J, Oriwol C, Guthoff RF (2002) Depth and age-dependent distribution of keratocytes in healthy human corneas: a study using scanning-slit confocal microscopy in vivo. J Cataract Refract Surg. 28(4):611–6PubMedCrossRefGoogle Scholar
  51. 51.
    Johnson DH, Bourne WM, Campbell RJ, (1982) The ultrastructure of Descemet's membrane. I. Changes with age in normal corneas. Arch. Ophthalmol. 100:1942–1947PubMedGoogle Scholar
  52. 52.
    Murphy C, Alvarado J, Juster R (1984) Prenatal and postnatal growth of the human Descemet's membrane. Invest. Ophthalmol. Vis. Sci. 25:1402–1415PubMedGoogle Scholar
  53. 53.
    Laing RA, Sanstrom MM, Berrospi AR, et al. (1976) Changes in the corneal endothelium as a function of age. Exp Eye Res. 22:587–594PubMedCrossRefGoogle Scholar
  54. 54.
    Yee RW, Matsuda M, Schultz RO, Edelhauser HF (1985) Changes in the normal corneal endothelial cellular pattern as a function of age. Curr Eye Res. 4(6):671–8PubMedCrossRefGoogle Scholar
  55. 55.
    Hashemian MN, Moghimi S, Fard MA, Fallah MR, Mansouri MR (2006) Corneal endothelial cell density and morphology in normal Iranian eyes. BMC Ophthalmol. 6;6:9PubMedCrossRefGoogle Scholar
  56. 56.
    Yunliang S, Yuqiang H, Ying-Peng L, Ming-Zhi Z, Lam DS, Rao SK (2007) Corneal endothelial cell density and morphology in healthy Chinese eyes. Cornea. 26(2):130–2PubMedCrossRefGoogle Scholar
  57. 57.
    Bourne WM, Kaufman HE (1976) Specular microscopy of human corneal endothelium in vivo. Am J Ophthalmol. 81(3):319–23PubMedGoogle Scholar
  58. 58.
    Hollingsworth J, Perez-Gomez I, Mutalib HA, Efron N (2001) A population study of the normal cornea using an in vivo, slit-scanning confocal microscope. Optom Vis Sci. 78(10):706–llPubMedCrossRefGoogle Scholar
  59. 59.
    Murphy C, Alvarado J, Juster R, Maglio M (1984) Prenatal and postnatal cellularity of the human corneal endothelium: a quantitative histologic study. Invest Ophthalmol Vis Sci 25:312–22PubMedGoogle Scholar
  60. 60.
    Blatt HL, Rao GN, Aquavella JV (1979) Endothelial cell density in relation to morphology. Invest Ophthalmol Vis Sci. 18(8):856–9PubMedGoogle Scholar
  61. 61.
    Roszkowska AM, Colosi P, D'Angelo P, Ferreri G (2004) Age-related modifications of the corneal endothelium in adults. Int Ophthalmol. 25(3): 163–6PubMedCrossRefGoogle Scholar
  62. 62.
    Green K (1995) Free radicals and ageing of anterior segment tissues of the eye: a hypothesis. Ophthalmic Res 27 (Suppl): 143–9PubMedCrossRefGoogle Scholar
  63. 63.
    Cejkova J, Vejrazka M, Platenik J, Stipek S (2004) Age-related changes in superoxide dismutase, glutathione peroxidase, catalase and xanthine oxidoreductase/xanthine oxidase activities in the rabbit cornea. Exp Gerontol. 39(10): 1537–43PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Luciano Cerulli
    • 1
  • Filippo Missiroli
    • 1
  1. 1.Department of OphthalmologyUniversity of Rome “Tor Vergata,”RomeItaly

Personalised recommendations