Aging of the Lachrymal Gland

  • Hiroto Obata
Part of the Aging Medicine book series (AGME)


The lachrymal gland is an appendage of the ocular surface that secretes tear fluid consisting of water, proteins, and electrolytes, which helps to maintain the cells of the ocular surface. The lachrymal gland and ocular surface form a mucosal immune system, and both are affected by environmental factors. The quality and quantity of tear fluid decreases with age, and dry eye is one of most common problems in elderly patients visiting ophthalmologists. The lachrymal gland is innervated by the autonomic nervous system and the secretory function is very complicated. Few previous studies have examined the aging mechanisms of the lachrymal gland. Histopathological studies of the human lachrymal gland have demonstrated that acinar atrophy, periacinar fibrosis, and periductal fibrosis increase with age. Animal studies have shown that morphological changes, reduced lachrymal secretion of protein, decreased density of innervation, and increased number of inflammatory cells in the lachrymal glands occur with aging. Generally, inflammation and neural dysfunction might be involved in the pathogenesis of age-related lachrymal gland dysfunction, but the mechanisms linking lachrymal gland dysfunction with aging remain unclear.


lachrymal gland aging dry eye tear fluid secretion atrophy fibrosis inflammation neural dysfunction 


  1. 1.
    Lemp MA, Baudouin C, Baum J, et al. (2007) The definition and classification of dry eye disease: Report of the Definition and Classification Subcommittee of the International Dry Eye WorkShop. Ocul Surf 5:75–92Google Scholar
  2. 2.
    McCarty CA, Bansal AK, Livingston PM, Stanislavsky YL, Taylor HR (1998) The epidemiology of dry eye in Melbourne, Australia. Ophthalmology 105:1114–1119PubMedCrossRefGoogle Scholar
  3. 3.
    Moss SE, Klein R, Klein BE (2000) Prevalence of and risk factors for dry eye syndrome. Arch Ophthalmol 118:1264–1268PubMedGoogle Scholar
  4. 4.
    Schaumberg DA, Sullivan DA, Buring JE, Dana MR (2003) Prevalence of dry eye syndrome among US women. Am J Ophthalmol 136:318–326PubMedCrossRefGoogle Scholar
  5. 5.
    Lekhanont K, Rojanaporn D, Chuck RS, Vongthongsri A (2006) Prevalence of dry eye in Bangkok, Thailand. Cornea 25:1162–1167PubMedCrossRefGoogle Scholar
  6. 6.
    Henderson JW, Prough WA (1950) Influence of age and sex on flow of tears. Arch Ophthalmol 43: 224–231Google Scholar
  7. 7.
    de Roetth A Sr (1953) Lacrimation in normal eyes. Arch Ophthalmol 49: 185–189Google Scholar
  8. 8.
    Norn MS (1965) Tear secretion in normal eyes estimated by a new method: the lacrimal streak dilution test. Acta Ophthalmol 43:567–573Google Scholar
  9. 9.
    McGill JI, Liakos GM, Goulding N, Seal DV (1984) Normal tear protein profiles and age-related changes. Br J Ophthalmol 68:316–320PubMedCrossRefGoogle Scholar
  10. 10.
    Seal DV (1985) The effect of ageing and disease on tear constituents. Trans Ophthalmol Soc UK 104:355–362PubMedGoogle Scholar
  11. 11.
    Mathers WD, Lane JA, Zimmerman MB (1996) Tear film changes associated with normal aging. Cornea 15:229–234PubMedCrossRefGoogle Scholar
  12. 12.
    Nava A, Barton K, Monroy DC, Pflugfelder SC (1997) The effects of age, gender and fluid dynamics on the concentration of tear film epidermal growth factor. Cornea 16:430–438PubMedCrossRefGoogle Scholar
  13. 13.
    Marcozzi G, Liberati V, Madia F, Centofanti M, de Feo G (2003) Age- and gender- related differences in human lacrimal fluid peroxidase activity. Ophthalmologica 217:294–297PubMedCrossRefGoogle Scholar
  14. 14.
    Van Haeringen NJ (1997) Aging and the lacrimal system. Br J Ophthalmol 81:824–826PubMedCrossRefGoogle Scholar
  15. 15.
    Iwamoto T, Jakobiec FA (1982) Lacrimal glands. In: Jakobiec FA, ed. Ocular Anatomy, Embryology, and Teratology. Harper & Row, Philadelphia, p 761–781Google Scholar
  16. 16.
    Bron AJ, Tripathi RC, Tripathi BJ (1997) The ocular appendages: eyelids, conjunctiva and lacrimal apparatus. In: Bron AJ, Tripathi RC, Tripathi BJ (eds) Wolff's Anatomy of the Eye and Orbit, 8th ed. Chapman & Hall Medical, London, p 30–84Google Scholar
  17. 17.
    Snell RS, Lemp MA (1998) Lacrimal apparatus. In: Snell RS, Lemp MA (eds) Clinical Anatomy of the Eye, 2nd ed. Blackwell Science, Malden, MA, p 114–124Google Scholar
  18. 18.
    Obata H (2006) Anatomy and histopathology of human lacrimal gland. Cornea 25:S82–S89PubMedCrossRefGoogle Scholar
  19. 19.
    Winston DC, Hennigar RA, Spicer SS, Garrett JR, Schulte BA (1988) Immunohistochemical localization of Na+, K+-ATPase in rodent and human salivary and lacrimal glands. J Histochem Cytochem 26:1139–1145Google Scholar
  20. 20.
    Wieczorek R, Jakobiec FA, Sacks EH, Knowles DM (1988) The immunoarchitecture of the normal human lacrimal gland. Relevancy for understanding pathologic conditions. Ophthalmology 95:100–109PubMedGoogle Scholar
  21. 21.
    Knop E, Knop N (2005) The role of eye-associated lymphoid tissue in corneal immune protection. J Anat 206:271–285PubMedCrossRefGoogle Scholar
  22. 22.
    Obata H, Horiuchi H, Dobashi Y, Oka T, Sawa M, Machinami R (1993) Immunohistochemical localization of epidermal growth factor in human main and accessory lacrimal glands. Jpn J Ophthalmol 37:113–121PubMedGoogle Scholar
  23. 23.
    Sibony PA, Walcott B, McKeon C, Jakobiec FA (1988) Vasoactive intestinal polypeptide and the innervation of the human lacrimal gland. Arch Ophthalmol 106:1085–1088PubMedGoogle Scholar
  24. 24.
    Matsumoto Y, Tanabe T, Ueda S, Kawata M (1992) Immunohistochemical and enzyme histo-chemical studies of peptidergic, aminergic and cholinergic innervation of the lacrimal gland of the monkey (Macaca fuscata). J Auton Nerv Syst 37:207–214PubMedCrossRefGoogle Scholar
  25. 25.
    Walcott B, Cameron RH, Brink PR (1994) The anatomy and innervation of lacrimal glands. Adv Exp Med Biol 350:11–18PubMedGoogle Scholar
  26. 26.
    Ruskell GL (1975) Nerve terminals and epithelial cell variety in the human lacrimal gland. Cell Tissue Res 158:121–136PubMedCrossRefGoogle Scholar
  27. 27.
    Lemullois M, Rossignol B, Mauduit P (1982) Immunolocalization of myoepithelial cells in isolated acini of rat exorbital lacrimal gland: cellular distribution of muscarinic receptors. Biol Cell 86:175–181CrossRefGoogle Scholar
  28. 28.
    Stern ME, Beuerman RW, Fox RI, Gao J, Mircheff AK, Pflugfelder SC (1998) The pathology of dry eye: the interaction between the ocular surface and lacrimal glands. Cornea 17:584–589PubMedCrossRefGoogle Scholar
  29. 29.
    Stern ME, Gao J, Siemasko KF, Beuerman RW, Mircheff AK, Pflugfelder SC (2004) The role of the lacrimal functional unit in the pathophysiology of dry eye. Exp Eye Res 78:409–416PubMedCrossRefGoogle Scholar
  30. 30.
    Dartt DA (1994) Signal transduction and activation of the lacrimal gland. In: Albert DM, Jakobiec FA (eds) Principles and Practice of Ophthalmology. W.B. Saunders, Philadelphia, p 458–465Google Scholar
  31. 31.
    Hodges RR, Dartt DA (2003) Regulatory pathways in lacrimal gland epithelium. Inc Rev Cytol 231:129–196CrossRefGoogle Scholar
  32. 32.
    Dartt DA (2004) Dysfunctional neural regulation of lacrimal gland secretion and its role in the pathogenesis of dry eye syndromes. Ocul Surf 2:76–91PubMedGoogle Scholar
  33. 33.
    Nakamura M, Tada Y, Akaishi T, Nakata K (1997) M3 muscarinic receptor mediates regulation of protein secretion in rabbit lacrimal gland. Curr Eye Res 16:614–619PubMedCrossRefGoogle Scholar
  34. 34.
    Satoh Y, Sano K, Habara Y, Kanno T (1997) Effects of carbachol and catecholamines on ultrastructure and intracellular calcium-ion dynamics of acinar and myoepithelial cells of lacrimal glands. Cell Tissue Res 289:473–485PubMedCrossRefGoogle Scholar
  35. 35.
    Alexander JH, van Lennep EW, Young JA (1972) Water and electrolyte secretion by the exorbital lacrimal gland of the rat studied by micropuncture and catheterization techniques. Pflugers Archiv 337:299–309PubMedCrossRefGoogle Scholar
  36. 36.
    Mircheff AK (1994) Water and electrolyte secretion and fluid modification. In: Albert DM, Jakobiec FA, (eds) Principles and Practice of Ophthalmology. W.B. Saunders, Philadelphia, p 466–472Google Scholar
  37. 37.
    Walcott B (1998) The lacrimal gland and its veil of tears. News Physiol Sci 13:97–103PubMedGoogle Scholar
  38. 38.
    Dartt DA (2004) Interaction of EGF family growth factors and neurotransmitters in regulating lacrimal gland secretion. Exp Eye Res 78:337–345PubMedCrossRefGoogle Scholar
  39. 39.
    Wu K, Jerdeva GV, da Costa SR, Sou E, Schechter JE, Hamm-Alvarez SF (2006) Molecular mechanisms of lacrimal acinar secretory vesicle exocytosis. Exp Eye Res 83:84–96PubMedCrossRefGoogle Scholar
  40. 40.
    Raina S, Preston GM, Guggino WB, Agre P (1995) Molecular cloning and characterization of an aquaporin cDNA from salivary, lacrimal, and respiratory tissues. J Biol Chem 27:1908–1923Google Scholar
  41. 41.
    Ishida N, Hirai SI, Mita S (1997) Immunolocalization of aquaporin homologs in mouse lacrimal glands. Biochem Biophys Res Commun 238:891–895PubMedCrossRefGoogle Scholar
  42. 42.
    Walcott B, Moore LC, Birzgalis A, et al. (2002) Role of gap junctions in fluid secretion of lacrimal glands. Am J Physiol Cell Physiol. 282:C501–C507PubMedGoogle Scholar
  43. 43.
    Millodot M, Owens H (1984) The influence of age on the fragility of the cornea. Acta Ophthalmol (Copenh) 62:819–824CrossRefGoogle Scholar
  44. 44.
    Niederer RL, Perumal D, Sherwin T, McGhee CN (2007) Age-related differences in the normal human cornea: a laser scanning in vivo confocal microscopy study. Br J Ophthalmol 27 (Epub ahead of print)Google Scholar
  45. 45.
    Sullivan DA, Wickham LA, Rocha EM, et al. (1998) Influence of gender, sex steroid hormones, and the hypothalamic-pituitary axis on the structure and function of the lacrimal gland. Adv Exp Med Biol 438:11–42PubMedGoogle Scholar
  46. 46.
    Azzarolo AM, Wood RL, Mircheff AK, et al. (1999) Androgen influence on lacrimal gland apoptosis, necrosis, and lymphocytic infiltration. Invest Ophthalmol Vis Sci. 40:592–602PubMedGoogle Scholar
  47. 47.
    Sullivan DA (2004) Tearful relationships? Sex, hormones, the lacrimal gland, and aqueous-deficient dry eye. Ocur Sur 2:92–123Google Scholar
  48. 48.
    Minami A, Kamei T (1959) Sur la glande lacrymale exterieure chez le Rat et ses modifications après hypophysectomie. CR Soc Biol 153:269–273Google Scholar
  49. 49.
    Jahn R, Padel U, Porsch PH, Söling HD (1982) Adrenocorticotropic hormone and alpha-melano-cyte-stimulating hormone induce secretion and protein phosphorylation in the rat lacrimal gland by activation of a cAMP-dependent pathway. Eur J Biochem. 126:623–629PubMedCrossRefGoogle Scholar
  50. 50.
    Azzarolo AM, Bjerrum K, Maves CA, et al. (1995) Hypophysectomy-induced regression of female rat lacrimal glands: partial restoration and maintenance by dihydrotestosterone and prolac-tin. Invest Ophhtalmol Vis Sci 36:216–226Google Scholar
  51. 51.
    Eckstein AK, Finkenrath A, Heiligenhaus A, et al. (2004) Dry eye syndrome in thyroid-associated ophthalmopathy: lacrimal expression of TSH receptor suggests involvement of TSHR-specific autoantibodies. Acta Ophthalmol Scand 82:291–297PubMedCrossRefGoogle Scholar
  52. 52.
    Nguyen DH, Beuerman RW, Toshida H (2002) The effects of sensory and parasympathetic dener-vation on the kinases and initiation factors controlling protein synthesis in the lacrimal gland. Adv Exp Med Biol 506:65–70PubMedGoogle Scholar
  53. 53.
    Song XJ, Li DQ, Farley W, et al. (2003) Neurturin-deficient mice develop dry eye and keratocon-junctivitis sicca. Invest Ophthalmol Vis Sci. 44:4223–4229PubMedCrossRefGoogle Scholar
  54. 54.
    Williamson J, Gibson AAM, Wilson T, et al. (1973) Histology of the lacrimal gland in keratocon-junctivitis sicca. Br J Ophthalmol 57:852–858PubMedCrossRefGoogle Scholar
  55. 55.
    Paranyuk Y, Claros N, Birzgalis A, Moore LC, Brink PR, Walcott B (2001) Lacrimal gland fluid secretion and lymphocytic infiltration in the NZB/W mouse model of Sjögren' syndrome. Curr Eye Res 23:199–205PubMedCrossRefGoogle Scholar
  56. 56.
    Stern ME, Pflugfelder SC. (2004) Inflammation in dry eye. Ocul Surf 2:124–130PubMedGoogle Scholar
  57. 57.
    Kublin CL, Hodges RR, Zoukhri D (2002) Proinflammatory cytokine inhibition of lacrimal gland secretion. Adv Exp Med Biol 506:783–787PubMedGoogle Scholar
  58. 58.
    Smith RE (2005) The tear film complex. Pathogenesis and emerging therapies for dry eyes. Cornea 24:1–7PubMedCrossRefGoogle Scholar
  59. 59.
    Zoukhri D (2006) Effect of inflammation on lacrimal gland function. Exp Eye Res 82:885–898PubMedCrossRefGoogle Scholar
  60. 60.
    Jabs DA, Prendergast RA, Whittum-Hudson JA (2002) Pathogenesis of autoimmune lacrimal gland disease in MRL/MPJ mice. Adv Exp Med Biol 506:771–776PubMedGoogle Scholar
  61. 61.
    Zhu Z, Stevenson D, Schechter JE, Mircheff AK, Atkinson R, Trousdale MD (2003) Lacrimal histopathology and ocular surface disease in a rabbit model of autoimmune dacryoadenitis. Cornea 22:25–32PubMedCrossRefGoogle Scholar
  62. 62.
    Trousdale MD, Zhu Z, Stevenson D, Schechter JE, Ritter T, Mircheff AK (2005) Expression of TNF inhibitor gene in the lacrimal gland promotes recovery of tear production and tear stability and reduced immunopathology in rabbits with induced autoimmune dacryoadenitis. J Autoimmune Dis 2:6PubMedCrossRefGoogle Scholar
  63. 63.
    Rhem MN, Wilhelmus KR, Jones DB (2000) Epstein-Barr virus dacryoadenitis. Am J Ophthalmol 129:372–375PubMedCrossRefGoogle Scholar
  64. 64.
    Obata H, Yamagami S, Saito S, Sakai O, Tsuru T (2003) A case of acute dacryoadenitis associated with herpes zoster ophthalmicus. Jpn J Ophthalmol 47:107–109PubMedCrossRefGoogle Scholar
  65. 65.
    Gibson IK, Argüeso P, Beuerman R, et al. (2007) Research in dry eye: Report of the Research Subcommittee of the International Dry Eye WorkShop (2007). Ocul Surf 5:179–193Google Scholar
  66. 66.
    Damato BE, Allan D, Murray SB, Lee WR (1984) Senile atrophy of the human lacrimal gland: the contribution of chronic inflammatory disease. Br J Ophthalmol 68:674–680PubMedCrossRefGoogle Scholar
  67. 67.
    Roen JL, Stasior OG, Jakobiec FA (1985) Aging changes in the human lacrimal gland: role of the ducts. CLAO J 11:237–242PubMedGoogle Scholar
  68. 68.
    Obata H, Yamamoto S, Horiuchi H, Machinami R (1995) Histopathologic study of human lacrimal gland: Statistical analysis with special reference to aging. Ophthalmology 102:678–686PubMedGoogle Scholar
  69. 69.
    Ueno H, Ariji E, Izumi M, Uetani M, Hayashi K, Nakamura T (1996) MR imaging of the lacrimal gland. Age-related and gender-dependent changes in size and structure. Acta Radiol 37:714–719PubMedCrossRefGoogle Scholar
  70. 70.
    Barabino S, Dana MR (2004) Animal model of dry eye: A critical assessment of opportunities and limitations. Invest Ophthalmol Vis Sci 45:1641–1646PubMedCrossRefGoogle Scholar
  71. 71.
    Draper CE, Adeghate E, Lawrence PA, Pallot DJ, Garner A, Singh J (1998) Age-related changes in morphology and secretory responses of male rat lacrimal gland. J Auton Nerv Syst 69:173–183PubMedCrossRefGoogle Scholar
  72. 72.
    Draper CE, Adeghate EA, Singh J, Pallot DJ (1999) Evidence to suggest morphological and physiological alterations of lacrimal gland acini with ageing. Exp Eye Res 68:265–276PubMedCrossRefGoogle Scholar
  73. 73.
    Draper CE, Singh J, Adeghate E (2003) Effects of age on morphology, protein synthesis and secretagogue-evoked secretory responses in the rat lacrimal gland. Mol Cell Biochem 248:7–16PubMedCrossRefGoogle Scholar
  74. 74.
    Rios JD, Horikawa Y, Chen LL, et al. (2005) Age-dependent alterations in mouse exorbital lacrimal gland structure, innervation and secretory response. Exp Eye Res 80:477–491PubMedCrossRefGoogle Scholar
  75. 75.
    Williams RM, Singh J, Sharkey KA (1994) Innervation and mast cells of the rat exorbital lacrimal gland: the effects of age. J Auton Nerv Syst 47:95–108PubMedCrossRefGoogle Scholar
  76. 76.
    Bromberg BB, Welch MH (1985) Lacrimal protein secretion: comparison of young and old rats. Exp Eye Res 40:313–320PubMedCrossRefGoogle Scholar
  77. 77.
    Bromberg BB, Cripps MM, Welch MH (1986) Sympathomimetic protein secretion by young and aged lacrimal gland. Curr Eye Res 5:217–223PubMedCrossRefGoogle Scholar
  78. 78.
    Paranyuk Y, Claros N, Birzgalis A, Moore LC, Brink PR, Walcott B (2001) Lacrimal gland fluid secretion and lymphocytic infiltration in the NZB/W mouse model of Sjögren' syndrome. Curr Eye Res 23:199–205PubMedCrossRefGoogle Scholar
  79. 79.
    Walcott B, Claros N, Patel A, Brink PR (1998) Age-related decrease in innervation density of the lacrimal gland in mouse models of Sjügren' syndrome. Adv Exp Med Biol 438:917–923PubMedGoogle Scholar
  80. 80.
    Bromberg BB, Welch MH, Beuerman RW, et al. (1993) Histochemical distribution of carbonic anhydrase in rat and rabbit lacrimal gland. Invest Ophthalmol Vis Sci 34:339–348PubMedGoogle Scholar
  81. 81.
    Cornell-Bell AH, Sullivan DA, Allansmith MR (1985) Gender-related differences in the morphology of the lacrimal gland. Invest Ophthalmol Vis Sci 26:1170–1175PubMedGoogle Scholar
  82. 82.
    Hann LE, Allansmith MR, Sullivan DA (1988) Impact of aging and gender on the Ig-containing cell profile of the lacrimal gland. Acta Ophthalmologica 66:87–92PubMedCrossRefGoogle Scholar
  83. 83.
    Rocha EM, Carvalho CR, Saad MJ, Velloso LA (2003) The influence of ageing on the insulin signaling system in rat lacrimal and salivary glands. Acta Ophthalmol Scand 81:639–645PubMedCrossRefGoogle Scholar
  84. 84.
    Alves M, Cunha DA, Calegari VC, et al.. (2005) Nuclear factorкB and advanced glycation end-products expression in lacrimal glands of aging rats. J Endocrinol 187:159–166PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Hiroto Obata
    • 1
  1. 1.Department of OphthalmologyJichi Medical UniversityTochigiJapan

Personalised recommendations