Skip to main content

Ablative Neurotherapeutics and Deep Brain Stimulation in Animal Models of Psychiatric Disorders

  • Chapter
  • First Online:
Psychiatric Neurotherapeutics

Part of the book series: Current Clinical Psychiatry ((CCPSY))

  • 755 Accesses

Abstract

The development of deep brain stimulation for the treatment of Parkinson’s disease and other neurological disorders has led to the revival of psychosurgery. This chapter will review some of the pioneer experiments assessing the effects of lesions or deep brain stimulation in various cerebral structures for the treatment of non-motor deficits in Parkinson’s disease, OCD, and impulse control disorders, depression, anxiety, and addiction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bergman H, Wichmann T, DeLong MR. Reversal of experimental parkinsonism by lesions of the subthalamic nucleus. Science. 1990;249(4975):11436–8.

    Google Scholar 

  2. Benazzouz A, Gross C, Feger J, Boraud T, Bioulac B. Reversal of rigidity and improvement in motor performance by subthalamic high-frequency stimulation in MPTP-treated monkeys. Eur J Neurosci. 1993;5(4):382–9.

    Article  CAS  PubMed  Google Scholar 

  3. Pollak P, Benabid AL, Gervason CL, Hoffmann D, Seigneuret E, Perret J. Long-term effects of chronic stimulation of the ventral intermediate thalamic nucleus in different types of tremor. Adv Neurol. 1993;60:408–13.

    CAS  PubMed  Google Scholar 

  4. Beurrier C, Bezard E, Bioulac B, Gross C. Subthalamic stimulation elicits hemiballismus in normal monkey. Neuroreport. 1997;8(7):1625–9.

    Article  CAS  PubMed  Google Scholar 

  5. Benazzouz A, Boraud T, Feger J, Burbaud P, Bioulac B, Gross C. Alleviation of experimental hemiparkinsonism by high-frequency stimulation of the subthalamic nucleus in primates: a comparison with L-Dopa treatment. Mov Disord. 1996;11(6):627–32.

    Article  CAS  PubMed  Google Scholar 

  6. Limousin P, Pollak P, Benazzouz A, Hoffmann D, Le Bas JF, Broussolle E, Perret JE, Benabid AL. Effect of parkinsonian signs and symptoms of bilateral subthalamic nucleus stimulation. Lancet. 1995;345(8942):91–5.

    Article  CAS  PubMed  Google Scholar 

  7. Gubellini P, Salin P, Kerkerian-Le Goff L, Baunez C. Deep brain stimulation in neurological diseases and experimental models: from molecule to complex behavior. Prog Neurobiol. 2009;89:79–123.

    Article  PubMed  Google Scholar 

  8. Agid Y, Arnulf I, Bejjani P, Bloch F, Bonnet AM, Damier P, Dubois B, Francois C, Houeto JL, Iacono D, Karachi C, Mesnage V, Messouak O, Vidailhet M, Welter ML, Yelnik J. Parkinson’s disease is a neuropsychiatric disorder. Adv Neurol. 2003;91:365–70.

    CAS  PubMed  Google Scholar 

  9. Hariz MI, Rehncrona S, Quinn NP, Speelman JD, Wensing C. Multicenter study on deep brain stimulation in Parkinson’s disease: an independent assessment of reported adverse events at 4 years. Mov Disord. 2008;23(3):416–21.

    Article  PubMed  Google Scholar 

  10. Lutjens G, Krauss JK, Schwabe K. Lesions of the entopeduncular nucleus in rats prevent apomorphine-induced deficient sensorimotor gating. Behav Brain Res. 2011;220(2):281–7.

    Article  PubMed  Google Scholar 

  11. Posch DK, Schwabe K, Krauss JK, Lutjens G. Deep brain stimulation of the entopeduncular nucleus in rats prevents apomorphine-induced deficient sensorimotor gating. Behav Brain Res. 2012;232(1):130–6.

    Article  CAS  PubMed  Google Scholar 

  12. Swerdlow NR, Sutherland AN. Using animal models to develop therapeutics for Tourette Syndrome. Pharmacol Ther. 2005;108(3):281–93.

    Article  CAS  PubMed  Google Scholar 

  13. Baunez C, Nieoullon A, Amalric M. In a rat model of parkinsonism, lesions of the subthalamic nucleus reverse increases of reaction time but induce a dramatic premature responding deficit. J Neurosci. 1995;15(10):6531–41.

    CAS  PubMed  Google Scholar 

  14. Baunez C, Robbins TW. Effects of dopamine depletion of the dorsal striatum and further interaction with subthalamic nucleus lesions in an attentional task in the rat. Neuroscience. 1999;92(4):1343–56.

    Article  CAS  PubMed  Google Scholar 

  15. Darbaky Y, Forni C, Amalric M, Baunez C. High frequency stimulation of the subthalamic nucleus has beneficial antiparkinsonian effects on motor functions in rats, but less efficiency in a choice reaction time task. Eur J Neurosci. 2003;18(4):951–6.

    Article  PubMed  Google Scholar 

  16. Temel Y, Visser-Vandewalle V, Aendekerk B, Rutten B, Tan S, Scholtissen B, Schmitz C, Blokland A, Steinbusch HW. Acute and separate modulation of motor and cognitive performance in parkinsonian rats by bilateral stimulation of the subthalamic nucleus. Exp Neurol. 2005;193(1):43–52.

    Article  CAS  PubMed  Google Scholar 

  17. Baunez C, Christakou A, Chudasama Y, Forni C, Robbins TW. Bilateral high-frequency stimulation of the subthalamic nucleus on attentional performance: transient deleterious effects and enhanced motivation in both intact and parkinsonian rats. Eur J Neurosci. 2007;25(4):1187–94.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Barichella M, Marczewska AM, Mariani C, Landi A, Vairo A, Pezzoli G. Body weight gain rate in patients with Parkinson’s disease and deep brain stimulation. Mov Disord. 2003;18(11):1337–40.

    Article  PubMed  Google Scholar 

  19. Macia F, Perlemoine C, Coman I, Guehl D, Burbaud P, Cuny E, Gin H, Rigalleau V, Tison F. Parkinson’s disease patients with bilateral subthalamic deep brain stimulation gain weight. Mov Disord. 2004;19(2):206–12.

    Article  PubMed  Google Scholar 

  20. Moro E, Scerrati M, Romito LM, Roselli R, Tonali P, Albanese A. Chronic subthalamic nucleus stimulation reduces medication requirements in Parkinson’s disease. Neurology. 1999;53(1):85–90.

    Article  CAS  PubMed  Google Scholar 

  21. Ruzicka F, Jech R, Novakova L, Urgosik D, Vymazal J, Ruzicka E. Weight gain is associated with medial contact site of subthalamic stimulation in Parkinson’s disease. PLoS One. 2012;7(5):e38020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Temel Y, Boothman LJ, Blokland A, Magill PJ, Steinbusch HW, Visser-Vandewalle V, Sharp T. Inhibition of 5-HT neuron activity and induction of depressive-like behavior by high-frequency stimulation of the subthalamic nucleus. Proc Natl Acad Sci U S A. 2007;104(43):17087–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Soulas T, Gurruchaga JM, Palfi S, Cesaro P, Nguyen JP, Fenelon G. Attempted and completed suicides after subthalamic nucleus stimulation for Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2008;79(8):952–4.

    Article  CAS  PubMed  Google Scholar 

  24. Voon V, Krack P, Lang AE, Lozano AM, Dujardin K, Schupbach M, D’Ambrosia J, Thobois S, Tamma F, Herzog J, Speelman JD, Samanta J, Kubu C, Rossignol H, Poon YY, Saint-Cyr JA, Ardouin C, Moro E. A multicentre study on suicide outcomes following subthalamic stimulation for Parkinson’s disease. Brain. 2008;131(Pt 10):2720–8.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Perriol MP, Krystkowiak P, Defebvre L, Blond S, Destee A, Dujardin K. Stimulation of the subthalamic nucleus in Parkinson’s disease: cognitive and affective changes are not linked to the motor outcome. Parkinsonism Relat Disord. 2006;12(4):205–10.

