Skip to main content

Food Irradiation and Other Sanitation Procedures

  • Chapter
Foodborne Diseases

Part of the book series: Infectious Disease ((ID))

Abstract

Radiation pasteurization of food can be used as a terminal intervention step in HACCP programs to protect the public from foodborne pathogens that may be very difficult to control by any other method. The appropriate radiation doses and the effects of environmental factors such as temperature, atmosphere, and water activity required to control the following foodborne pathogens have been determined. Bacillus cereus, Campylobacter jejuni, Clostridium botulinum, Clostridium perfringens, Cyclospora cayetanensis, Escherichia coli O157:H7, Listeria monocytogenes, Salmonella spp., Staphylococcus aureus, Toxoplasma gondii, Vibrio cholerae, Vibrio vulnificus, Vibrio parahaemolyticus, and Yersinia enterocolitica are typical of the foodborne microorganisms that can be inactivated by food irradiation. The endospore-forming bacteria are considerably more resistant to ionizing radiation than are the nonspore formers; however, even these will be reduced in numbers by pasteurization doses. Radiation and thermal processing were demonstrated to interact, producing a greater inactivation of salmonellae on poultry meat than would be predicted from the individual processes. Salmonellae did not multiply at significantly greater rates on irradiated meat.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Minck, F. (1896) Zur Frage über die Einwirkung der Röntgen’schen Strahlen auf Bakterien und ihre eventuelle therapeutische Verwendbarkeit (To the problem on the action of X-rays on bacteria and their possible therapeutic application). Munch. Med.Wochenschr. 5, 101–102.

    Google Scholar 

  2. Green, A. B. (1904) A note on the action of radium on microorganisms. Proc. R. Soc. London B73, 375–381.

    Google Scholar 

  3. Gillett, D. C. (1918) Apparatus for preserving organic materials by the use of X-rays. US Patent 1, 275,417.

    Google Scholar 

  4. Schwartz, B. (1921) Effects of X-rays on trichinae. J. Agric. Res. 20, 845–854.

    Google Scholar 

  5. Department of Health and Human Services, Food and Drug Administration. (2004) 21 CFR Part 179 irradiation in the production, processing and handling of food: final rule. Fed. Reg. 69, 76,844–76,847.

    Google Scholar 

  6. Diehl, J. F. (1995) Safety of Irradiated Foods, 2nd edn, Marcel Dekker, New York.

    Google Scholar 

  7. Joint FAO/IAEA/WHO Study Group. (1999) High-Dose Irradiation: Wholesomeness of Food Irradiated with Doses Above 10 kGy. World Health Organization, Geneva.

    Google Scholar 

  8. Thayer, D. W. (1990) Food irradiation: benefits and concerns. J. Food Qual. 13, 147–169.

    CAS  Google Scholar 

  9. Thayer, D. W., Christopher, J. P., Campbell, L. A., et al. (1987) Toxicology studies of irradiation-sterilized chicken. J. Food Prot. 50, 278–288.

    Google Scholar 

  10. Thayer, D. W., Josephson, E. S., Brynjolfsson, A., and Giddings, G. G. (1996) Radiation pasteurization of food. CAST Issue Paper No. 7, Council for Agricultural Science and Technology, Ames, IA, pp. 1–10.

    Google Scholar 

  11. Kerr, W. (2003) Pulsed X-ray treatments of foods. Encyclopedia of Agricultural, Food and Biological Engineering, Marcel Dekker, New York, pp. 819–821.

    Google Scholar 

  12. Thayer, D. W. (2003) Ionizing irradiation, treatment of food. Encyclopedia of Agricultural, Food, and Biological Engineering, Marcel Dekker, New York, pp. 536–539.

    Google Scholar 

  13. Wilkinson, V. M. and Gould, G. W. (1996) Food Irradiation: A Reference Guide. Butterworth-Heinemann, Oxford.

    Google Scholar 

  14. USDA FSIS. (2003) 9CFR424 Code of Federal Regulations. Title 9 Animals and Animal Products, Chapter III Food Safety Inspection Service, Department of Agriculture, Part 424 Preparation and processing operations, Sections 424.21 and 424.22, US Government Printing Office: Washington, DC.

    Google Scholar 

  15. USDA FDA. (2003) 21CFR179 Code of Federal Regulations. Title 21 Food and Drugs, Chapter I Food and Drug Administration, Department of Health and Human Services, Part 179—Irradiation in the production, processing and handling of food, Sections 179.21, 179.25, 179.26, and 179.45, US Government Printing Office, Washington, DC.

    Google Scholar 

  16. USDA FSIS. (2003) 9CFR381 Code of Federal Regulations. Title 9 Animals and Animal Products, Chapter III Food Safety Inspection Service, Department of Agriculture, Part 381 Poultry products inspection regulations, Section 381.1, US Government Printing Office, Washington, DC.

    Google Scholar 

  17. Proctor, B. E., Nickerson, J. T. R., and Licciardello, J. J. (1956) Cathode ray irradiation of chicken meat for the extension of shelf life. Food Res. 21, 11–20.

    CAS  Google Scholar 

  18. Thayer, D. W. (2000) Irradiation of poultry meat. Proceedings of the 35th National Meeting on Poultry Health and Processing, October 18-20, 2000, Ocean City, MD. pp. 87–93.

    Google Scholar 

  19. Kiss, I. and Farkas, J. (1972) Radurization of whole eviscerated chicken carcass. Acta Aliment. Acad. Sci. Hung. 1, 73–86.

    Google Scholar 

  20. Lescano, G., Narvaiz, P., Kairiyama, E., and Kaupert, N. (1991) Effect of chicken breast irradiation on microbiological, chemical and organoleptic quality. Lebensm. Wiss. Technol. 24, 130–134.

    CAS  Google Scholar 

  21. Lewis, S. J., Velasquez, A., Cuppett, S. L., and McKee, S. R. (2002) Effect of electron beam irradiation on poultry meat safety and quality. Poult. Sci. 81, 896–903.

    PubMed  CAS  Google Scholar 

  22. Licciardello, J. J. (1964) Effect of temperature on radiosensitivity of Salmonella typhimurium. J. Food Sci. 29, 469–474.

    CAS  Google Scholar 

  23. Previte, J. J., Chang, Y., and El-Bisi, H. M. (1970) Effects of radiation pasteurization on Salmonella. I. Parameters affecting survival and recovery from chicken. Can. J. Microbiol. 16, 465–471.

    PubMed  CAS  Google Scholar 

  24. Licciardello, J. J., Nickerson, J. T. R., and Goldblith, S. A. (1970) Inactivation of Salmonella in poultry with gamma radiation. Poult. Sci. 49, 663–675.

    PubMed  CAS  Google Scholar 

  25. Mulder, R. W. A. W. (1976) Radiation inactivation of Salmonella panama and Escherichia coli K 12 present on deep-frozen broiler carcasses. Eur. J. Appl. Microbiol. 3, 63–69.

    Google Scholar 

  26. Mulder, R. W. A. W., Notermans, S., and Kampelmacher, E. H. (1977) Inactivation of salmonellae on chilled and deep frozen broiler carcasses by irradiation. J. Appl. Bacteriol. 42, 179–185.

    PubMed  CAS  Google Scholar 

  27. Kahan, R. S. and Howker, J. J. (1978) Low-dose irradiation of fresh, non-frozen chicken and other preservation methods for shelf-life extension and for improving its public-health quality. Food Preservation by Irradiation, Vol. II, International Atomic Energy Agency, Vienna, pp. 221–242.

    Google Scholar 

  28. Mulder, R. W. A. W. (1982) The use of low temperatures and radiation to destroy Enterobacteriaceae and salmonellae in broiler carcasses. J. Food Technol. 17, 461–466.

    Article  Google Scholar 

  29. Klinger, I., Fuchs, V., Basker, D., Juven, B. J., Lapidot, M., and Eisenberg, E. (1986) Irradiation of broiler chicken meat. Isr. J. Vet. Med. 42, 181–192.

    Google Scholar 

  30. Hanis, T., Jelen, P., Klir, P., Mñuková, M., Pérez, B., and Pesek, M. (1989) Poultry meat irradiation-effect of temperature on chemical changes and inactivation of microorganisms. J.Food Prot. 52, 26–29.

    Google Scholar 

  31. Thayer, D. W. and Boyd, G. (1991) Effect of ionizing radiation dose, temperature, and atmosphere on the survival of Salmonella typhimurium in sterile, mechanically deboned chicken meat. Poult. Sci. 70, 381–388.

    PubMed  CAS  Google Scholar 

  32. Thayer, D. W. and Boyd, G. (1991) Survival of Salmonella typhimurium ATCC 14028 on the surface of chicken legs or in mechanically deboned chicken meat gamma irradiated in air or vacuum at temperatures of ?20 to +20 degree. Poult. Sci. 70, 1026–1033.

    PubMed  CAS  Google Scholar 

  33. Anderson, E. H. (1951) The effect of oxygen on mutation induction by X-rays. Proc. Natl Acad. Sci. USA 37, 340–349.

    PubMed  CAS  Google Scholar 

  34. Anderson, R. S. and Turkowitz, H. (1941) The experimental modification of the sensitivity of yeast to roentgen rays. Am. J. Roentgenol. Radium Therapy Nucl. Med. 46, 537–542.

    Google Scholar 

  35. Hollaender, A. and Stapleton, G. E. (1953) New aspects of the oxygen concentration effect in X-ray inactivation of bacterial suspensions. Fed. Proc. 12, 70.

    Google Scholar 

  36. Thayer, D. W., Boyd, G., Muller, W. S., Lipson, C. A., Hayne, W. C., and Baer, S. H. (1990) Radiation resistance of Salmonella. J. Ind. Microbiol. 5, 383–390.

    Google Scholar 

  37. Thayer, D. W., Songprasertchai, S., and Boyd, G. (1991) Effects of heat and ionizing radiation on Salmonella typhimurium in mechanically deboned chicken meat. J. Food Prot. 54, 718–724.

    Google Scholar 

  38. Szczawińska, M. E., Thayer, D. W., and Phillips, J. G. (1991) Fate of unirradiated Salmonella in irradiated mechanically deboned chicken meat. Int. J. Food Microbiol. 14, 313–324.

    PubMed  Google Scholar 

  39. Previte, J. J. (1968) Immunogenicity of irradiated Salmonella typhimurium cells and endotoxin. J. Bacteriol. 95, 2165–2170.

    PubMed  CAS  Google Scholar 

  40. Ley, F. J., Kennedy, T. S., Kawashima, K., Roberts, D., and Hobbs, B. C. (1970) The use of gamma radiation for the elimination of Salmonella from frozen meat. J. Hyg. Camb. 68, 293–311.

    Article  PubMed  CAS  Google Scholar 

  41. Previte, J. J., Chang, Y., Scrutchfield, W., El-Bisi, H. M. (1971) Effects of radiation pasteurization on Salmonella. II. Influence of repeated radiation-growth cycles on virulence and resistance to radiation and antibiotics. Can. J. Microbiol. 17, 105–110.

    PubMed  CAS  Google Scholar 

  42. Maxcy, R. B. (1983) Significance of residual organisms in foods after substerilizing doses of gamma radiation a review. J. Food Saf. 5, 203–211.

    Google Scholar 

  43. Dion, P., Charbonneau, R., and Thibault, C. (1994) Effect of ionizing dose rate on the radioresistance of some food pathogenic bacteria. Can. J. Microbiol. 40, 369–374.

    Article  PubMed  CAS  Google Scholar 

  44. Thayer, D. W., Boyd, G., Fox J. B. Jr., and Lakritz, L. (1995) Effects of NaCl2 sucrose, and water content on the survival of Salmonella typhimurium on irradiated pork and chicken. J. Food Prot. 58, 490–496.

    CAS  Google Scholar 

  45. Tarkowski, J. A., Stoffer, S. C. C., Beumer, R. R., and Kampelmacher, E. H. (1984) Low dose gamma irradiation of raw meat. I. Bacteriological and sensory quality effects in artificially contaminated samples. Int. J. Food Microbiol. 1, 13–23.

    Google Scholar 

  46. Patterson, M. (1988) Sensitivity of bacteria to irradiation on poultry meat under various atmospheres. Lett. Appl. Microbiol. 7, 55–58.

    Google Scholar 

  47. Rajkowski, K. T. and Thayer, D. W. (2000) Reduction of Salmonella spp. and strains of Escherichia coli O157:H7 by gamma radiation of inoculated sprouts. J. Food Prot. 63, 871–875.

    PubMed  CAS  Google Scholar 

  48. Thayer, D. W., Rajkowski, K. T., Boyd, G., Cooke, P. H., and Soroka, D. S. (2003) Inactivation of Escherichia coli O157:H7 and Salmonella by gamma irradiation of alfalfa seed intended for production of food sprouts. J. Food Prot. 66, 175–181.

    PubMed  Google Scholar 

  49. Thayer, D. W., Boyd, G., Fox, J. B. Jr., Lakritz, L., and Hampson, J. W. (1995) Variations in radiation sensitivity of foodborne pathogens associated with the suspending meat. J. Food Sci. 60, 63–67.

    CAS  Google Scholar 

  50. Thayer, D. W., Boyd, G., Fox, J. B. Jr., and Lakritz, L. (1997) Elimination by gamma irradiation of Salmonella spp. and strains of Staphylococcus aureus inoculated in bison, ostrich, alligator, and caiman meat. J. Food Prot. 60, 756–760.

    Google Scholar 

  51. Clavero, M. R. S., Monk, J. D., Beuchat, L. R., Doyle, M. P., and Brackett, R. E. (1994) Inactivation of Escherichia coli O157:H7, Salmonellae, and Campylobacter jejuni in raw ground beef by gamma irradiation. Appl. Environ. Microbiol. 60, 2069–2075.

    PubMed  CAS  Google Scholar 

  52. Proctor, B. E., Joslin, R. P., Nickerson, J. T. R., and Lockhart, E. E. (1953) Elimination of Salmonella in whole egg powder by cathode ray irradiation of egg magma prior to drying. Food Technol. 7, 291–296.

    Google Scholar 

  53. Ball, H. R. and Gardner, F. A. (1968) Physical and functional properties of gamma-irradiated liquid egg white. Poult. Sci. 47, 1481–1487.

    Google Scholar 

  54. Katušin-Ražem, B., Ražem, D., Matic, S., Mihokovic’, V., Kostromin-Šooš, N., and Milanović, N. (1989) Chemical and organoleptic properties of irradiated dried whole egg and egg yolk. J. Food Prot. 52, 781–786.

    Google Scholar 

  55. Ma, C.-Y., Sahasrabudhe, M. R., Poste, L. M., Harwalkar, V. R., Chambers, J. R., and O’Hara, K. P. J. (1990) Gamma irradiation of shell eggs. Internal and sensory quality, physicochemical characteristics, and functional properties. Can. Inst. Food Sci. Technol. J. 23, 226–232.

    Google Scholar 

  56. Katušin-Ražem, B., Mihaljevič, B., and Ražem, D. (1992) Radiation-induced oxidative chemical changes in dehydrated egg products. J. Agric. Food Chem. 40, 662–668.

    Google Scholar 

  57. Ma, C. Y., Harwalkar, V. R., Poste, L. M., and Sahasrabudhe, M. R. (1993) Effect of gamma irradiation on the physicochemical and functional properties of frozen liquid egg products. Food Res. Int. 26, 247–254.

    CAS  Google Scholar 

  58. Kijowski, J., Lesnierowski, G., Zabielski, J., Fiszer, W., and Magnuski, T. (1994) Chapter 28 Radiation pasteurization of frozen whole egg. In: Egg Uses and Processing Technologies New Developments (Sim, J. S. and Nakai, S., ed.), CAB International, Oxon, UK, pp. 340–348.

    Google Scholar 

  59. Matič, S., Mihokovič, V., Katušin-Rażem, B., and Ražem, D. (1990) The eradication of Salmonella in egg powder by gamma irradiation. J. Food Prot. 53, 111–114.

    Google Scholar 

  60. Serrano, L. E., Murano, E. A., Shenoy, K., and Olson, D. G. (1997) D Values of Salmonella enteritidis isolates and quality attributes of shell eggs and liquid whole eggs treated with irradiation. Poult. Sci. 76, 202–206.

    PubMed  CAS  Google Scholar 

  61. Schaffner, D., Hamdy, M. K., Toledo, R. T., and Tift, M. L. (1989) Salmonella inactivation in liquid whole egg by thermoradiation. J. Food Sci. 54, 902–905.

    Google Scholar 

  62. Beuchat, L. R. (1996) Pathogenic microorganisms associated with fresh produce. J. Food Prot. 59, 204–216.

    Google Scholar 

  63. Thayer, D. W. and Rajkowski, K. T. (1999) Developments in irradiation of fresh fruits and vegetables. Food Technol. 53, 62–65.

    Google Scholar 

  64. Thomas, P. (1984) Radiation preservation of foods of plant origin. I. Potatoes and other tuber crops. CRC Crit. Rev. Food Sci. Nutr. 19, 327–379.

    CAS  Google Scholar 

  65. Thomas, P. (1984) Radiation preservation of food of plant origin, n. Onions and other bulb crops. CRC Crit. Rev. Food Sci. Nutr. 21, 95–136.

    CAS  Google Scholar 

  66. Thomas, P. (1986) Radiation of foods of plant origin. III. Tropical fruits: bananas, mangoes, and papayas. CRC Crit. Rev. Food Sci. Nutr. 23, 147–205.

    CAS  Google Scholar 

  67. Thomas, P. (1986) Radiation of foods of plant origin. IV. Subtropical fruits: citrus, grapes and avocados. CRC Crit Rev. Food Sci. Nutr. 24, 53–89.

    CAS  Google Scholar 

  68. Thomas, P. (1986) Radiation preservation of foods of plant origin. V. Temperate fruits: pome fruits, stone fruits, and berries. CRC Crit. Rev. Food Sci. Nutr. 24, 357–400.

    CAS  Google Scholar 

  69. Thomas, P. (1988) Radiation preservation of foods of plant origin. VI. Mushrooms, tomatoes, minor fruits and vegetables, dried fruits, and nuts. CRC Crit. Rev. Food Sci. Nutr. 26, 313–357.

    CAS  Google Scholar 

  70. Willemont, C., Marcotte, M., and Deschenes, L. (1996) Ionizing irradiation for preserva-tion of fruits. In: Processing Fruits: Science and Technology. Vol. 1. Biology, Principles and Applications (Somogyi, L. P. and Ramaswarmy, H., eds.), Chapter 9, Tecnomic, Lancaster, PA, pp. 221–260.

    Google Scholar 

  71. Hagenmaier, R. D. and Baker, R. A. (1997) Low-dose irradiation of cut iceberg lettuce in modified atmosphere packaging. J. Agric. Food Chem. 45, 2864–2868.

    CAS  Google Scholar 

  72. Rajkowski, K. T. and Thayer, D. W. (2001) Alfalfa seed germination and yield ratio and alfalfa sprout microbial keeping quality following irradiation of seeds and sprouts. J. Food Prot. 64, 1988–1995.

    PubMed  CAS  Google Scholar 

  73. Rajkowski, K. T., Boyd, G., and Thayer, D. W. (2003) Irradiation D-values for Escherichia coli O157:H7 and Salmonella sp. on inoculated broccoli seeds and effects of irradiation on broccoli sprout keeping quality and seed viability. J. Food Prot. 66, 760–766.

    PubMed  Google Scholar 

  74. Thayer, D. W., Boyd, G., and Fett, W. F. (2003) λ-Radiation decontamination of alfalfa seeds naturally contaminated with Salmonella Mbandaka. J. Food Sci. 68, 1777–1781.

    CAS  Google Scholar 

  75. Niemira, B. A. (2003) Radiation sensitivity and recoverability of Listeria monocytogenes and Salmonella on 4 lettuce types. J. Food Sci. 68, 2784–2787.

    CAS  Google Scholar 

  76. Bregvadze, U. D. (1963) Preserving fruit juices by the combined effects of gamma irradiation and sorbic acid. Navy Fiz. Metody Obrabotki Pishch. Produktov, Kiev, Sb. 1963, 199–205.

    Google Scholar 

  77. Chachin, K. and Ogata, K. (1969) Changes in chemical constituents and quality of some juices irradiated with the sterilizing dose levels of gamma rays. Food Irradiat. (Shokuhin Shosha) 4, 85–90.

    Google Scholar 

  78. Chuaqui-Offermanns, N. and McDougall, T. (1991) Effects of heat, radiation and their combination. Rad. Phys. Chem. 38, 425–427.

    CAS  Google Scholar 

  79. Fetter, F., Stehlik, G., Kovacs, J., and Weiss, S. (1969) Das Flavourverhalten einiger Gamma-bestrahlter Fruchtsaefte. (Flavor changes in gamma-irradiated fruit juices.) Mitteilungen: Rebe, Wein, Obstbau und Fruechteverwertung 19, 140–151.

    CAS  Google Scholar 

  80. Gagnon, M., Julien, J. P., and Riel, R. R. (1968) Irradiation of apple juice. I. Effects of gamma rays on the rate of filtration and the viscosity. Can. Inst. Food Tech. J. 1, 117–122.

    Google Scholar 

  81. Gasco, L., Barrera, R., and Cruz, F. (1970) Aroma modification in irradiated fruit juices. Evolution of carbonyl compounds and volatile alcohols in apple juice treated with various doses of gamma-rays. Rev. Agro. Tecnol. Aliment. 10, 105–116.

    Google Scholar 

  82. Kaupert, N. L., Lescano, H. G., and Kotliar, N. (1981) Conservation of apple and pear juice concentrates. Synergic effect of heat and radiation. In: Combination Processes in Food Irradiation, International Atomic Energy Agency, Vienna, pp. 205–216.

    Google Scholar 

  83. Kiss, I. and Farkas, J. (1968) Radiation sterilization of freeze-concentrated apple juice. Elelmiszertudomany 2, 67–75.

    Google Scholar 

  84. Kiss, I. and Farkas, J. (1970) Ueber die Wirkung der ionisierende Strahlung auf den gefrierkonzentrierten Apfelsaft. (The effect of ionizing radiation on freeze-concentrated apple juice.) Mitteilungen: Rebe, Wein, Obstbau und Fruechteverwertung 20, 296–304.

    Google Scholar 

  85. Kiss, I. and Farkas, J. (1973) Combination of cryscentration with ionizing irradiation for the preservation of fruit-juice. Kiserl. Kozl. Budap. 63(E), 3–18.

    Google Scholar 

  86. Obara, T., Shimotsuura, A., Shimazu, F., and Watanabe, W. (1958) Preservation of vegetable foods irradiated with radioactive rays. I. Influence of γ-ray irradiation upon components contained in citrus juice, n. Influence of γ-ray irradiation on vitamin C contained in citrus juice under various conditions. Radioisotopes (Tokyo) 7, 127–132; 133-140.

    CAS  Google Scholar 

  87. Proctor, B. E. and O’Meara, J. P. (1951) Effect of high-voltage cathode rays on ascorbic acid. Ind. Eng. Chem. 43, 718–721.

    CAS  Google Scholar 

  88. Cook, K. A. (1998) Outbreak of Salmonella Serotype Hartford infections associated with unpasteurized orange juice. JAMA 280, 1504–1509.

    PubMed  CAS  Google Scholar 

  89. Tauxe, R., Kruse, H., Hedberg, C., Potter, M., Madden, J., and Wachsmuth, K. (1997) Microbial hazards and emerging issues associated with produce: a preliminary report to the National Advisory Committee on Microbiological Criteria for Foods. J. Food Prot. 60, 1400–1408.

    Google Scholar 

  90. National Advisory Committee on Microbiological Criteria for Food. (1997) Recommen-dations for controlling the transmission of pathogenic microorganisms in juices. Food Safety and Inspection Service, US Department of Agriculture, Washington, DC.

    Google Scholar 

  91. Niemira, B. A.(2001) Citrus juice composition does not influence radiation sensitivity of Salmonella Enteritidis. J. Food Prot. 64, 869–872.

    PubMed  CAS  Google Scholar 

  92. Niemira, B. A., Sommers, C. H., and Boyd, G. (2001) Irradiation inactivation of four Salmonella serotypes in orange juices with various turbidities. J. Food Prot. 64, 614–617 (Erratum 64, 872).

    PubMed  CAS  Google Scholar 

  93. Altekruse, S. E, Stern, N. J., Fields, P. I., and Swerdlow, D. L. (1999) Campylobacter jejuni-An emerging foodborne pathogen. Emerg. Inf. Dis. 5, 28–35.

    CAS  Google Scholar 

  94. Lambert, J. D. and Maxcy, R. B. (1984) Effect of gamma radiation on Campylobacter jejuni. J. Food Sci. 49, 665–667, 6

    Google Scholar 

  95. Yogasundram, K., Shane, S. M., Grodner, R. M., Lambremont, E. N., and Smith, R. E. (1987) Decontamination of Campylobacter jejuni on chicken drumsticks using chemicals and radiation. Vet. Res. Commun. 11, 31–40.

    PubMed  CAS  Google Scholar 

  96. Patterson, M. F. (1995) Sensitivity of Campylobacter spp. to irradiation in poultry meat. Lett. Appl. Microbiol. 20, 338–340.

    PubMed  CAS  Google Scholar 

  97. Collins, C. I., Murano, E. A., and Wesley, I. V. (1996) Survival of Arcobacter butzleri and Campylobacter jejuni after irradiation treatment in vacuum-packaged ground pork. J. Food Prot. 59, 1164–1166.

    Google Scholar 

  98. Roepke, R. R. and Mercer, F. E. (1947) Lethal and sublethal effects of X-rays on Escherichia coli as related to the yield of biochemical mutants. J. Bacteriol. 54, 731–743.

    PubMed  CAS  Google Scholar 

  99. Billen, D., Stapleton, G. E., and Hollaender, A. (1953) The effect of X-irradiation on the respiration of Escherichia coli. J. Bacteriol. 65, 131–135.

    PubMed  CAS  Google Scholar 

  100. Anderson, E. H. and Billen, D. (1955) The effect of temperature on X-ray induced mutability in Escherichia coli. J. Bacteriol. 70, 35–43.

    PubMed  CAS  Google Scholar 

  101. Fram, H., Proctor, B. E., and Dunn, C. G. (1950) Effects of X-rays produced at 50 kilowatts on different species of bacteria. J. Bacteriol. 60, 263–267.

    PubMed  CAS  Google Scholar 

  102. Stapleton, G. E. (1955) Variations in the sensitivity of Escherichia coli to ionizing radiations during the growth cycle. J. Bacteriol. 70, 357–362.

    PubMed  CAS  Google Scholar 

  103. Thayer, D. W. and Boyd, G. (1993) Elimination of Escherichia coli O157:H7 in meats by gamma irradiation. Appl. Environ. Microbiol. 59, 1030–1034.

    PubMed  CAS  Google Scholar 

  104. Thayer, D. W. and Boyd, G. (2001) Effect of irradiation temp on inactivation of Escherichia coli O157:H7 and Staphylococcus aureus. J. Food Prot. 64, 1624–1626.

    PubMed  CAS  Google Scholar 

  105. Ito, H. H. (1998) Irradiation effect of Escherichia coli O157:H7 in meats. Food Irradiat. Jpn. 33, 29–32.

    CAS  Google Scholar 

  106. Buchanan, R. L., Edelson, S. G., Snipes, K., and Boyd, G. (1998) Inactivation of Escherichia coli O157:H7 in apple juice by irradiation. Appl. Environ. Microbiol. 64, 4533–4535.

    PubMed  CAS  Google Scholar 

  107. Fan, X. and Thayer, D. W. (2002) γ-Radiation influences browning, antioxidant activity, and malondialdehyde level of apple juice. J. Agric. Food Chem. 50, 710–715.

    PubMed  CAS  Google Scholar 

  108. Fan, X. T., Thayer, D. W., and Handel, A. P. (2002) Nutritional quality of irradiated orange juice. J. FoodProc. Pres. 26, 195–211.

    Google Scholar 

  109. Fan, X. and Thayer, D. W. (2001) Quality of irradiated alfalfa sprouts. J. Food Prot. 64, 1574–1578.

    PubMed  CAS  Google Scholar 

  110. Fan, X., Rajkowski, K., and Thayer, D. W. (2003) Quality of alfalfa sprouts grown from irradiated seeds. J. Food Qual. 26, 165–176.

    CAS  Google Scholar 

  111. Bari, M. L., Nazuka, E., Sabina, Y., Todoriki, S., and Isshiki, K. (2003) Chemical and irra-diation treatments for killing Escherichia coli O157:H7 on alfalfa, radish, and Mung bean seeds. J. Food Prot. 66, 767–774.

    PubMed  CAS  Google Scholar 

  112. Niemira, B. A., Sommers, C. H., and Fan, X. T. (2002) Suspending lettuce type influences recoverability and radiation sensitivity of Escherichia coli O157:H7. J. Food Prot. 65, 1388–1393.

    PubMed  Google Scholar 

  113. Foley, D. M., Dufour, A., Rodriguez, L., Caporaso, F., and Prakash, A. (2002) Reduction of Escherichia coli O157:H7 in shredded iceberg lettuce by chlorination and gamma irradiation. Rad. Phys. Chem. 63, 391–396.

    CAS  Google Scholar 

  114. Glass, K. A. and Doyle, M. P. (1989) Fate of Listeria monocytogenes in processed meat products during refrigerated storage. Appl. Environ. Microbiol. 55, 1565–1569.

    PubMed  CAS  Google Scholar 

  115. Pini, P. N. and Gilbert, R. J. (1988) The occurrence in the UK of Listeria species in raw chickens and soft cheese. Int. J. Food Microbiol. 6, 317–326.

    PubMed  CAS  Google Scholar 

  116. WHO. (1988) Foodborne listeriosis. Report of a World Health Organization Informal Working Group. WHO/EFE/FOS 88.5, February 15-19, 1988, Geneva.

    Google Scholar 

  117. Huhtanen, C. N., Jenkins, R. K., and Thayer, D. W. (1989) Gamma radiation sensitivity of Listeria monocytogenes. J. Food Prot. 52, 610–6

    Google Scholar 

  118. El Shenawy, M. A., Yousef, A. E., and Marth, E. H. (1989) Radiation sensitivity of Listeria monocytogenes in broth or in raw ground beef. Lebens. Wissensch. Technol. 22, 387–390.

    Google Scholar 

  119. Patterson, M. F., Damoglou, A. P., and Buick, R. K. (1993) Effects of irradiation dose and storage temperature on the growth of Listeria monocytogenes on poultry meat. Food Microbiol. 10, 197–203.

    Google Scholar 

  120. Farag, M. D. E.-D. H., Shamsuzzaman, K., and Borsa, J. (1990) Radiation sensitivity of Listeria monocytogenes in phosphate buffer, trypticase soy broth, and poultry feed. J. Food Prot. 53, 648–651.

    Google Scholar 

  121. Lewis, S. J. and Corry, J. E. L. (1991) Survey of incidence of Listeria monocytogenes and other Listeria spp. in experimentally irradiated and in matched unirradiated raw chickens. Int. J. Food Microbiol. 12, 257–262.

    PubMed  CAS  Google Scholar 

  122. Tarte, R., Murano, E. A., and Olson, D. G. (1996) Survival and injury of Listeria monocytogenes, Listeria innocua and Listeria ivanovii in ground pork following electron beam irradiation. J. Food Prot. 59, 596–600.

    Google Scholar 

  123. Monk, J. D., Clavero, M. R. S., Beuchat, L. R., Doyle, M. P., and Brackett, R. E. (1994) Irradiation inactivation of Listeria monocytogenes and Staphylococcus aureus in low-and high-fat, frozen and refrigerated ground beef. J. Food Prot. 57, 969–974.

    Google Scholar 

  124. Andrews, L. S., Marshall, D. L., and Grodner, R. M. (1995) Radiosensitivity of Listeria monocytogenes at various temperatures and cell concentrations. J. Food Prot. 58, 748–751.

    Google Scholar 

  125. Thayer, D. W. and Boyd, G. (1995) Radiation sensitivity of Listeria monocytogenes on beef as affected by temperature. J. Food Sci. 60, 237–240.

    CAS  Google Scholar 

  126. Kamat, A. S. and Nair, M. P. (1995) Gamma irradiation as a means to eliminate Listeria monocytogenes from frozen chicken meat. J. Sci. Food Agric. 69, 415–422.

    CAS  Google Scholar 

  127. Grant, I. R. and Patterson, M. F. (1995) Combined effect of gamma radiation and heating on the destruction of Listeria monocytogenes and Salmonella typhimurium in cook-chill roast beef and gravy. Int. J. Food Microbiol. 27, 117–128.

    PubMed  CAS  Google Scholar 

  128. Bougle, D. L. and Stahl, V. (1994) Survival of Listeria monocytogenes after irradiation treatment of Camembert cheeses made from raw milk. J. Food Prot. 57, 811–813.

    Google Scholar 

  129. Hashisaka, A. E., Weagant, S. D., and Dong, F. M. (1989) Survival of Listeria monocytogenes in mozzarella cheese and ice cream exposed to gamma irradiation. J. Food Prot. 52, 490–492.

    Google Scholar 

  130. Hashisaka, A. E., Matches, J. R., Batters, Y., Hungate, F. P., and Dong, F. M. (1990) Effects of gamma-irradiation at ∂78°C on microbial populations in dairy products. J. Food Sci. 55, 1284–1289.

    Google Scholar 

  131. Hashisaka, A. E., Einstein, M. A., Rasco, B. A., Hungate, F. P., and Dong, F. M. (1990) Sensory analysis of dairy products irradiated with cobalt-60 at ∂78°C. J. Food Sci. 55, 404–408, 412.

    Google Scholar 

  132. Ennahar, S., Kuntz, F., Strasser, A., Bergaentzle, M., Hasselmann, C., and Stahl, V. (1994) Elimination of Listeria monocytogenes in soft and red smear cheeses by irradiation with low energy electrons. Int. J. Food Sci. Tech. 29, 395–403.

    Article  CAS  Google Scholar 

  133. Grant, I. R. and Patterson, M. F. (1991) Effect of irradiation and modified atmosphere packaging on the microbiological safety of minced pork stored under temperature abuse conditions. Int. J. Food Sci. Tech. 26, 521–533.

    Article  Google Scholar 

  134. Thayer, D. W. and Boyd, G. (1999) Irradiation and modified atmosphere packaging for the control of Listeria monocytogenes on turkey meat. J. Food Prot. 62, 1136–1142.

    PubMed  CAS  Google Scholar 

  135. Grant, I. R. and Patterson, M. F. (1992) Sensitivity of foodborne pathogens to irradiation in the components of a chilled ready meal. Food Microbiol. 9, 95–103.

    Google Scholar 

  136. Grant, I. R., Nixon, C. R., and Patterson, M. F. (1993) Comparison of the growth of Listeria monocytogenes in unirradiated and irradiated cook-chill roast beef and gravy at refrigeration temperatures. Lett. Appl. Microbiol. 17, 55–57.

    Google Scholar 

  137. Thayer, D. W., Boyd, G., Kim, A., Fox J. B. Jr., and Farrell, H. M. (1998) Fate of gammairradiated Listeria monocytogenes during refrigerated storage on raw or cooked turkey breast meat. J. Food Prot. 61, 979–987.

    PubMed  CAS  Google Scholar 

  138. Clardy, S., Foley, D. M., Caporaso, F., Calicchia, M. L., and Prakash, A. (2002) Effect of gamma irradiation on Listeria monocytogenes in frozen, artificially contaminated sandwiches. J. Food Prot. 65, 1740–1744.

    PubMed  CAS  Google Scholar 

  139. Sommers, C. H. and Thayer, D. W. (2000) Survival of surface-inoculated Listeria monocytogenes on commercially available frankfurters following gamma irradiation. J. Food Sci. 20, 27–137.

    Google Scholar 

  140. Sommers, C. H., Handel, A. P., and Niemira, B. A. (2002) Radiation resistance of Listeria monocytogenes in the presence or absence of sodium erythorbate. J. Food Sci. 67, 2266–2270.

    CAS  Google Scholar 

  141. Sommers, C. H. and Fan, X. T. (2002) Antioxidant power, lipid oxidation, color, and viability of Listeria monocytogenes in beef bologna treated with gamma radiation and containing various levels of glucose. J. Food Prot. 65, 1750–1755.

    PubMed  CAS  Google Scholar 

  142. Sommers, C. and Fan, X. (2003) Gamma irradiation of fine-emulsion sausage containing sodium diacetate. J. Food Prot. 66, 819–824.

    PubMed  CAS  Google Scholar 

  143. Sommers, C., Fan, X. T., Niemira, B. A., and Sokorai, K. (2003) Radiation (gamma) resistance and postirradiation growth of Listeria monocytogenes suspended in beef bologna containing sodium diacetate and potassium lactate. J. Food Prot. 66, 2051–2056.

    PubMed  CAS  Google Scholar 

  144. Sommers, C. H., Fan, X. T., Handel, A. P., and Sokorai, K. B. (2003) Effect of citric acid on the radiation resistance of Listeria monocytogenes and frankfurter quality factors. Meat Sci. 63, 407–415.

    CAS  Google Scholar 

  145. Farkas, J., Saray, T., Mohacsi-Farkas, C., Horti, K., and Andrassy, E. (1997) Effects of low-dose gamma radiation on shelf-life and microbiological safety of pre-cut-prepared vegetables. Adv. Food Sci. 19, 111–119.

    CAS  Google Scholar 

  146. Niemira, B. A., Fan, X. T., and Sommers, C. H. (2002) Irradiation temperature influences product quality factors of frozen vegetables and radiation sensitivity of inoculated Listeria monocytogenes. J. Food Prot. 65, 1406–14

    PubMed  Google Scholar 

  147. Niemira, B. A., Fan, X., Sokorai, K. J. B., and Sommers, C. H. (2003) Ionizing radiation sensitivity of Listeria monocytogenes ATCC 49594 and Listeria innocua ATCC 51742 inoculated on endive (Cichoriumendiva). J. Food Prot. 66, 993–998.

    PubMed  Google Scholar 

  148. Tamplin, M. L. and Capers, G. M. (1992) Persistence of Vibrio vulnificus in tissues of Gulf Coast oysters, Crassostrea virginica, exposed to seawater disinfected with UV light. Appl. Environ. Microbiol. 58, 1506–1510.

    PubMed  CAS  Google Scholar 

  149. Matches, J. R. and Liston, J. (1971) Radiation destruction of Vibrio parahaemolyticus. J. Food Sci. 36, 339–340.

    CAS  Google Scholar 

  150. Campanini, M., Zupan, J., Pani, L., and Vicini, E. (1974) Resistance of Vibrio para-haemolyticus and V. cholerae to unfavourable conditions. Ind. Conserv. 49, 170–172.

    Google Scholar 

  151. Bandekar, J. R., Chander, R., and Nerkar, D. P. (1987) Radiation control of Vibrio para-haemolyticus in shrimp. J. Food Saf. 8, 83–88.

    Article  Google Scholar 

  152. Ito, H., Sangthong, N., and Ishigaki, I. (1988) Effect of gammairradiation on frozen shrimps: inactivation of microorganisms and shelf-life extension of defrosted shrimps. Food Irradiat.(Shokuhin Shosha) 23, 72–76.

    Google Scholar 

  153. Hau, L. B., Liew, M. H., and Yeh, L. T. (1992) Preservation of grass prawns by ionizing radiation. J. Food Prot. 55, 198–202.

    Google Scholar 

  154. Sang, F. C., Hugh-Jones, M. E., and Hagstad, H. V. (1987) Viability of Vibrio cholerae 01 on frog legs under frozen and refrigerated conditions and low dose radiation treatment. J. Food Prot. 50, 662–664.

    Google Scholar 

  155. Ama, A. A., Hamdy, M. K., and Toledo, R. T. (1994) Effects of heating, pH and thermo-radiation on inactivation of Vibrio vulnificus. Food Microbiol. 11, 215–227.

    Google Scholar 

  156. Kwon, O. H. and Byun, M. W. (1996) The combined effect of heat and gamma irradiation on the inactivation of selected microorganisms associated with food hygiene. J. Korean Soc. Food Sci. Nutr. 25, 804–809.

    Google Scholar 

  157. de Moraes, I. R., Del Mastro, N. L., Jakabi, M., and Gelli, D. S. (2000) Radiosensitivity of Vibrio cholerae 01 incorporated in oysters, to (60)CO. Rev Saude Publ. 34, 29–32 (in Portuguese).

    Google Scholar 

  158. Jakabi, M., Gelli, D. S., Torre, J. C., et al. (2003) Inactivation by ionizing radiation of Salmonella enteritidis, Salmonella infantis, and Vibrio parahaemolyticus in oysters (Crassostrea brasiliana). J Food Prot. 66, 1025–10

    PubMed  Google Scholar 

  159. El Zawahry, Y. A. and Rowley, D. B. (1979) Radiation resistance and injury of Yersinia enterocolitica. Appl. Environ. Microbiol. 37, 50–54.

    PubMed  Google Scholar 

  160. Fu, A.-H., Sebranek, J. G., and Murano, E. A. (1995) Survival of Listeria monocytogenes, Yersinia enterocolitica and Escherichia coli 0157:H7 and quality changes after irradiation of beef steaks and ground beef. J. Food Set 60, 972–977.

    CAS  Google Scholar 

  161. Kamat, A. S., Khare, S., Doctor, T., and Nair, P. M. (1997) Control of Yersinia entero-colitica in raw pork and pork products by ?-irradiation. Int. J. Food Microbiol. 36, 69–76.

    PubMed  CAS  Google Scholar 

  162. Shenoy, K., Murano, E. A., and Olson, D. G. (1998) Survival of heat-shocked Yersinia enterocolitica after irradiation in ground pork. Int. J. Food Microbiol. 39, 133–137.

    PubMed  CAS  Google Scholar 

  163. Sommers, C. H., Niemira, B. A., Tunick, M., and Boyd, G. (2002) Effect of temperature on the radiation resistance of virulent Yersinia enterocolitica. Meat Sci. 61, 323–328.

    Google Scholar 

  164. Sommers, C. H. and Bhaduri, S. (2001) Loss of crystal violet binding activity in stationary phase Yersinia enterocolitica following gamma irradiation. Food Microbiol. 18, 367–374.

    CAS  Google Scholar 

  165. Sommers, C. H. and Novak, J. S. (2002) Radiation resistance of virulence plasmid-containing and plasmid-less Yersinia enterocolitica. (Research Note) J. Food Prot. 65, 556–559.

    PubMed  Google Scholar 

  166. Chambers, H. and Russ, S. (1912) The bactericidal action of radium emanation. Proc. R. Soc. London B5, 198–21

    Google Scholar 

  167. Baker, S. L. (1935) A quantitative comparison of the effects of the beta rays of radium on the agent of the Rous sarcoma, on the bacteriophage, on tetanus toxin and on certain bacteria, antibodies and ferments. Br. J. Exp. Pathol. 16, 148–155.

    Google Scholar 

  168. Licciardello, J. J., D’Entremont, D. L., and Lundstrom, R. C. (1989) Radio-resistance of some bacterial pathogens in soft-shell clams (Mya arenaria) and mussels (Mytilus edulis). J. Food Prot. 52, 407–411.

    Google Scholar 

  169. Thayer, D. W. and Boyd, G. (1992) Gamma ray processing to destroy Staphylococcus aureus in mechanically deboned chicken meat. J. Food Sci. 57, 848–851.

    Google Scholar 

  170. Grant, I. R., Nixon, C. R., and Patterson, M. F. (1993) Effect of low-dose irradiation on growth of and toxin production by Staphylococcus aureus and Bacillus cereus in roast beef and gravy. Int. J. Food Microbiol. 18, 25–36.

    PubMed  CAS  Google Scholar 

  171. Lamb, J. L., Gogley, J. M., Thompson, M. J., Solis, D. R., and Sen, S. (2002) Effect of low-dose gamma irradiation on Staphylococcus aureus and product packaging in ready-to-eat ham and cheese sandwiches. J. Food Prot. 65, 1800–1805.

    PubMed  Google Scholar 

  172. Farkas, J. (1983) Radurization and radicidation: spices. In: Preservation of Food By Ionizing Radiation (Josephson, E. S. and Peterson, M. S. eds.), CRC, Boca Raton

    Google Scholar 

  173. Kiss, I. and Farkas, J. (1988) Irradiation as a method for decontamination of spices. Food Rev. Int. 4, 77–92.

    Article  Google Scholar 

  174. IGFI. (1991) Code of good irradiation practice for the control of pathogens and other microflora in spices, herbs and other vegetable seasonings. Document No. 5, International Consultative Group on Food Irradiation, Vienna, pp. 1–1

    Google Scholar 

  175. Yamazaki, K., Ito, N., Sato, K., and Oka, M. (1968) Effects of growth media composition on radioresistance of bacterial spores. Food Irradiat. (Shokuhin Shosha) 3, 13–1

    Google Scholar 

  176. Berg, P. E. and Grecz, N. (1970) Relationship of dipicolinic acid content in spores of Bacillus cereus T to ultraviolet and gamma radiation resistance. J. Bacteriol. 103, 517–519.

    PubMed  CAS  Google Scholar 

  177. Farkas, J. and Roberts, T. A. (1976) The effect of sodium chloride, gamma irradiation and/or heating on germination and development of spores of Bacillus cereus T in single germinants and complex media. Acta Aliment. 5, 289–302.

    CAS  Google Scholar 

  178. Ma, K. and Maxcy, R. B. (1981) Factors influencing radiation resistance of vegetative bacteria and spores associated with radappertization of meat. J. Food Sci. 46, 612–616.

    Google Scholar 

  179. Kamat, A. S. and Lewis, N. F. (1982) Influence of heat and radiation on the germinability and viability of B. cereus BIS-59 spores. Indian J. Microbiol. 23, 198–202.

    Google Scholar 

  180. Kamat, A. S. and Pradhan, D. S. (1987) Involvement of calcium and dipicolinic acid in the resistance of Bacillus cereus BIS-59 spores to u.v. and gamma radiations. Int. J. Radiat. Biol. 51, 7–18.

    CAS  Google Scholar 

  181. Thayer, D. W. and Boyd, G. (1994) Control of enterotoxic Bacillus cereus on poultry or red meats and in beef gravy by gamma irradiation. J. Food Prot. 57, 758–764.

    Google Scholar 

  182. IAEA. (1995) Shelf-stable foods through irradiation processing. IAEA-TECDOC-843. International Atomic Energy Agency, Vienna.

    Google Scholar 

  183. Thayer, D. W. (2001) Development of irradiated shelf-stable meat and poultry products. In: Food Irradiation: Principles and Applications (Molins, R. A., ed.), Chapter 13, Wiley Interscience, New York, pp. 329–

    Google Scholar 

  184. Anellis, A., Shattuck, E., Rowley, D. B., Ross, E. W. Jr., Whaley, D. N., and Dowell, V. R. Jr. (1975) Low-temperature irradiation of beef and methods for evaluation of a radappertization process. Appl. Microbiol. 30, 811–820.

    PubMed  CAS  Google Scholar 

  185. Anellis, A., Shattuck, E., Morin, M., et al. (1977) Cryogenic gamma irradiation of prototype pork and chicken and antagonistic effect between Clostridium botulinum types A and B. Appl. Environ. Microbiol. 34, 823–831.

    PubMed  CAS  Google Scholar 

  186. Roberts, T., Murrell, K. D., and Marks, S. (1994) Economic losses caused by foodborne parasitic diseases. Parasitol. Today 10, 419–42

    PubMed  CAS  Google Scholar 

  187. Loaharanu, P. and Murrell, D. (1994) A role for irradiation in the control of foodborne parasites. Food Sci. Technol. 5, 190–195.

    Google Scholar 

  188. Schneider, C. R. (1960) Radiosensitivity of Entamoeba histolytica cysts. Exp. Parasitol. 9, 87–91.

    PubMed  CAS  Google Scholar 

  189. Dubey, J. P., Brake, R. J., Murrell, K. D., and Fayer, R. (1986). Effect of irradiation on the viability of Toxoplasma gondii cysts in tissues of mice and pigs. Am. J. Vet. Res. 47, 518–522.

    PubMed  CAS  Google Scholar 

  190. Dubey, J. P. and Thayer, D. W. (1994) Killing of Toxoplasma gondii tissue cysts by irradi-ation under defined conditions. J. Parasitol. 80, 764–767.

    PubMed  CAS  Google Scholar 

  191. Dubey, J. P., Jenkins, M. C., and Thayer, D. W. (1996) Irradiation killing of Toxoplasma gondii oocysts. J. Eukaryot. Microbiol 45, S 12

    Google Scholar 

  192. Dubey, J. P., Jenkins, M. C., Thayer, D. W., Kwok, O. C. H., and Shen, S. K. (1996). Killing of Toxoplasma gondii oocysts by irradiation and protective immunity induced by vaccination with irradiated oocysts. J. Parasitol. 82, 724–727.

    PubMed  CAS  Google Scholar 

  193. Dubey, J. P., Thayer, D. W., Speer, C. A., and Shen, S. K. (1998) Effect of gamma irradia-tion on unsporulated and sporulated Toxoplasma gondii oocysts. Int. J. Parasitol. 28, 369–375.

    PubMed  CAS  Google Scholar 

  194. Brake, R. J., Murrell, K. D., Ray, E. E., Thomas, J. D., Muggenburg, B. A., and Sivinski, J. S. (1985) Destruction of Trichinella spiralis by low-dose irradiation of infected pork. J. Food Saf. 7, 127–143.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Thayer, D.W. (2007). Food Irradiation and Other Sanitation Procedures. In: Simjee, S. (eds) Foodborne Diseases. Infectious Disease. Humana Press. https://doi.org/10.1007/978-1-59745-501-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-501-5_19

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-518-7

  • Online ISBN: 978-1-59745-501-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics