Skip to main content
Book cover

Connexins pp 207–224Cite as

Pharmacology of Connexin Channels

  • Chapter

Abstract

Connexin channels play a wide variety of roles in different cell types and tissues. Genetic and molecular approaches have proven useful for understanding the roles of these proteins in tissue function. Identification and characterization of specific and high-affinity inhibitors of these channels would greatly assist investigation of their physiological function; however, progress in this area has been slow. Nevertheless, recent studies have identified a number of small molecules and peptides that inhibit connexin channels. Although the specificity of these new drugs for connexin channels remains problematic, several of these reagents inhibit channels in an isoform-specific manner and do so with reasonable potency. These reagents are likely to be useful for acute studies that investigate the physiological roles of different connexin channels. In addition, some agents appear to bind within the permeability pathway and may be useful in structure-function studies of the pore.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Salameh A, Dhein S. Pharmacology of gap junctions. New pharmacological targets for treatment of arrhythmia, seizure and cancer? Biochim Biophys Acta. 2005;1719:36–58.

    CAS  PubMed  Google Scholar 

  2. Herve JC. Gap junction channels: from protein genes to diseases. Prog Biophys Mol Biol. 2007;94:1–4.

    CAS  PubMed  Google Scholar 

  3. Martin FC, Handforth A. Carbenoxolone and mefloquine suppress tremor in the harmaline mouse model of essential tremor. Mov Disord. 2006;21:1641–9.

    PubMed  Google Scholar 

  4. Bevans CG, Harris AL. Regulation of connexin channels by pH. Direct action of the protonated form of taurine and other aminosulfonates. J Biol Chem. 1999;274: 3711–9.

    CAS  PubMed  Google Scholar 

  5. Locke D, Koreen IV, Liu JY, Harris AL. Reversible pore block of connexin channels by cyclodextrins. J Biol Chem. 2004;279:22883–92.

    CAS  PubMed  Google Scholar 

  6. Srinivas M, Hopperstad MG, Spray DC. Quinine blocks specific gap junction channel subtypes. Proc Natl Acad Sci USA. 2001;98:10942–7.

    CAS  PubMed  Google Scholar 

  7. Harks EG, Camina JP, Peters PH, Ypey DL, Scheenen WJ, van Zoelen EJ, Theuvenet A. Besides affecting intracellular calcium signaling, 2-APB reversibly blocks gap junctional coupling in confluent monolayers, thereby allowing measurement of single-cell membrane currents in undissociated cells. FASEB J. 2003;17:941–3.

    CAS  PubMed  Google Scholar 

  8. Cruikshank SJ, Hopperstad M, Younger M, Connors BW, Spray DC, Srinivas M. Potent block of Cx36 and Cx50 gap junction channels by mefloquine. Proc Natl Acad Sci USA. 2004;101:12364–9.

    CAS  PubMed  Google Scholar 

  9. Bai D, del Corsso C, Srinivas M, Spray DC. Block of specific gap junction channel subtypes by 2-aminoethoxydiphenyl borate (2-APB). J Pharmacol Exp Ther. 2006;319:1452–8.

    CAS  PubMed  Google Scholar 

  10. Tao L, Harris AL. 2-aminoethoxydiphenyl borate directly inhibits channels composed of connexin26 and/or connexin32. Mol Pharmacol. 2007;71:570–9.

    CAS  PubMed  Google Scholar 

  11. Shibayama J, Lewandowski R, Kieken F, Coombs W, Shah S, Sorgen PL, Taffet SM, Delmar M. Identification of a novel peptide that interferes with the chemical regulation of connexin43. Circ Res. 2006;98:1365–72.

    CAS  PubMed  Google Scholar 

  12. Spray DC, Rozental R, Srinivas M. Prospects for rational development of pharmacological gap junction channel blockers. Curr Drug Targets. 2002;3:455–64.

    CAS  PubMed  Google Scholar 

  13. Harris AL. Emerging issues of connexin channels: biophysics fills the gap. Q Rev Biophys. 2001;34:325–472.

    CAS  PubMed  Google Scholar 

  14. Bruzzone R, Barbe MT, Jakob NJ, Monyer H. Pharmacological properties of homomeric and heteromeric pannexin hemichannels expressed in Xenopus oocytes. J Neurochem. 2005;92:1033–43.

    CAS  PubMed  Google Scholar 

  15. Eskandari S, Zampighi GA, Leung DW, Wright EM, Loo DD. Inhibition of gap junction hemichannels by chloride channel blockers. J Membr Biol. 2002;185:93–102.

    CAS  PubMed  Google Scholar 

  16. Musa H, Gough JD, Lees WJ, Veenstra RD. Ionic blockade of the rat connexin40 gap junction channel by large tetraalkylammonium ions. Biophys J. 2001;81:3253–74.

    CAS  PubMed  Google Scholar 

  17. Musa H, Veenstra RD. Voltage-dependent blockade of connexin40 gap junctions by spermine. Biophys J. 2003;84:205–19.

    CAS  PubMed  Google Scholar 

  18. Harks EG, de Roos AD, Peters PH, de Haan LH, Brouwer A, Ypey DL, van Zoelen EJ, Theuvenet AP. Fenamates: a novel class of reversible gap junction blockers. J Pharmacol Exp Ther. 2001;298:1033–41.

    CAS  PubMed  Google Scholar 

  19. Srinivas M, Spray DC. Closure of gap junction channels by arylaminobenzoates. Mol Pharmacol. 2003;63:1389–97.

    CAS  PubMed  Google Scholar 

  20. Burt JM, Spray DC. Volatile anesthetics block intercellular communication between neonatal rat myocardial cells. Circ Res. 1989;65:829–37.

    CAS  PubMed  Google Scholar 

  21. Rozental R, Srinivas M, Spray DC. How to close a gap junction channel. Efficacies and potencies of uncoupling agents. Methods Mol Biol. 2001;154:447–76.

    CAS  Google Scholar 

  22. Johnston MF, Simon SA, Ramon F. Interaction of anaesthetics with electrical synapses. Nature. 1980;286:498–500.

    CAS  PubMed  Google Scholar 

  23. Spray DC, Burt JM. Structure-activity relations of the cardiac gap junction channel. Am J Physiol. 1990;258:C195–205.

    CAS  PubMed  Google Scholar 

  24. Deleze J, Herve JC. Effect of several uncouplers of cell-to-cell communication on gap junction morphology in mammalian heart. J Membr Biol. 1983;74:203–15.

    CAS  PubMed  Google Scholar 

  25. Guan X, Cravatt BF, Ehring GR, Hall JE, Boger DL, Lerner RA, Gilula NB. The sleep-inducing lipid oleamide deconvolutes gap junction communication and calcium wave transmission in glial cells. J Cell Biol. 1997;139:1785–92.

    CAS  PubMed  Google Scholar 

  26. Boger DL, Patterson JE, Guan X, Cravatt BF, Lerner RA, Gilula NB. Chemical requirements for inhibition of gap junction communication by the biologically active lipid oleamide. Proc Natl Acad Sci USA. 1998;95:4810–5.

    CAS  PubMed  Google Scholar 

  27. Warner A, Clements DK, Parikh S, Evans WH, DeHaan RL. Specific motifs in the external loops of connexin proteins can determine gap junction formation between chick heart myocytes. J Physiol. 1995;488:721–8.

    CAS  PubMed  Google Scholar 

  28. Chaytor AT, Evans WH, Griffith TM. Peptides homologous to extracellular loop motifs of connexin 43 reversibly abolish rhythmic contractile activity in rabbit arteries. J Physiol. 1997;503:99–110.

    CAS  PubMed  Google Scholar 

  29. Evans WH, De Vuyst E, Leybaert L. The gap junction cellular internet: connexin hemichannels enter the signaling limelight. Biochem J. 2006;397:1–14.

    CAS  PubMed  Google Scholar 

  30. DeCoursey TE. Mechanism of K+ channel block by verapamil and related compounds in rat alveolar epithelial cells. J Gen Physiol. 1995;106:745–79.

    CAS  PubMed  Google Scholar 

  31. Horrigan FT, Gilly WF. Methadone block of K+ current in squid giant fiber lobe neurons. J Gen Physiol. 1996;107:243–60.

    CAS  PubMed  Google Scholar 

  32. Burt JM, Spray DC. Single-channel events and gating behavior of the cardiac gap junction channel. Proc Natl Acad Sci USA. 1988;85:3431–4.

    CAS  PubMed  Google Scholar 

  33. Weingart R, Bukauskas FF. Long-chain n-alkanols and arachidonic acid interfere with the Vm-sensitive gating mechanism of gap junction channels. Pflügers Arch. 1998;435:310–9.

    CAS  PubMed  Google Scholar 

  34. Bukauskas FF, Peracchia C. Two distinct gating mechanisms in gap junction channels: CO2-sensitive and voltage-sensitive. Biophys J. 1997;72:2137–42.

    CAS  PubMed  Google Scholar 

  35. Bukauskas FF, Weingart R. Voltage-dependent gating of single gap junction channels in an insect cell line. Biophys J. 1994;67:613–25.

    CAS  PubMed  Google Scholar 

  36. Trexler EB, Bennett MVL, Bargiello TA, Verselis VK. Voltage-gating and permeation in a gap junction hemichannel. Proc Natl Acad Sci USA. 1996;93:5836–41.

    CAS  PubMed  Google Scholar 

  37. Davidson JS, Baumgarten IM. Glycyrrhetinic acid derivatives: a novel class of inhibitors of gap-junctional intercellular communication. Structure-activity relationships. J Pharmacol Exp Ther. 1988;246:1104–7.

    CAS  PubMed  Google Scholar 

  38. Davidson JS, Baumgarten IM, Harley EH. Reversible inhibition of intercellular junctional communication by glycyrrhetinic acid. Biochem Biophys Res Commun. 1986;134:29–36.

    CAS  PubMed  Google Scholar 

  39. Locovei S, Scemes E, Qiu F, Spray DC, Dahl G. Pannexin1 is part of the pore forming unit of the P2X(7) receptor death complex. FEBS Lett. 2007;581:483–8.

    CAS  PubMed  Google Scholar 

  40. Suadicani SO, Brosnan CF, Scemes E. P2X7 receptors mediate ATP release and amplification of astrocytic intercellular Ca2+ signaling. J Neurosci. 2006;26:1378–85.

    CAS  PubMed  Google Scholar 

  41. Monder C, Stewart PM, Lakshmi V, Valentino R, Burt D, Edwards CR. Licorice inhibits corticosteroid 11 β-dehydrogenase of rat kidney and liver: in vivo and in vitro studies. Endocrinology. 1989;125:1046–53.

    CAS  PubMed  Google Scholar 

  42. Martin W, Zempel G, Hülser D, Willecke K. Growth inhibition of oncogene-transformed rat fibroblasts by cocultured normal cells: relevance of metabolic cooperation mediated by gap junctions. Cancer Res. 1991;51:5348–51.

    CAS  PubMed  Google Scholar 

  43. Goldberg GS, Moreno AP, Bechberger JF, Hearn SS, Shivers RR, MacPhee DJ, Zhang YC, Naus CC. Evidence that disruption of connexon particle arrangements in gap junction plaques is associated with inhibition of gap junctional communication by a glycyrrhetinic acid derivative. Exp Cell Res 1996;222:48–53.

    Google Scholar 

  44. Guan X, Wilson S, Schlender KK, Ruch RJ. Gap-junction disassembly and connexin 43 dephosphorylation induced by 18 β-glycyrrhetinic acid. Mol Carcinog. 1996;16:157–64.

    CAS  PubMed  Google Scholar 

  45. Guo Y, Martínez-Williams C, Gilbert KA, Rannels DE. Inhibition of gap junction communication in alveolar epithelial cells by 18α-glycyrrhetinic acid. Am J Physiol. 1999;276:L1018–26.

    CAS  PubMed  Google Scholar 

  46. Yang Q, Michelson HB. Gap junctions synchronize the firing of inhibitory interneurons in guinea pig hippocampus. Brain Res. 2001;907:139–43.

    CAS  PubMed  Google Scholar 

  47. Kohling R, Gladwell SJ, Bracci E, Vreugdenhil M, Jefferys JG. Prolonged epileptiform bursting induced by 0-Mg(2+) in rat hippocampal slices depends on gap junctional coupling. Neuroscience. 2001;105:579–87.

    CAS  PubMed  Google Scholar 

  48. Gladwell SJ, Jefferys JG. Second messenger modulation of electrotonic coupling between region CA3 pyramidal cell axons in the rat hippocampus. Neurosci Lett. 2001;300:1–4.

    CAS  PubMed  Google Scholar 

  49. Rekling JC, Shao XM, Feldman JL. Electrical coupling and excitatory synaptic transmission between rhythmogenic respiratory neurons in the preBotzinger complex. J Neurosci. 2000;20:RC113:1–5.

    CAS  PubMed  Google Scholar 

  50. Rouach N, Segal M, Koulakoff A, Giaume C, Avignone E. Carbenoxolone blockade of neuronal network activity in culture is not mediated by an action on gap junctions. J Physiol. 2003;553:729–45.

    CAS  PubMed  Google Scholar 

  51. Vessey JP, Lalonde MR, Mizan HA, Welch NC, Kelly ME, Barnes S. Carbenoxolone inhibition of voltage-dependent Ca channels and synaptic transmission in the retina. J Neurophysiol. 2004;92:1252–6.

    CAS  PubMed  Google Scholar 

  52. Sanchez DY, Blatz AL. Block of neuronal chloride channels by tetraethylammonium ion derivatives. J Gen Physiol. 1995;106:1031–46.

    CAS  PubMed  Google Scholar 

  53. French RJ, Shoukimas JJ. Blockage of squid axon potassium conductance by internal tetra-N-alkylammonium ions of various sizes. Biophys J. 1981;34:271–91.

    CAS  PubMed  Google Scholar 

  54. Williams K. Interactions of polyamines with ion channels. Biochem J. 1997;325:289–97.

    CAS  PubMed  Google Scholar 

  55. Malchow RP, Qian H, Ripps H. A novel action of quinine and quinidine on the membrane conductance of neurons from the vertebrate retina. J Gen Physiol. 1994;104: 1039–55.

    CAS  PubMed  Google Scholar 

  56. White TW, Deans MR, O'Brien J, Al-Ubaidi MR, Goodenough DA, Ripps H, Bruzzone R. Functional characteristics of skate connexin35, a member of the γ subfamily of connexins expressed in the vertebrate retina. Eur J Neurosci. 1999;11:1883–90.

    Google Scholar 

  57. Srinivas M, Kronengold J, Bukauskas FF, Bargiello TA, Verselis VK. Correlative studies of gating in Cx46 and Cx50 hemichannels and gap junction channels. Biophys J. 2005;88:1725–39.

    PubMed  Google Scholar 

  58. Trelles M, Srinivas M. Molecular basis for the block of connexin channels by quinine and its derivatives. Biophysical Society Meeting 2007;442a.

    Google Scholar 

  59. White TW, Gao Y, Leping L, Sellitto C, Srinivas M. Optimal lens proliferation is dependent on the connexin isoform providing gap junctional coupling. Invest Ophthalmol Vis Sci. 2007;48:5630–7.

    PubMed  Google Scholar 

  60. Martínez-Wittinghan FJ, Srinivas M, Sellitto C, White TW, Mathias RT. Mefloquine effects on the lens suggest cooperative gating of gap junction channels. J Membr Biol. 2006;211:163–71.

    CAS  PubMed  Google Scholar 

  61. Kang J, Chen XL, Wang L, Rampe D. Interactions of the antimalarial drug mefloquine with the human cardiac potassium channels KvLQT1/minK and HERG. J Pharmacol Exp Ther. 2001;299:290–6.

    CAS  PubMed  Google Scholar 

  62. Gribble FM, Davis TM, Higham CE, Clark A, Ashcroft FM. The antimalarial agent mefloquine inhibits ATP-sensitive K-channels. Br J Pharmacol. 2000;131:756–60.

    CAS  PubMed  Google Scholar 

  63. Traebert M, Dumotier B, Meister L, Hoffmann P, Dominguez-Estevez M, Suter W. Inhibition of hERG K+ currents by antimalarial drugs in stably transfected HEK293 cells. Eur J Pharmacol. 2004;484:41–8.

    CAS  PubMed  Google Scholar 

  64. Maertens C, Wei L, Droogmans G, Nilius B. Inhibition of volume-regulated and calcium-activated chloride channels by the antimalarial mefloquine. J Pharmacol Exp Ther. 2000;295:29–36.

    CAS  PubMed  Google Scholar 

  65. Wangemann P, Wittner M, Di Stefano A, Englert HC, Lang HJ, Schlatter E, Greger R. Cl-channel blockers in the thick ascending limb of the loop of Henle. Structure activity relationship. Pflügers Arch. 1986;407:S128–41.

    CAS  Google Scholar 

  66. Doughty JM, Miller AL, Langton PD. Nonspecificity of chloride channel blockers in rat cerebral arteries: block of the L-type calcium channel. J Physiol. 1998;507:433–9.

    CAS  PubMed  Google Scholar 

  67. McCarty NA, McDonough S, Cohen BN, Riordan JR, Davidson N, Lester HA. Voltage-dependent block of the cystic fibrosis transmembrane conductance regulator Cl- channel by two closely related arylaminobenzoates. J Gen Physiol. 1993;102:1–23.

    CAS  PubMed  Google Scholar 

  68. Gogelein H, Dahlem D, Englert HC, Lang HJ. Flufenamic acid, mefenamic acid and niflumic acid inhibit single nonselective cation channels in the rat exocrine pancreas. FEBS Lett. 1990;268: 79–82.

    CAS  PubMed  Google Scholar 

  69. Farrugia G, Rae JL, Szurszewski JH. Characterization of an outward potassium current in canine jejunal circular smooth muscle and its activation by fenamates. J Physiol. 1993;468:297–310.

    CAS  PubMed  Google Scholar 

  70. Ottolia M, Toro L. Potentiation of large conductance KCa channels by niflumic, flufenamic, and mefenamic acids. Biophys J. 1994;67:2272–9.

    CAS  PubMed  Google Scholar 

  71. Greenwood IA, Large WA. Comparison of the effects of fenamates on Ca-activated chloride and potassium currents in rabbit portal vein smooth muscle cells. Br J Pharmacol. 1995;116:2939–48.

    CAS  PubMed  Google Scholar 

  72. Woodward RM, Polenzani L, Miledi R. Effects of fenamates and other nonsteroidal anti-inflammatory drugs on rat brain GABAA receptors expressed in Xenopus oocytes. J Pharmacol Exp Ther. 1994;268:806–17.

    CAS  PubMed  Google Scholar 

  73. Maruyama T, Kanaji T, Nakade S, Kanno T, Mikoshiba K. 2APB, 2-aminoethoxydiphenyl borate, a membrane-penetrable modulator of Ins(1,4,5)P3-induced Ca2+ release. J Biochem. 1997;122:498–505.

    CAS  PubMed  Google Scholar 

  74. Dobrydneva Y, Blackmore P. 2-Aminoethoxydiphenyl borate directly inhibits store-operated calcium entry channels in human platelets. Mol Pharmacol. 2001;60:541–52.

    CAS  PubMed  Google Scholar 

  75. Prakriya M, Lewis RS. Potentiation and inhibition of Ca(2+) release-activated Ca(2+) channels by 2-aminoethyldiphenyl borate (2-APB) occurs independently of IP(3) receptors. J Physiol. 2001;536:3–19.

    CAS  PubMed  Google Scholar 

  76. Hu HZ, Gu Q, Wang C, Colton CK, Tang J, Kinoshita-Kawada M, Lee LY, Wood JD, Zhu MX. 2-aminoethoxydiphenyl borate is a common activator of TRPV1, TRPV2, and TRPV3. J Biol Chem. 2004;279:35741–8.

    CAS  PubMed  Google Scholar 

  77. Ma HT, Venkatachalam K, Li HS, Montell C, Kurosaki T, Patterson RL, Gill DL. Assessment of the role of the inositol 1,4,5-trisphosphate receptor in the activation of transient receptor potential channels and store-operated Ca2+ entry channels. J Biol Chem. 2001;276:18888–96.

    CAS  PubMed  Google Scholar 

  78. Bastiaanse EM, Jongsma HJ, van der Laarse A, Takens-Kwak BR. Heptanol-induced decrease in cardiac gap junctional conductance is mediated by a decrease in the fluidity of membranous cholesterol-rich domains. J Membr Biol. 1993;136:135–45.

    CAS  PubMed  Google Scholar 

  79. Burt JM. Uncoupling of cardiac cells by doxyl stearic acids specificity and mechanism of action. Am J Physiol. 1989;256:C913–24.

    CAS  PubMed  Google Scholar 

  80. Takens-Kwak BR, Jongsma HJ, Rook MB, Van Ginneken AC. Mechanism of heptanol-induced uncoupling of cardiac gap junctions: a perforated patch-clamp study. Am J Physiol. 1992;262:C1531–8.

    CAS  PubMed  Google Scholar 

  81. Rup DM, Veenstra RD, Wang HZ, Brink PR, Beyer EC. Chick connexin-56, a novel lens gap junction protein. Molecular cloning and functional expression. J Biol Chem. 1993;268:706–12.

    CAS  PubMed  Google Scholar 

  82. Rawanduzy A, Hansen A, Hansen TW, Nedergaard M. Effective reduction of infarct volume by gap junction blockade in a rodent model of stroke. J Neurosurg. 1997;87:916–20.

    CAS  PubMed  Google Scholar 

  83. Garcia-Dorado D, Inserte J, Ruiz-Meana M, Gonzalez MA, Solares J, Julia M, Barrabes JA, Soler-Soler J. Gap junction uncoupler heptanol prevents cell-to-cell progression of hypercontracture and limits necrosis during myocardial reperfusion. Circulation. 1997;96:3579–86.

    CAS  PubMed  Google Scholar 

  84. Saltman AE, Aksehirli TO, Valiunas V, Gaudette GR, Matsuyama N, Brink P, Krukenkamp IB. Gap junction uncoupling protects the heart against ischemia. J Thorac Cardiovasc Surg. 2002;124:371–6.

    CAS  PubMed  Google Scholar 

  85. Christ GJ, Spektor M, Brink PR, Barr L. Further evidence for the selective disruption of intercellular communication by heptanol. Am J Physiol. 1999;276:H1911–7.

    CAS  PubMed  Google Scholar 

  86. Quastel DM, Saint DA. Modification of motor nerve terminal excitability by alkanols and volatile anaesthetics. Br J Pharmacol. 1986;88:747–56.

    CAS  PubMed  Google Scholar 

  87. McLarnon JG, Quastel DM. Thermodynamic parameters of end-plate channel blockade. J Neurosci. 1984;4:939–44.

    CAS  PubMed  Google Scholar 

  88. Hirche G. Blocking and modifying actions of octanol on Na channels in frog myelinated nerve. Pflügers Arch. 1985;405:180–7.

    CAS  PubMed  Google Scholar 

  89. He DS, Burt JM. Mechanism and selectivity of the effects of halothane on gap junction channel function. Circ Res. 2000;86:E104–9.

    CAS  PubMed  Google Scholar 

  90. Cravatt BF, Prospero-Garcia O, Siuzdak G, Gilula NB, Henriksen SJ, Boger DL, Lerner RA. Chemical characterization of a family of brain lipids that induce sleep. Science. 1995;268:1506–9.

    CAS  PubMed  Google Scholar 

  91. Hirschi KK, Minnich BN, Moore LK, Burt JM. Oleic acid differentially affects gap junction-mediated communication in heart and vascular smooth muscle cells. Am J Physiol. 1993;265:C1517–26.

    CAS  PubMed  Google Scholar 

  92. Lerner RA. A hypothesis about the endogenous analogue of general anesthesia. Proc Natl Acad Sci USA. 1997;94:13375–7.

    CAS  PubMed  Google Scholar 

  93. Boger DL, Patterson JE, Jin Q. Structural requirements for 5-HT2A and 5-HT1A serotonin receptor potentiation by the biologically active lipid oleamide. Proc Natl Acad Sci USA. 1998;95:4102–7.

    CAS  PubMed  Google Scholar 

  94. Lees G, Edwards MD, Hassoni AA, Ganellin CR, Galanakis D. Modulation of GABA(A) receptors and inhibitory synaptic currents by the endogenous CNS sleep regulator cis-9,10-octadecenoamide (cOA). Br J Pharmacol. 1998;124:873–82.

    CAS  PubMed  Google Scholar 

  95. Thomas EA, Carson MJ, Sutcliffe JG. Oleamide-induced modulation of 5-hydroxytryptamine receptor-mediated signaling. Ann NY Acad Sci. 1998;861:183–9.

    CAS  PubMed  Google Scholar 

  96. Verdon B, Zheng J, Nicholson RA, Ganelli CR, Lees G. Stereoselective modulatory actions of oleamide on GABA(A) receptors and voltage-dependent Na+ channels in vitro: a putative endogenous ligand for depressant drug sites in CNS. Br J Pharmacol. 2000;129:283–90.

    CAS  PubMed  Google Scholar 

  97. Gonzalez D, Gomez-Hernandez JM, Barrio LC. Species-specificity of mammalian connexin-26 to form open voltage-dependent hemichannels. FASEB J. 2006;20:2329–38.

    CAS  PubMed  Google Scholar 

  98. Hertzberg EL, Spray DC, Bennett MVL. Reduction of gap junctional conductance by microinjection of antibodies against the 27-kDa liver gap junction polypeptide. Proc Natl Acad Sci USA. 1985;82:2412–6.

    CAS  PubMed  Google Scholar 

  99. Hofer A, Dermietzel R. Visualization and functional blocking of gap junction hemichannels (connexons) with antibodies against external loop domains in astrocytes. Glia. 1998;24:141–54.

    CAS  PubMed  Google Scholar 

  100. Meyer RA, Laird DW, Revel JP, Johnson RG. Inhibition of gap junction and adherens junction assembly by connexin and A-CAM antibodies. J Cell Biol. 1992;119:179–89.

    CAS  PubMed  Google Scholar 

  101. Dahl G, Nonner W, Werner R. Attempts to define functional domains of gap junction proteins with synthetic peptides. Biophys J. 1994;67:1816–22.

    CAS  PubMed  Google Scholar 

  102. Dahl G, Werner R, Levine E, Rabadan-Diehl C. Mutational analysis of gap junction formation. Biophys J. 1992;62:172–80.

    CAS  PubMed  Google Scholar 

  103. Boitano S, Evans WH. Connexin mimetic peptides reversibly inhibit Ca(2+) signaling through gap junctions in airway cells. Am J Physiol Lung Cell Mol Physiol. 2000;279:L623–30.

    CAS  PubMed  Google Scholar 

  104. Berthoud VM, Beyer EC, Seul KH. Peptide inhibitors of intercellular communication. Am J Physiol Lung Cell Mol Physiol. 2000;279:L619–22.

    CAS  PubMed  Google Scholar 

  105. Isakson BE, Seedorf GJ, Lubman RL, Evans WH, Boitano S. Cell-cell communication in heterocellular cultures of alveolar epithelial cells. Am J Respir Cell Mol Biol. 2003;29:552–61.

    CAS  PubMed  Google Scholar 

  106. Dora KA, Martin PE, Chaytor AT, Evans WH, Garland CJ, Griffith TM. Role of heterocellular Gap junctional communication in endothelium-dependent smooth muscle hyperpolarization: inhibition by a connexin-mimetic peptide. Biochem Biophys Res Commun. 1999;254:27–31.

    CAS  PubMed  Google Scholar 

  107. Martin PE, Wall C, Griffith TM. Effects of connexin-mimetic peptides on gap junction functionality and connexin expression in cultured vascular cells. Br J Pharmacol. 2005;144:617–27.

    CAS  PubMed  Google Scholar 

  108. Griffith TM, Chaytor AT, Edwards DH. The obligatory link: role of gap junctional communication in endothelium-dependent smooth muscle hyperpolarization. Pharmacol Res. 2004;49:551–64.

    CAS  PubMed  Google Scholar 

  109. Isakson BE, Duling BR. Heterocellular contact at the myoendothelial junction influences gap junction organization. Circ Res. 2005;97:44–51.

    CAS  PubMed  Google Scholar 

  110. Kwak BR, Jongsma HJ. Selective inhibition of gap junction channel activity by synthetic peptides. J Physiol. 1999;516:679–85.

    CAS  PubMed  Google Scholar 

  111. Braet K, Aspeslagh S, Vandamme W, Willecke K, Martin PE, Evans WH, Leybaert L. Pharmacological sensitivity of ATP release triggered by photoliberation of inositol-1,4,5-trisphosphate and zero extracellular calcium in brain endothelial cells. J Cell Physiol. 2003;197:205–13.

    CAS  PubMed  Google Scholar 

  112. Braet K, Vandamme W, Martin PE, Evans WH, Leybaert L. Photoliberating inositol-1,4,5-trisphosphate triggers ATP release that is blocked by the connexin mimetic peptide gap 26. Cell Calcium. 2003;33:37–48.

    CAS  PubMed  Google Scholar 

  113. De Vuyst E, Decrock E, Cabooter L, Dubyak GR, Naus CC, Evans WH, Leybaert L. Intracellular calcium changes trigger connexin 32 hemichannel opening. EMBO J. 2006;25:34–44.

    PubMed  Google Scholar 

  114. Bukauskas FF, Jordan K, Bukauskiene A, Bennett MVL, Lampe PD, Laird DW, Verselis VK. Clustering of connexin 43-enhanced green fluorescent protein gap junction channels and functional coupling in living cells. Proc Natl Acad Sci USA. 2000;97:2556–61.

    CAS  PubMed  Google Scholar 

  115. Matchkov VV, Rahman A, Bakker LM, Griffith TM, Nilsson H, Aalkjaer C. Analysis of effects of connexin-mimetic peptides in rat mesenteric small arteries. Am J Physiol Heart Circ Physiol. 2006;291:H357–67.

    CAS  PubMed  Google Scholar 

  116. Wang J, Ma M, Locovei S, Keane R, Dahl GP. Modulation of membrane channel currents by gap junction protein mimetic peptides: size matters. Am J Physiol Cell Physiol. 2007;293:C1112–9.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Work in the author’s laboratory related to this topic was supported by National Eye Institute (NEI) grant EY13869.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miduturu Srinivas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Srinivas, M. (2009). Pharmacology of Connexin Channels. In: Harris, A.L., Locke, D. (eds) Connexins. Humana Press. https://doi.org/10.1007/978-1-59745-489-6_8

Download citation

Publish with us

Policies and ethics