    Article  PubMed  Google Scholar 

  26. Bouyer JJ, Montaron MF, Fabre-Thorpe M, Rougeul A. Compulsive attentive behavior after lesion of the ventral striatum in the cat: a behavioral and electrophysiological study. Exp Neurol. 1986;92(3):698–712.

    Article  CAS  PubMed  Google Scholar 

  27. van Kuyck K, Demeulemeester H, Feys H, De Weerdt W, Dewil M, Tousseyn T, de Sutter P, Gybels J, Bogaerts K, Dom R, Nuttin B. Effects of electrical stimulation or lesion in nucleus accumbens on the behaviour of rats in a T-maze after administration of 8-OH-DPAT or vehicle. Behav Brain Res. 2003;140(1–2):165–73.

    PubMed  Google Scholar 

  28. Mundt A, Klein J, Joel D, Heinz A, Djodari-Irani A, Harnack D, Kupsch A, Orawa H, Juckel G, Morgenstern R, Winter C. High-frequency stimulation of the nucleus accumbens core and shell reduces quinpirole-induced compulsive checking in rats. Eur J Neurosci. 2009;29(12):2401–12.

    Article  PubMed  Google Scholar 

  29. Dvorkin A, Silva C, McMurran T, Bisnaire L, Foster J, Szechtman H. Features of compulsive checking behavior mediated by nucleus accumbens and orbital frontal cortex. Eur J Neurosci. 2010;32(9):1552–63.

    Article  PubMed  Google Scholar 

  30. Christakou A, Robbins TW, Everitt BJ. Prefrontal cortical-ventral striatal interactions involved in affective modulation of attentional performance: implications for corticostriatal circuit function. J Neurosci. 2004;24(4):773–80.

    Article  CAS  PubMed  Google Scholar 

  31. Murphy ER, Robinson ES, Theobald DE, Dalley JW, Robbins TW. Contrasting effects of selective lesions of nucleus accumbens core or shell on inhibitory control and amphetamine-induced impulsive behaviour. Eur J Neurosci. 2008;28(2):353–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Baunez C, Robbins TW. Bilateral lesions of the subthalamic nucleus induce multiple deficits in an attentional task in rats. Eur J Neurosci. 1997;9(10):2086–99.

    Article  CAS  PubMed  Google Scholar 

  33. Baunez C, Robbins TW. Effects of transient inactivation of the subthalamic nucleus by local muscimol and APV infusions on performance on the five-choice serial reaction time task in rats. Psychopharmacology (Berl). 1999;141(1):57–65.

    Article  CAS  Google Scholar 

  34. Chudasama Y, Baunez C, Robbins TW. Functional disconnection of the medial prefrontal cortex and subthalamic nucleus in attentional performance: evidence for corticosubthalamic interaction. J Neurosci. 2003;23(13):5477–85.

    CAS  PubMed  Google Scholar 

  35. Winter C, Flash S, Klavir O, Klein J, Sohr R, Joel D. The role of the subthalamic nucleus in ‘compulsive’ behavior in rats. Eur J Neurosci. 2008;27(8):1902–11.

    Article  PubMed  Google Scholar 

  36. Winter C, Mundt A, Jalali R, Joel D, Harnack D, Morgenstern R, Juckel G, Kupsch A. High frequency stimulation and temporary inactivation of the subthalamic nucleus reduce quinpirole-induced compulsive checking behavior in rats. Exp Neurol. 2008;210(1):217–28.

    Article  PubMed  Google Scholar 

  37. Baup N, Grabli D, Karachi C, Mounayar S, Francois C, Yelnik J, Feger J, Tremblay L. High-frequency stimulation of the anterior subthalamic nucleus reduces stereotyped behaviors in primates. J Neurosci. 2008;28(35):8785–8.

    Article  CAS  PubMed  Google Scholar 

  38. Haynes WI, Mallet L. High-frequency stimulation of deep brain structures in obsessive-compulsive disorder: the search for a valid circuit. Eur J Neurosci. 2010;32(7):1118–27.

    Article  PubMed  Google Scholar 

  39. Mallet L, Mesnage V, Houeto JL, Pelissolo A, Yelnik J, Behar C, Gargiulo M, Welter ML, Bonnet AM, Pillon B, Cornu P, Dormont D, Pidoux B, Allilaire JF, Agid Y. Compulsions, Parkinson’s disease, and stimulation. Lancet. 2002;360(9342):1302–4.

    Article  PubMed  Google Scholar 

  40. Mallet L, Polosan M, Jaafari N, Baup N, Welter ML, Fontaine D, du Montcel ST, Yelnik J, Chereau I, Arbus C, Raoul S, Aouizerate B, Damier P, Chabardes S, Czernecki V, Ardouin C, Krebs MO, Bardinet E, Chaynes P, Burbaud P, Cornu P, Derost P, Bougerol T, Bataille B, Mattei V, Dormont D, Devaux B, Verin M, Houeto JL, Pollak P, Benabid AL, Agid Y, Krack P, Millet B, Pelissolo A. Subthalamic nucleus stimulation in severe obsessive-compulsive disorder. N Engl J Med. 2008;359(20):2121–34.

    Article  CAS  PubMed  Google Scholar 

  41. Rodriguez-Oroz MC, Lopez-Azcarate J, Garcia-Garcia D, Alegre M, Toledo J, Valencia M, Guridi J, Artieda J, Obeso JA. Involvement of the subthalamic nucleus in impulse control disorders associated with Parkinson’s disease. Brain. 2011;134(Pt 1):36–49.

    Article  PubMed  Google Scholar 

  42. Dalley JW, Mar AC, Economidou D, Robbins TW. Neurobehavioral mechanisms of impulsivity: fronto-striatal systems and functional neurochemistry. Pharmacol Biochem Behav. 2008;90(2):250–60.

    Article  CAS  PubMed  Google Scholar 

  43. Pothuizen HH, Jongen-Relo AL, Feldon J, Yee BK. Double dissociation of the effects of selective nucleus accumbens core and shell lesions on impulsive-choice behaviour and salience learning in rats. Eur J Neurosci. 2005;22(10):2605–16.

    Article  PubMed  Google Scholar 

  44. Eagle DM, Robbins TW. Lesions of the medial prefrontal cortex or nucleus accumbens core do not impair inhibitory control in rats performing a stop-signal reaction time task. Behav Brain Res. 2003;146(1–2):131–44.

    Article  CAS  PubMed  Google Scholar 

  45. Cardinal RN, Pennicott DR, Sugathapala CL, Robbins TW, Everitt BJ. Impulsive choice induced in rats by lesions of the nucleus accumbens core. Science. 2001;292(5526):2499–501.

    Article  CAS  PubMed  Google Scholar 

  46. Sesia T, Temel Y, Lim LW, Blokland A, Steinbusch HW, Visser-Vandewalle V. Deep brain stimulation of the nucleus accumbens core and shell: opposite effects on impulsive action. Exp Neurol. 2008;214(1):135–9.

    Article  PubMed  Google Scholar 

  47. Huff W, Lenartz D, Schormann M, Lee SH, Kuhn J, Koulousakis A, Mai J, Daumann J, Maarouf M, Klosterkotter J, Sturm V. Unilateral deep brain stimulation of the nucleus accumbens in patients with treatment-resistant obsessive-compulsive disorder: outcomes after one year. Clin Neurol Neurosurg. 2010;112(2):137–43.

    Article  PubMed  Google Scholar 

  48. Luigjes J, Mantione M, van den Brink W, Schuurman PR, van den Munckhof P, Denys D. Deep brain stimulation increases impulsivity in two patients with obsessive-compulsive disorder. Int Clin Psychopharmacol. 2011;26(6):338–40.

    PubMed  Google Scholar 

  49. Baunez C, Humby T, Eagle DM, Ryan LJ, Dunnett SB, Robbins TW. Effects of STN lesions on simple vs choice reaction time tasks in the rat: preserved motor readiness, but impaired response selection. Eur J Neurosci. 2001;13(8):1609–16.

    Article  CAS  PubMed  Google Scholar 

  50. Phillips JM, Brown VJ. Reaction time performance following unilateral striatal dopamine depletion and lesions of the subthalamic nucleus in the rat. Eur J Neurosci. 1999;11(3):1003–10.

    Article  CAS  PubMed  Google Scholar 

  51. Eagle DM, Baunez C. Is there an inhibitory-response-control system in the rat? Evidence from anatomical and pharmacological studies of behavioral inhibition. Neurosci Biobehav Rev. 2010;34(1):50–72.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Uslaner JM, Robinson TE. Subthalamic nucleus lesions increase impulsive action and decrease impulsive choice – mediation by enhanced incentive motivation? Eur J Neurosci. 2006;24(8):2345–54.

    Article  PubMed  Google Scholar 

  53. Eagle DM, Baunez C, Hutcheson DM, Lehmann O, Shah AP, Robbins TW. Stop-signal reaction-time task performance: role of prefrontal cortex and subthalamic nucleus. Cereb Cortex. 2008;18(1):178–88.

    Article  PubMed  Google Scholar 

  54. Winstanley CA, Baunez C, Theobald DE, Robbins TW. Lesions to the subthalamic nucleus decrease impulsive choice but impair autoshaping in rats: the importance of the basal ganglia in Pavlovian conditioning and impulse control. Eur J Neurosci. 2005;21(11):3107–16.

    Article  PubMed  Google Scholar 

  55. Mallet L, Schupbach M, N’Diaye K, Remy P, Bardinet E, Czernecki V, Welter ML, Pelissolo A, Ruberg M, Agid Y, Yelnik J. Stimulation of subterritories of the subthalamic nucleus reveals its role in the integration of the emotional and motor aspects of behavior. Proc Natl Acad Sci U S A. 2007;104(25):10661–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Deroche-Gamonet V, Belin D, Piazza PV. Evidence for addiction-like behavior in the rat. Science. 2004;305(5686):1014–7.

    Article  CAS  PubMed  Google Scholar 

  57. Porsolt RD, Le PM, Jalfre M. Depression: a new animal model sensitive to antidepressant treatments. Nature. 1977;266(5604):730–2.

    Article  CAS  PubMed  Google Scholar 

  58. Banasr M, Duman RS. Glial loss in the prefrontal cortex is sufficient to induce depressive-like behaviors. Biol Psychiatry. 2008;64(10):863–70.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Hamani C, Diwan M, Isabella S, Lozano AM, Nobrega JN. Effects of different stimulation parameters on the antidepressant-like response of medial prefrontal cortex deep brain stimulation in rats. J Psychiatr Res. 2010;44(11):683–7.

    Article  PubMed  Google Scholar 

  60. Hamani C, Diwan M, Macedo CE, Brandao ML, Shumake J, Gonzalez-Lima F, Raymond R, Lozano AM, Fletcher PJ, Nobrega JN. Antidepressant-like effects of medial prefrontal cortex deep brain stimulation in rats. Biol Psychiatry. 2010;67(2):117–24.

    Article  PubMed  Google Scholar 

  61. Hamani C, Nobrega JN. Deep brain stimulation in clinical trials and animal models of depression. Eur J Neurosci. 2010;32(7):1109–17.

    Article  PubMed  Google Scholar 

  62. Hamani C, Nobrega JN. Preclinical studies modeling deep brain stimulation for depression. Biol Psychiatry. 2012;72:916–23.

    Article  PubMed  Google Scholar 

  63. Falowski SM, Sharan A, Reyes BA, Sikkema C, Szot P, Van Bockstaele EJ. An evaluation of neuroplasticity and behavior after deep brain stimulation of the nucleus accumbens in an animal model of depression. Neurosurgery. 2011;69(6):1281–90.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Meng H, Wang Y, Huang M, Lin W, Wang S, Zhang B. Chronic deep brain stimulation of the lateral habenula nucleus in a rat model of depression. Brain Res. 2011;1422:32–8.

    Article  CAS  PubMed  Google Scholar 

  65. Langevin JP. The amygdala as a target for behavior surgery. Surg Neurol Int. 2012;3 Suppl 1:S40–6.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Langevin JP, De Salles AA, Kosoyan HP, Krahl SE. Deep brain stimulation of the amygdala alleviates post-traumatic stress disorder symptoms in a rat model. J Psychiatr Res. 2010;44(16):1241–5.

    Article  PubMed  Google Scholar 

  67. Vassoler FM, Schmidt HD, Gerard ME, Famous KR, Ciraulo DA, Kornetsky C, Knapp CM, Pierce RC. Deep brain stimulation of the nucleus accumbens shell attenuates cocaine priming-induced reinstatement of drug seeking in rats. J Neurosci. 2008;28(35):8735–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Carelli RM, Deadwyler SA. A comparison of nucleus accumbens neuronal firing patterns during cocaine self-administration and water reinforcement in rats. J Neurosci. 1994;14(12):7735–46.

    CAS  PubMed  Google Scholar 

  69. Carelli RM, Ijames SG, Crumling AJ. Evidence that separate neural circuits in the nucleus accumbens encode cocaine versus “natural” (water and food) reward. J Neurosci. 2000;20(11):4255–66.

    CAS  PubMed  Google Scholar 

  70. van der Plasse G, Schrama R, van Seters SP, Vanderschuren LJ, Westenberg HG. Deep brain stimulation reveals a dissociation of consummatory and motivated behaviour in the medial and lateral nucleus accumbens shell of the rat. PLoS One. 2012;7(3):e33455.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Henderson MB, Green AI, Bradford PS, Chau DT, Roberts DW, Leiter JC. Deep brain stimulation of the nucleus accumbens reduces alcohol intake in alcohol-preferring rats. Neurosurg Focus. 2010;29(2):E12.

    Article  PubMed  Google Scholar 

  72. Knapp CM, Tozier L, Pak A, Ciraulo DA, Kornetsky C. Deep brain stimulation of the nucleus accumbens reduces ethanol consumption in rats. Pharmacol Biochem Behav. 2009;92(3):474–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Liu HY, Jin J, Tang JS, Sun WX, Jia H, Yang XP, Cui JM, Wang CG. Chronic deep brain stimulation in the rat nucleus accumbens and its effect on morphine reinforcement. Addict Biol. 2008;13(1):40–6.

    Article  PubMed  Google Scholar 

  74. Kuhn J, Lenartz D, Huff W, Lee S, Koulousakis A, Klosterkoetter J, Sturm V. Remission of alcohol dependency following deep brain stimulation of the nucleus accumbens: valuable therapeutic implications? J Neurol Neurosurg Psychiatry. 2007;78(10):1152–3.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Kuhn J, Bauer R, Pohl S, Lenartz D, Huff W, Kim EH, Klosterkoetter J, Sturm V. Observations on unaided smoking cessation after deep brain stimulation of the nucleus accumbens. Eur Addict Res. 2009;15(4):196–201.

    Article  CAS  PubMed  Google Scholar 

  76. Stelten BM, Noblesse LH, Ackermans L, Temel Y, Visser-Vandewalle V. The neurosurgical treatment of addiction. Neurosurg Focus. 2008;25(1):E5.

    Article  PubMed  Google Scholar 

  77. Valencia-Alfonso CE, Luigjes J, Smolders R, Cohen MX, Levar N, Mazaheri A, van den Munckhof P, Schuurman PR, van den Brink W, Denys D. Effective deep brain stimulation in heroin addiction: a case report with complementary intracranial electroencephalogram. Biol Psychiatry. 2012;71(8):e35–7.

    Article  PubMed  Google Scholar 

  78. Friedman A, Lax E, Dikshtein Y, Abraham L, Flaumenhaft Y, Sudai E, Ben-Tzion M, Ami-Ad L, Yaka R, Yadid G. Electrical stimulation of the lateral habenula produces enduring inhibitory effect on cocaine seeking behavior. Neuropharmacology. 2010;59(6):452–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Friedman A, Lax E, Dikshtein Y, Abraham L, Flaumenhaft Y, Sudai E, Ben-Tzion M, Yadid G. Electrical stimulation of the lateral habenula produces an inhibitory effect on sucrose self-administration. Neuropharmacology. 2011;60(2–3):381–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Levy D, Shabat-Simon M, Shalev U, Barnea-Ygael N, Cooper A, Zangen A. Repeated electrical stimulation of reward-related brain regions affects cocaine but not “natural” reinforcement. J Neurosci. 2007;27(51):14179–89.

    Article  CAS  PubMed  Google Scholar 

  81. Baunez C, Amalric M, Robbins TW. Enhanced food-related motivation after bilateral lesions of the subthalamic nucleus. J Neurosci. 2002;22(2):562–8.

    CAS  PubMed  Google Scholar 

  82. Baunez C, Dias C, Cador M, Amalric M. The subthalamic nucleus exerts opposite control on cocaine and ‘natural’ rewards. Nat Neurosci. 2005;8(4):484–9.

    CAS  PubMed  Google Scholar 

  83. Lardeux S, Baunez C. Alcohol preference influences the subthalamic nucleus control on motivation for alcohol in rats. Neuropsychopharmacology. 2008;33(3):634–42.

    Article  PubMed  Google Scholar 

  84. Rouaud T, Lardeux S, Panayotis N, Paleressompoulle D, Cador M, Baunez C. Reducing the desire for cocaine with subthalamic nucleus deep brain stimulation. Proc Natl Acad Sci U S A. 2010;107(3):1196–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Uslaner JM, Dell’Orco JM, Pevzner A, Robinson TE. The influence of subthalamic nucleus lesions on sign-tracking to stimuli paired with food and drug rewards: facilitation of incentive salience attribution? Neuropsychopharma-cology. 2008;33(10):2352–61.

    Google Scholar 

  86. Lardeux S, Pernaud R, Paleressompoulle D, Baunez C. Beyond the reward pathway: coding reward magnitude and error in the rat subthalamic nucleus. J Neurophysiol. 2009;102(4):2526–37.

    Article  PubMed  Google Scholar 

  87. Knobel D, Aybek S, Pollo C, Vingerhoets FJ, Berney A. Rapid resolution of dopamine dysregulation syndrome (DDS) after subthalamic DBS for Parkinson disease (PD): a case report. Cogn Behav Neurol. 2008;21(3):187–9.

    Article  PubMed  Google Scholar 

  88. Lhommee E, Klinger H, Thobois S, Schmitt E, Ardouin C, Bichon A, Kistner A, Fraix V, Xie J, Aya KM, Chabardes S, Seigneuret E, Benabid AL, Mertens P, Polo G, Carnicella S, Quesada JL, Bosson JL, Broussolle E, Pollak P, Krack P. Subthalamic stimulation in Parkinson’s disease: restoring the balance of motivated behaviours. Brain. 2012;135(Pt 5):1463–77.

    Article  PubMed  Google Scholar 

  89. Lim SY, O’Sullivan SS, Kotschet K, Gallagher DA, Lacey C, Lawrence AD, Lees AJ, O’Sullivan DJ, Peppard RF, Rodrigues JP, Schrag A, Silberstein P, Tisch S, Evans AH. Dopamine dysregulation syndrome, impulse control disorders and punding after deep brain stimulation surgery for Parkinson’s disease. J Clin Neurosci. 2009;16(9):1148–52.

    Article  CAS  PubMed  Google Scholar 

  90. Witjas T, Baunez C, Henry JM, Delfini M, Regis J, Cherif AA, Peragut JC, Azulay JP. Addiction in Parkinson’s disease: impact of subthalamic nucleus deep brain stimulation. Mov Disord. 2005;20(8):1052–5.

    Article  PubMed  Google Scholar 

  91. Luigjes J, van den Brink W, Feenstra M, van den Munckhof P, Schuurman PR, Schippers R, Mazaheri A, De Vries TJ, Denys D. Deep brain stimulation in addiction: a review of potential brain targets. Mol Psychiatry. 2012;17(6):572–83.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christelle Baunez Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Baunez, C. (2016). Ablative Neurotherapeutics and Deep Brain Stimulation in Animal Models of Psychiatric Disorders. In: Camprodon, J., Rauch, S., Greenberg, B., Dougherty, D. (eds) Psychiatric Neurotherapeutics. Current Clinical Psychiatry. Humana Press, New York, NY. https://doi.org/10.1007/978-1-59745-495-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-495-7_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-934115-50-3

  • Online ISBN: 978-1-59745-495-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics