Skip to main content

Age-Related Changes of the Eyelid

  • Chapter
Age-Related Changes of the Human Eye

Part of the book series: Aging Medicine ((AGME))

Abstract

Changes of the orbicular muscle and its connective tissue play a central role in the aging of the eyelid. Age-related changes of orbicular muscle comprise a decrease of muscular fibers and a disorganization of banding structures (appearance of nemaline bodies, Z-line streaming, cytoplasmic bodies, and Z-line doubling). Mitochondria, particularly in the subsarcolemmal area, showed either a decrease in number and loss of cristae, or enlargement and proliferation of cristae. In combination with both alterations, intramitochondrial crystal formation and altered succinyl-dehydrogenase activity were also a frequent observation. Tubular aggregates originated from the sarcoplasmic reticulum and various sarcoplasmic inclusions were also observed. Intramuscular connective tissue density increased with age, and it was associated with increased glycation of collagen fibers. Neither of these alterations are considered specific for aging, but their particular combination may be responsible for the development of well-known, age-related changes and diseases of the eyelid. In addition, these data may give further information to the pathology of sarcopenia—a devastating age-related muscle disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stefanyszyn MA, Hidayat AA, Flanagan JC (1985) The histopathology of involutional ectropion. Ophthalmology Jan. 92(1):120–7

    CAS  Google Scholar 

  2. Feher J (1977) Myofibre abnormalities of orbicular muscle in malposition of the eyelid. Acta Morphol Acad Sci Hung. 25(4):205–18

    PubMed  CAS  Google Scholar 

  3. Manners RM, Weller RO (1994) Histochemical staining of orbicularis oculi muscle in ectropion and entropion. Eye. 8 (Pt 3):332–5

    PubMed  Google Scholar 

  4. Radnot M (1973) Mitochondrial crystals in muscles of a patient with spastic entropion. Am J Ophthalmol. Apr. 75(4):713–9

    CAS  Google Scholar 

  5. Radnot M, Follmann P (1974) Ultrastructural changes in senile atrophy of the orbicularis oculi muscle. Am J Ophthalmol. Oct. 78(4):689–99

    CAS  Google Scholar 

  6. Feher J (1978) Tubuloreticular structures in the orbicularis oculi muscle of the human eye. Acta Morph.Acad Sci Hung. 26:3–10

    CAS  Google Scholar 

  7. Sato T, Akatsuka H, Kito K, Tokoro Y, Tauchi H, Kato K (1986) Age changes of myofibrils of human minor pectoral muscle. Mech Ageing Dev. May 34(3):297–304

    Article  CAS  Google Scholar 

  8. Poggi P, Marchetti C, Scelsi R (1987) Automatic morphometric analysis of skeletal muscle fibers in the aging man. Anat Re. Jan. 217(1):30–4

    CAS  Google Scholar 

  9. Jakobsson F, Borg K, Edstrom L (1990) Fibre-type composition, structure and cytoskeletal protein location of fibres in anterior tibial muscle. Comparison between young adults and physically active aged humans. Acta Neuropathol (Berl). 80(5):459–68

    CAS  Google Scholar 

  10. Roth SM, Martel GF, Ivey FM, Lemmer JT, Metter EJ, Hurley BF, Rogers MA (2000) Skeletal muscle satellite cell populations in healthy young and older men and women. Anat Rec. Dec 1. 260(4):351–8

    Article  CAS  Google Scholar 

  11. Beregi E, Regius O (1987) Comparative morphological study of age related mitochondrial changes of the lymphocytes and skeletal muscle cells. Acta Morphol Hung. 35(3–4):219–24

    PubMed  CAS  Google Scholar 

  12. Fulle S, Belia S, Di Tano G (2005) Sarcopenia is more than a muscular deficit. Arch Ital Biol. Sep. 143(3–4):229–34

    CAS  Google Scholar 

  13. Francis IC, Stapleton F, Ehrmann K, Coroneo MT (2006) Lower eyelid tensometry in younger and older normal subjects. Eye. Feb. 20(2):166–72

    Article  CAS  Google Scholar 

  14. van den Bosch WA, Leenders I, Mulder P (1999) Topographic anatomy of the eyelids, and the effects of sex and age. Br J Ophthalmol. Mar. 83(3):347–52

    Article  Google Scholar 

  15. Sun WS, Baker RS, Chuke JC, Rouholiman BR, Hasan SA, Gaza W, Stava MW, Porter JD (1997) Age-related changes in human blinks. Passive and active changes in eyelid kinematics. Invest Ophthalmol Vis Sci. Jan. 38(1):92–9

    CAS  Google Scholar 

  16. Besne I, Descombes C, Breton L (2002) Effect of age and anatomical site on density of sensory innervation in human epidermis. Arch Dermatol. Nov. 138(11):1445–50

    Article  Google Scholar 

  17. Peshori KR, Schicatano EJ, Gopalaswamy R, Sahay E, Evinger C (2001) Aging of the trigeminal blink system. Exp Brain Res. Feb. 136(3):351–63

    Article  CAS  Google Scholar 

  18. Weeks DA, Nixon RR, Kaimaktchiev V, Mierau GW (2003) Intranuclear rod myopathy, a rare and morphologically striking variant of nemaline rod myopathy. Ultrastruct Pathol. May-Jun. 27(3):151–4

    Article  Google Scholar 

  19. Wallgren-Pettersson C, Jasani B, Newman GR, Morris GE, Jones S, Singhrao S, Clarke A, Virtanen I, Holmberg C, Rapola J (1995) Alpha-actinin in nemaline bodies in congenital nemaline myopathy: immunological confirmation by light and electron microscopy. Neuromuscul Disord. Mar. 5(2):93–104

    Article  CAS  Google Scholar 

  20. Blanchard A, Ohanian V, Critchley D (1989) The structure and function of a-actinin. J Muscle Res Cell Motil 10:280-–289

    Article  PubMed  CAS  Google Scholar 

  21. Schroder JM, Durling H, Laing N (2004) Actin myopathy with nemaline bodies, intranuclear rods, and a heterozygous mutation in ACTA1 (Asp154Asn). Acta Neuropathol (Berl). Sep. 108(3):250–6 [Epub 2004 Jun 24]

    CAS  Google Scholar 

  22. Ilkovski B, Cooper ST, Nowak K, Ryan MM, Yang N, Schnell C, Durling HJ, Roddick LG, Wilkinson I, Kornberg AJ, Collins KJ, Wallace G, Gunning P, Hardeman EC, Laing NG, North KN (2001) Nemaline Myopathy Caused by Mutations in the Muscle a-Skeletal-Actin Gene. Am J Hum Genet. Jun. 68(6):1333–43 [Epub 2001 Apr 27]

    Article  CAS  Google Scholar 

  23. Ryan MM, Ilkovski B, Strickland CD, Schnell C, Sanoudou D, Midgett C, Houston R, Muirhead D, Dennett X, Shield LK, De Girolami U, Iannaccone ST, Laing NG, North KN, Beggs AH (2003) Clinical course correlates poorly with muscle pathology in nemaline myopathy. Neurology. Feb 25. 60(4):665–73

    CAS  Google Scholar 

  24. Michele DE, Albayya FP, Metzger JM (1999) A nemaline myopathy mutation in alphatropomyosin causes defective regulation of striated muscle force production. J Clin Invest. Dec. 104(11):1575–81

    Article  CAS  Google Scholar 

  25. Sanoudou D, Corbett MA, Han M, Ghoddusi M, Nguyen MA, Vlahovich N, Hardeman EC, Beggs AH (2006) Skeletal muscle repair in a mouse model of nemaline myopathy. Hum Mol Genet. Sep 1. 15(17):2603–12 [Epub 2006 Jul 28]

    Article  CAS  Google Scholar 

  26. Chahin N, Selcen D, Engel AG (2005) Sporadic late onset nemaline myopathy. Neurology. Oct 25. 65(8):1158–64 [Epub 2005 Sep 7]

    Article  Google Scholar 

  27. Oumi M, Miyoshi M, Yamamoto T (2000) The ultrastructure of skeletal and smooth muscle in experimental protein malnutrition in rats fed a low protein diet. Arch Histol Cytol. 63(5):451–7

    Article  PubMed  CAS  Google Scholar 

  28. Oumi M, Miyoshi M, Yamamoto T (2001) Ultrastructural changes and glutathione depletion in the skeletal muscle induced by protein malnutrition. Ultrastruct Pathol. Nov-Dec. 25(6):431–6

    Article  CAS  Google Scholar 

  29. Hikida RS, Staron RS, Hagerman FC, Sherman WM, Costill DL (1983) Muscle fiber necrosis associated with human marathon runners. J Neurol Sci. May 59(2):185–203

    Article  CAS  Google Scholar 

  30. Farrants GW, Hovmoller S, Stadhouders AM (1988) Two types of mitochondrial crystals in diseased human skeletal muscle fibers. Muscle Nerve. Jan. 11(1):45–55

    Article  CAS  Google Scholar 

  31. Schnyder T, Winkler H, Gross H, Eppenberger HM, Wallimann T (1991) Crystallization of mitochondrial creatine kinase. Growing of large protein crystals and electron microscopic investigation of microcrystals consisting of octamers. J Biol Chem. Mar 15. 266(8):5318–22

    CAS  Google Scholar 

  32. Hanzlikova V, and Schiaffino S (1977) Mitochondrial changes in ischemic skeletal muscle. J. Ultrastuct. Res. 60:121–133

    Article  CAS  Google Scholar 

  33. Speer O, Back N, Buerklen T, Brdiczka D, Koretsky A, Wallimann T, Eriksson O (2005) Octameric mitochondrial creatine kinase induces and stabilizes contact sites between the inner and outer membrane. Biochem J. Jan 15. 385(Pt 2):445–50

    CAS  Google Scholar 

  34. Beregi E, Regius O, Huttl T, Gobl Z (1988) Age-related changes in the skeletal muscle cells. Z Gerontol. Mar-Apr. 21(2):83–6

    CAS  Google Scholar 

  35. Trounce I, Byrne E, Marzuki S (1989) Decline in skeletal muscle mitochondrial respiratory chain function: possible factor in ageing. Lancet. Mar 25. 1(8639):637–9

    Article  CAS  Google Scholar 

  36. Lee CM, Lopez ME, Weindruch R, Aiken JM (1998) Association of age-related mitochondrial abnormalities with skeletal muscle fiber atrophy. Free Radic Biol Med. Nov 15. 25(8):964–72

    Article  CAS  Google Scholar 

  37. Conley KE, Jubrias SA, Esselman PC (2000) Oxidative capacity and ageing in human muscle. J Physiol. Jul 1. 526 Pt 1:203–10

    Google Scholar 

  38. Toyoshima C, Nakasako M, Nomura H, Ogawa H (2000) Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6A resolution. Nature. June 8. 405(6787):647–55

    CAS  Google Scholar 

  39. Franzini-Armstrong, C (1999) The sarcoplasmic reticulum and the control of muscle contraction. FASEB J. 13 (Suppl.), S266–S270

    PubMed  CAS  Google Scholar 

  40. Pavlovicova M, Novotova M, Zahradnik I (2003) Structure and composition of tubular aggregates of skeletal muscle fibres. Gen Physiol Biophys. Dec. 22(4):425–40

    CAS  Google Scholar 

  41. Chevessier F, Marty I, Paturneau-Jouas M, Hantai D, Verdiere-Sahuque M (2004) Tubular aggregates are from whole sarcoplasmic reticulum origin: alterations in calcium binding protein expression in mouse skeletal muscle during aging. Neuromuscul Disord. Mar. 14(3):208–16

    Article  CAS  Google Scholar 

  42. Chevessier F, Bauche-Godard S, Leroy JP, Koenig J, Paturneau-Jouas M, Eymard B, Hantai D, Verdiere-Sahuque M (2005) The origin of tubular aggregates in human myopathies. J Pathol. Nov. 207(3):313–23

    Article  CAS  Google Scholar 

  43. Vielhaber S, Schroder R, Winkler K, Weis S, Sailer M, Feistner H, Heinze HJ, Schroder JM, Kunz WS (2001) Defective mitochondrial oxidative phosphorylation in myopathies with tubular aggregates originating from sarcoplasmic reticulum. J Neuropathol Exp Neurol. Nov. 60(11):1032–40

    CAS  Google Scholar 

  44. Chevessier F, Marty I, Paturneau-Jouas M, Hantai D, Verdiere-Sahuque M (2004) Tubular aggregates are from whole sarcoplasmic reticulum origin: alterations in calcium binding protein expression in mouse skeletal muscle during aging. Neuromuscul Disord. Mar. 14(3):208–16

    Article  CAS  Google Scholar 

  45. Narayanan N, Jones DL, Xu A, Yu JC (1996) Effects of aging on sarcoplasmic reticulum function and contraction duration in skeletal muscles of the rat. Am J Physiol. Oct. 271(4 Pt 1): C1032–40

    CAS  Google Scholar 

  46. Boncompagni S, d'Amelio L, Fulle S, Fano G, Protasi F (2006) Progressive disorganization of the excitation-contraction coupling apparatus in aging human skeletal muscle as revealed by electron microscopy: a possible role in the decline of muscle performance. J Gerontol A Biol Sci Med Sci. Oct. 61(10):995–1008

    Google Scholar 

  47. Goebel HH, Bornemann A (1993) Desmin pathology in neuromuscular diseases. Virchows Arch B Cell Pathol Incl Mol Pathol. 64(3):127–35

    Article  PubMed  CAS  Google Scholar 

  48. Wanschit J, Nakano S, Goudeau B, Strobel T, Rinner W, Wimmer G, Resch H, Jaksch M, Akiguchi I, Vicart P, Budka H (2002) Myofibrillar (desmin-related) myopathy: clinico-pathological spectrum in 3 cases and review of the literature. Clin Neuropathol. Sep-Oct. 21(5):220–31

    CAS  Google Scholar 

  49. Stojkovic T, Maurage CA, Moerman A, Hurtevent JF, Krivosic-Horber R, Pellissier JF, Vermersch P (2001) Congenital myopathy with central cores and fingerprint bodies in association with malignant hyperthermia susceptibility. Neuromuscul Disord. Sep. 11(6–7):538–41

    Article  CAS  Google Scholar 

  50. Kjaer M (2004) Role of extracellular matrix in adaptation of tendon and skeletal muscle to mechanical loading. Physiol Rev. Apr. 84(2):649–98

    CAS  Google Scholar 

  51. DeBacker CM, Putterman AM, Zhou L, Holck DE, Dutton JJ (1998) Age-related changes in type-I collagen synthesis in human eyelid skin. Ophthal Plast Reconstr Surg. Jan. 14(1):13–6

    Article  CAS  Google Scholar 

  52. Twigg SM, Chen MM, Joly AH, Chakrapani SD, Tsubaki J, Kim H-S, Oh R, and Rosenfeld RG (2001) Advanced glycosylation end products up-regulate connective tissue growth factor (insulin-like growth factor binding protein related protein 2) in human fibroblasts: a potential mechanism for expansion of extracellular matrix in diabetes mellitus. Endocrinology 142:1760–1769

    Article  PubMed  CAS  Google Scholar 

  53. Visser M, Kritchevsky SB, Newman AB, Goodpaster BH, Tylavsky FA, Nevitt MC, Harris TB (2005) Lower serum albumin concentration and change in muscle mass: the Health, Aging and Body Composition Study. Am J Clin Nut. Sep. 82(3):531–7

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Feher, J., Olah, Z. (2008). Age-Related Changes of the Eyelid. In: Cavallotti, C.A.P., Cerulli, L. (eds) Age-Related Changes of the Human Eye. Aging Medicine. Humana Press. https://doi.org/10.1007/978-1-59745-507-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-507-7_2

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-934115-55-8

  • Online ISBN: 978-1-59745-507-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics