Skip to main content

The Connexin Channel Pore: Pore-Lining Segments and Residues

  • Chapter
Connexins

Abstract

Connexins form channels with large aqueous pores that mediate flux of ions and biological signaling molecules between cells and across the plasma membrane. Conductance and selectivity properties of connexin channels are diverse. A number of studies have attempted to define the connexin pore in molecular terms and to reveal the key elements of the pore structure that may differ across connexins. These studies include point mutagenesis, domain exchange, scanning cysteine accessibility mutagenesis, and electron cryomicroscopy. Each type of study has provided information that points to specific segments of connexin protein as contributing to the pore lining. However, despite this work, and significant advances in understanding channel structure, gating, and permeation, current views have not reached a consensus regarding the principal domains contributing to the pore.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Harris AL. Emerging issues of connexin channels: biophysics fills the gap. Q Rev Biophys. 2001;34:325–472.

    CAS  PubMed  Google Scholar 

  2. Alexander DB, Goldberg GS. Transfer of biologically important molecules between cells through gap junction channels. Curr Med Chem. 2003;10:2045–58.

    Article  CAS  PubMed  Google Scholar 

  3. Neijssen J, Herberts C, Drijfhout JW, Reits E, Janssen L, Neefjes J. Cross-presentation by intercellular peptide transfer through gap junctions. Nature. 2005;434:83–8.

    Article  CAS  PubMed  Google Scholar 

  4. Valiunas V, Polosina YY, Miller H, Potapova IA, Valiuniene L, Doronin S, Mathias RT, Robinson RB, Rosen MR, Cohen IS, Brink PR. Connexin-specific cell-to-cell transfer of short interfering RNA by gap junctions. J Physiol. 2005;568:459–68.

    Article  CAS  PubMed  Google Scholar 

  5. Goldberg GS, Valiunas V, Brink PR. Selective permeability of gap junction channels. Biochim Biophys Acta. 2004;1662:96–101.

    Article  CAS  PubMed  Google Scholar 

  6. Weber PA, Chang HC, Spaeth KE, Nitsche JM, Nicholson BJ. The permeability of gap junction channels to probes of different size is dependent on connexin composition and permeant-pore affinities. Biophys J. 2004;87:958–73.

    Article  CAS  PubMed  Google Scholar 

  7. Bevans CG, Kordel M, Rhee SK, Harris AL. Isoform composition of connexin channels determines selectivity among second messengers and uncharged molecules. J Biol Chem. 1998;273:2808–16.

    Article  CAS  PubMed  Google Scholar 

  8. Ayad WA, Locke D, Koreen IV, Harris AL. Heteromeric, but not homomeric, connexin channels are selectively permeable to inositol phosphates. J Biol Chem. 2006;281:16727–39.

    Google Scholar 

  9. Doyle DA, Morais Cabral J, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, MacKinnon R. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science. 1998;280:69–77.

    Article  CAS  PubMed  Google Scholar 

  10. Jiang Y, Lee A, Chen J, Ruta V, Cadene M, Chait BT, MacKinnon R. X-ray structure of a voltage-dependent K+ channel. Nature. 2003;423:33–41.

    Article  CAS  PubMed  Google Scholar 

  11. Long SB, Campbell EB, Mackinnon R. Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science. 2005;309:897–903.

    Article  CAS  PubMed  Google Scholar 

  12. Noskov SY, Roux B. Ion selectivity in potassium channels. Biophys Chem. 2006;124:279–91.

    Article  CAS  PubMed  Google Scholar 

  13. Unger VM, Kumar NM, Gilula NB, Yeager M. Three-dimensional structure of a recombinant gap junction membrane channel. Science. 1999;283:1176–80.

    Article  CAS  PubMed  Google Scholar 

  14. Oshima A, Tani K, Hiroaki Y, Fujiyoshi Y, Sosinsky GE. Three-dimensional structure of a human connexin26 gap junction channel reveals a plug in the vestibule. Proc Natl Acad Sci USA. 2007;104:10034–9

    Google Scholar 

  15. Ghoshroy S, Goodenough DA, Sosinsky GE. Preparation, characterization, and structure of half gap junctional layers split with urea and EGTA. J Membr Biol. 1995;146:15–28.

    CAS  PubMed  Google Scholar 

  16. Müller DJ, Hand GM, Engel A, Sosinsky GE. Conformational changes in surface structures of isolated connexin 26 gap junctions. EMBO J. 2002;21:3598–607.

    Article  PubMed  Google Scholar 

  17. Thimm J, Mechler A, Lin H, Rhee S, Lal R. Calcium-dependent open/closed conformations and interfacial energy maps of reconstituted hemichannels. J Biol Chem. 2005;280:10646–54.

    Google Scholar 

  18. Fleishman SJ, Unger VM, Yeager M, Ben-Tal N. A C-α model for the transmembrane α helices of gap junction intercellular channels. Mol Cell. 2004;15:879–88.

    Article  CAS  PubMed  Google Scholar 

  19. Long SB, Campbell EB, Mackinnon R. Voltage sensor of Kv1.2: structural basis of electromechanical coupling. Science. 2005;309:903–8.

    Article  CAS  PubMed  Google Scholar 

  20. Tombola F, Pathak MM, Isacoff EY. How does voltage open an ion channel? Annu Rev Cell Dev Biol. 2006;22:23–52.

    Article  CAS  PubMed  Google Scholar 

  21. Spray DC, Harris AL, Bennett MVL. Equilibrium properties of a voltage-dependent junctional conductance. J Gen Physiol. 1981;77:77–93.

    Article  CAS  PubMed  Google Scholar 

  22. Bukauskas FF, Verselis VK. Gap junction channel gating. Biochim Biophys Acta. 2004;1662:42–60.

    Article  CAS  PubMed  Google Scholar 

  23. Harris AL, Spray DC, Bennett MVL. Kinetic properties of a voltage-dependent junctional conductance. J Gen Physiol. 1981;77:95–117.

    Article  CAS  PubMed  Google Scholar 

  24. Verselis VK, Bennett MVL, Bargiello TA. A voltage-dependent gap junction in Drosophila melanogaster. Biophys J. 1991;59:114–26.

    Article  CAS  PubMed  Google Scholar 

  25. Weingart R, Bukauskas FF. Gap junction channels of insects exhibit a residual conductance. Pflügers Arch. 1993;424:192–4.

    Article  CAS  PubMed  Google Scholar 

  26. Moreno AP, Rook MB, Fishman GI, Spray DC. Gap junction channels: distinct voltage-sensitive and – insensitive conductance states. Biophys J. 1994;67:113–9.

    Article  CAS  PubMed  Google Scholar 

  27. Trexler EB, Bennett MVL, Bargiello TA, Verselis VK. Voltage-gating and permeation in a gap junction hemichannel. Proc Natl Acad Sci USA. 1996;93:5836–41.

    Article  CAS  PubMed  Google Scholar 

  28. Verselis VK, Ginter CS, Bargiello TA. Opposite voltage-gating polarities of two closely related connexins. Nature. 1994;368:348–51.

    Article  CAS  PubMed  Google Scholar 

  29. Oh S, Abrams CK, Verselis VK, Bargiello TA. Stoichiometry of transjunctional voltage-gating polarity reversal by a negative charge substitution in the amino terminus of a connexin32 chimera. J Gen Physiol. 2000;116:13–31.

    Article  CAS  PubMed  Google Scholar 

  30. Purnick PE, Benjamin DC, Verselis VK, Bargiello TA, Dowd TL. Structure of the amino terminus of a gap junction protein. Arch Biochem Biophys. 2000;381:181–90.

    Article  CAS  PubMed  Google Scholar 

  31. Purnick PE, Oh S, Abrams CK, Verselis VK, Bargiello TA. Reversal of the gating polarity of gap junctions by negative charge substitutions in the N-terminus of connexin 32. Biophys J. 2000;79:2403–15.

    Article  CAS  PubMed  Google Scholar 

  32. Oh S, Rivkin S, Tang Q, Verselis VK, Bargiello TA. Determinants of gating polarity of a connexin 32 hemichannel. Biophys J. 2004;87:912–28.

    Article  CAS  PubMed  Google Scholar 

  33. Musa H, Fenn E, Crye M, Gemel J, Beyer EC, Veenstra RD. Amino terminal glutamate residues confer spermine sensitivity and affect voltage-gating and channel conductance of rat connexin40 gap junctions. J Physiol. 2004;557:863–78.

    Article  CAS  PubMed  Google Scholar 

  34. Tong JJ, Ebihara L. Structural determinants for the differences in voltage-gating of chicken Cx56 and Cx45.6 gap-junctional hemichannels. Biophys J. 2006;91:2142–54.

    Article  CAS  PubMed  Google Scholar 

  35. Pfahnl A, Zhou XW, Werner R, Dahl G. A chimeric connexin forming gap junction hemichannels. Pflügers Arch. 1997;433:773–9.

    Article  CAS  PubMed  Google Scholar 

  36. Trexler EB, Bukauskas FF, Kronengold J, Bargiello TA, Verselis VK. The first extracellular loop domain is a major determinant of charge selectivity in connexin46 channels. Biophys J. 2000;79:3036–51.

    Article  CAS  PubMed  Google Scholar 

  37. Musa H, Veenstra RD. Voltage-dependent blockade of connexin40 gap junctions by spermine. Biophys J. 2003;84:205–19.

    Article  CAS  PubMed  Google Scholar 

  38. Hu X, Dahl G. Exchange of conductance and gating properties between gap junction hemichannels. FEBS Lett. 1999;45:113–7.

    Article  Google Scholar 

  39. Hu X, Ma M, Dahl G. Conductance of connexin hemichannels segregates with the first transmembrane segment. Biophys J. 2006;90:140–50.

    Article  CAS  PubMed  Google Scholar 

  40. Zhou XW, Pfahnl A, Werner R, Hudder A, Llanes A, Luebke A, Dahl G. Identification of a pore-lining segment in gap junction hemichannels. Biophys J. 1997;72:1946–53.

    Article  CAS  PubMed  Google Scholar 

  41. Kronengold J, Trexler EB, Bukauskas FF, Bargiello TA, Verselis VK. Single-channel SCAM identifies pore-lining residues in the first extracellular loop and first transmembrane domains of Cx46 hemichannels. J Gen Physiol. 2003;122:389–405.

    Article  CAS  PubMed  Google Scholar 

  42. Karlin A, Akabas MH. Substituted-cysteine accessibility method. Meth Enzymol. 1998;293:123–45.

    Article  CAS  PubMed  Google Scholar 

  43. Pfahnl A, Dahl G. Localization of a voltage gate in connexin46 gap junction hemichannels. Biophys J. 1998;75:2323–31.

    Article  CAS  PubMed  Google Scholar 

  44. Skerrett IM, Aronowitz J, Shin JH, Cymes G, Kasperek E, Cao FL, Nicholson BJ. Identification of amino acid residues lining the pore of a gap junction channel. J Cell Biol. 2002;159:349–60.

    Article  CAS  PubMed  Google Scholar 

  45. Bennett MVL, Zheng X, Sogin ML. The connexins and their family tree. Soc Gen Physiol Ser. 1994;49:223–33.

    CAS  PubMed  Google Scholar 

  46. Cruciani V, Mikalsen SO. Evolutionary selection pressure and family relationships among connexin genes. Biol Chem. 2007;388:253–64.

    Article  CAS  PubMed  Google Scholar 

  47. Valiunas V, Weingart R. Electrical properties of gap junction hemichannels identified in transfected HeLa cells. Pflügers Arch. 2000;440:366–79.

    Article  CAS  PubMed  Google Scholar 

  48. Bukauskas FF, Kreuzberg MM, Rackauskas M, Bukauskiene A, Bennett MV, Verselis VK, Willecke K. Properties of mouse connexin 30.2 and human connexin 31.9 hemichannels: implications for atrioventricular conduction in the heart. Proc Natl Acad Sci USA. 2006;103:9726–31.

    Article  CAS  PubMed  Google Scholar 

  49. Beahm DL, Hall JE. Hemichannel and junctional properties of connexin 50. Biophys J. 2002;82:2016–31.

    Article  CAS  PubMed  Google Scholar 

  50. Srinivas M, Kronengold J, Bukauskas FF, Bargiello TA, Verselis VK. Correlative studies of gating in Cx46 and Cx50 hemichannels and gap junction channels. Biophys J. 2005;88:1725–39.

    Article  CAS  PubMed  Google Scholar 

  51. Bukauskas FF, Bukauskiene A, Bennett MVL, Verselis VK. Gating properties of gap junction channels assembled from connexin43 and connexin43 fused with green fluorescent protein. Biophys J. 2001;81:137–52.

    Article  CAS  PubMed  Google Scholar 

  52. Contreras JE, Sáez JC, Bukauskas FF, Bennett MVL. Functioning of cx43 hemichannels demonstrated by single channel properties. Cell Commun Adhes. 2003;10:245–9.

    CAS  PubMed  Google Scholar 

  53. Trexler EB, Bukauskas FF, Bennett MVL, Bargiello TA, Verselis VK. Rapid and direct effects of pH on connexins revealed by the connexin46 hemichannel preparation. J Gen Physiol. 1999;113:721–42.

    Article  CAS  PubMed  Google Scholar 

  54. Ebihara L, Steiner E. Properties of a nonjunctional current expressed from a rat connexin46 cDNA in Xenopus oocytes. J Gen Physiol. 1993;102:59–74.

    Article  CAS  PubMed  Google Scholar 

  55. Srinivas M, Calderon DP, Kronengold J, Verselis VK. Regulation of connexin hemichannels by monovalent cations. J Gen Physiol. 2006;127:67–75.

    Article  CAS  PubMed  Google Scholar 

  56. Valiunas V. Biophysical properties of connexin-45 gap junction hemichannels studied in vertebrate cells. J Gen Physiol. 2002;119:147–64.

    Article  CAS  PubMed  Google Scholar 

  57. Kaneko S, Akaike A, Satoh M. Cut-open recording techniques. Meth Enzymol. 1998;293:319–31.

    Article  CAS  PubMed  Google Scholar 

  58. Bera AK, Chatav M, Akabas MH. GABA(A) receptor M2-M3 loop secondary structure and changes in accessibility during channel gating. J Biol Chem. 2002;277:43002–10.

    Google Scholar 

  59. Kronengold J, Trexler EB, Bukauskas FF, Bargiello TA, Verselis VK. Pore-lining residues identified by single channel SCAM studies in Cx46 hemichannels. Cell Commun Adhes. 2003;10:193–9.

    CAS  PubMed  Google Scholar 

  60. Dahl G, Levine E, Rabadan Diehl C, Werner R. Cell/cell channel formation involves disulfide exchange. Eur J Biochem. 1991;197:141–4.

    Article  CAS  PubMed  Google Scholar 

  61. Foote CI, Zhou L, Zhu X, Nicholson BJ. The pattern of disulfide linkages in the extracellular loop regions of connexin 32 suggests a model for the docking interface of gap junctions. J Cell Biol. 1998;140:1187–97.

    Article  CAS  PubMed  Google Scholar 

  62. Bao X, Chen Y, Reuss L, Altenberg GA. Functional expression in Xenopus oocytes of gap-junctional hemichannels formed by a cysteine-less connexin 43. J Biol Chem. 2004;279:9689–92.

    Article  CAS  PubMed  Google Scholar 

  63. Chang G, Spencer RH, Lee AT, Barclay MT, Rees DC. Structure of the MscL homolog from Mycobacterium tuberculosis: a gated mechanosensitive ion channel. Science. 1998;282:2220–6.

    Article  CAS  PubMed  Google Scholar 

  64. Miyazawa A, Fujiyoshi Y, Unwin N. Structure and gating mechanism of the acetylcholine receptor pore. Nature. 2003;423:949–55.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author would like to thank Drs. Miduturu Srinivas, Thaddeus Bargiello, and Myles Akabas for helpful discussions.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Verselis, V.K. (2009). The Connexin Channel Pore: Pore-Lining Segments and Residues. In: Harris, A.L., Locke, D. (eds) Connexins. Humana Press. https://doi.org/10.1007/978-1-59745-489-6_3

Download citation

Publish with us

Policies and ethics