Skip to main content
Book cover

Connexins pp 397–417Cite as

Connexins in the Mammalian Retina

  • Chapter

Abstract

Gap junctions are particularly numerous in the retina and found in every major retinal cell type. They provide the primary connections in certain retinal pathways and form the substrate for signal averaging in others. At least four neuronal connexins are found in the mammalian retina, and different cell types express specific connexins with distinct properties. Cones are coupled via Cx36 gap junctions, which are thought to improve the cone signal-to-noise ratio. In contrast, rod-cone coupling, perhaps via heterotypic gap junctions, forms the basis for an alternate processing pathway that is active at intermediate light intensities. Horizontal cells are extensively coupled to provide spatial averaging over a wide area. Modulation of these junctions changes the spatial profile of horizontal cell feedback to photoreceptors. In rabbit and cat retina, A-type horizontal cells are coupled via massive Cx50 gap junctions, whereas the axon-bearing or B-type horizontal cells of the mouse and rabbit retina have different coupling properties and may express Cx57. In the inner retina, the primary output of the rod bipolar cell is to AII amacrine cells, which form a well-coupled network via Cx36 gap junctions. The AII network is prominent in all mammalian retinas and seems to provide for signal averaging in the noisy high-gain rod pathway. In addition, the signaling pathway from AII amacrine cells to ON cone bipolar cells passes via gap junctions, some of which may be heterotypic Cx36–Cx45 gap junctions. Many other types of amacrine cells and ganglion cells are also coupled via Cx36 or Cx45 gap junctions. Ganglion cell coupling produces synchronized spike activity between neighboring cells of the same type. The prevalence of gap junctions in the retina may occur because signal averaging and noise reduction are important strategies in the early stages of visual processing. Finally, while several retinal connexins have now been described, the connexins expressed in some coupled cells have not yet been identified. This suggests there are additional neuronal connexins (or perhaps pannexins) still to be identified in the mammalian retina.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Wassle H. Parallel processing in the mammalian retina. Nat Rev Neurosci. 2004;5:747–57.

    Article  PubMed  Google Scholar 

  2. Shlens J, Field GD, Gauthier JL, Grivich MI, Petrusca D, Sher A, Litke AM, Chichilnisky EJ. The structure of multi-neuron firing patterns in primate retina. J Neurosci. 2006;26:8254–66.

    Article  CAS  PubMed  Google Scholar 

  3. MacNeil MA, Heussy JK, Dacheux RF, Raviola E, Masland RH. The population of bipolar cells in the rabbit retina. J Comp Neurol. 2004;472:73–86.

    Article  PubMed  Google Scholar 

  4. Hartveit E. Functional organization of cone bipolar cells in the rat retina. J Neurophysiol. 1997;77:1716–30.

    CAS  PubMed  Google Scholar 

  5. Ghosh KK, Bujan S, Haverkamp S, Feigenspan A, Wassle H. Types of bipolar cells in the mouse retina. J Comp Neurol. 2004;469:70–82.

    Article  PubMed  Google Scholar 

  6. DeVries SH. Bipolar cells use kainate and AMPA receptors to filter visual information into separate channels. Neuron. 2000;28:847–56.

    Article  CAS  PubMed  Google Scholar 

  7. Slaughter MM, Miller RF. 2-amino-4-phosphonobutyric acid: a new pharmacological tool for retina research. Science. 1981;211:182–5.

    Article  CAS  PubMed  Google Scholar 

  8. Rockhill RL, Daly FJ, MacNeil MA, Brown SP, Masland RH. The diversity of ganglion cells in a mammalian retina. J Neurosci. 2002;22:3831–43.

    CAS  PubMed  Google Scholar 

  9. Bloomfield SA, Dacheux RF. Rod vision: pathways and processing in the mammalian retina. Prog Retin Eye Res. 2001;20:351–84.

    Article  CAS  PubMed  Google Scholar 

  10. Strettoi E, Raviola E, Dacheux RF. Synaptic connections of the narrow-field, bistratified rod amacrine cell (AII) in the rabbit retina. J Comp Neurol. 1992;325:152–68.

    Article  CAS  PubMed  Google Scholar 

  11. Strettoi E, Dacheux RF, Raviola E. Synaptic connections of rod bipolar cells in the inner plexiform layer of the rabbit retina. J Comp Neurol. 1990;295:449–66.

    Article  CAS  PubMed  Google Scholar 

  12. Strettoi E, Dacheux RF, Raviola E. Cone bipolar cells as interneurons in the rod pathway of the rabbit retina. J Comp Neurol. 1994;347:139–49.

    Article  CAS  PubMed  Google Scholar 

  13. Massey SC, O'Brien JJ, Trexler EB, Li W, Keung JW, Mills SL, O’Brien J. Multiple neuronal connexins in the mammalian retina. Cell Commun Adhes. 2003;10:425–30.

    CAS  PubMed  Google Scholar 

  14. Feigenspan A, Janssen-Bienhold U, Hormuzdi S, Monyer H, Degen J, Söhl G, Willecke K, Ammermüller J, Weiler R. Expression of connexin36 in cone pedicles and off-cone bipolar cells of the mouse retina. J Neurosci. 2004;24:3325–34.

    Article  CAS  PubMed  Google Scholar 

  15. Feigenspan A, Teubner B, Willecke K, Weiler R. Expression of neuronal connexin36 in AII Amacrine Cells of the mammalian retina. J Neurosci. 2001;21:230–9.

    CAS  PubMed  Google Scholar 

  16. Mills SL, O'Brien JJ, Li W, O'Brien J, Massey SC. Rod pathways in the mammalian retina use connexin36. J Comp Neurol. 2001;436:336–50.

    Article  CAS  PubMed  Google Scholar 

  17. O'Brien JJ, Li W, Pan F, Keung J, O'Brien J, Massey SC. Coupling between A-type horizontal cells is mediated by connexin 50 gap junctions in the rabbit retina. J Neurosci. 2006;26:11624–36.

    Google Scholar 

  18. Hombach S, Janssen-Bienhold U, Söhl G, Schubert T, Büssow H, Ott T, Weiler R, Willecke K. Functional expression of connexin57 in horizontal cells of the mouse retina. Eur J Neurosci. 2004;19:2633–40.

    Article  PubMed  Google Scholar 

  19. Dedek K, Schultz K, Pieper M, Dirks P, Maxeiner S, Willecke K, Weiler R, Janssen-Bienhold U. Localization of heterotypic gap junctions composed of connexin45 and connexin36 in the rod pathway of the mouse retina. Eur J Neurosci. 2006;24:1675–86.

    Article  PubMed  Google Scholar 

  20. O'Brien J, Nguyen HB, Mills SL. Cone photoreceptors in bass retina use two connexins to mediate electrical coupling. J Neurosci. 2004;24:5632–42.

    Article  PubMed  Google Scholar 

  21. Shields CR, Klooster J, Claassen Y, Ul-Hussain M, Zoidl G, Dermietzel R, Kamermans M. Retinal horizontal cell-specific promotor activity and protein expression of zebrafish connexin 52.6 and connexin 55.5. J Comp Neurol. 2007;501:765–79.

    Article  CAS  PubMed  Google Scholar 

  22. O'Brien J, Bruzzone R, White TW, Al-Ubaidi MR, Ripps H. Cloning and expression of two related connexins from the perch retina define a distinct subgroup of the connexin family. J Neurosci. 1998;18:7625–37.

    PubMed  Google Scholar 

  23. Kothmann WW, Li X, Burr GS, O'Brien J. Connexin 35/36 is phosphorylated at regulatory sites in the retina. Vis Neurosci. 2007;24:363–75.

    Article  PubMed  Google Scholar 

  24. Haverkamp S, Grunert U, Wassle H. The cone pedicle, a complex synapse in the retina. Neuron 2000;27:85–95.

    Article  CAS  PubMed  Google Scholar 

  25. Ahnelt PK, Kolb H. The mammalian photoreceptor mosaic-adaptive design. Prog Retin Eye Res. 2000;19:711–77.

    Article  CAS  PubMed  Google Scholar 

  26. Raviola E, Gilula NB. Gap junctions between photoreceptor cells in the vertebrate retina. Proc Natl Acad Sci USA. 1973;70:1677–81.

    Article  CAS  PubMed  Google Scholar 

  27. Tsukamoto Y, Morigiwa K, Ueda M, Sterling P. Microcircuits for night vision in mouse retina. J Neurosci. 2001;21:8616–23.

    CAS  PubMed  Google Scholar 

  28. Tsukamoto Y, Masarachia P, Schein SJ, Sterling P. Gap junctions between the pedicles of macaque foveal cones. Vision Res. 1992;32:1809–15.

    Article  CAS  PubMed  Google Scholar 

  29. Li W, DeVries SH. Separate blue and green cone networks in the mammalian retina. Nat Neurosci. 2004;7:751–6.

    Article  CAS  PubMed  Google Scholar 

  30. DeVries SH, Qi X, Smith R, Makous W, Sterling P. Electrical coupling between mammalian cones. Curr Biol. 2002;12:1900–7.

    Article  CAS  PubMed  Google Scholar 

  31. Hornstein EP, Verweij J, Schnapf JL. Electrical coupling between red and green cones in primate retina. Nat Neurosci. 2004;7:745–50.

    Article  CAS  PubMed  Google Scholar 

  32. Ahnelt P, Keri C, Kolb H. Identification of pedicles of putative blue-sensitive cones in the human retina. J Comp Neurol. 1990;293:39–53.

    Article  CAS  PubMed  Google Scholar 

  33. Zoidl G, Bruzzone R, Weickert S, Kremer M, Zoidl C, Mitropoulou G, Srinivas M, Spray DC, Dermietzel R. Molecular cloning and functional expression of ZfCx52.6: a novel connexin with hemichannel-forming properties expressed in horizontal cells of the zebrafish retina. J Biol Chem. 2004;279:2913–21.

    Article  CAS  PubMed  Google Scholar 

  34. Hsu A, Smith RG, Buchsbaum G, Sterling P. Cost of cone coupling to trichromacy in primate fovea. J Opt Soc Am A Opt Image Sci Vis. 2000;17:635–40.

    Article  CAS  PubMed  Google Scholar 

  35. Smith RG, Freed MA, Sterling P. Microcircuitry of the dark-adapted cat retina: functional architecture of the rod-cone network. J Neurosci. 1986;6:3505–17.

    CAS  PubMed  Google Scholar 

  36. Hornstein EP, Verweij J, Li PH, Schnapf JL. Gap-junctional coupling and absolute sensitivity of photoreceptors in macaque retina. J Neurosci. 2005;25:11201–9.

    Google Scholar 

  37. Schneeweis DM, Schnapf JL. The photovoltage of macaque cone photoreceptors: adaptation, noise, and kinetics. J Neurosci. 1999;19:1203–16.

    CAS  PubMed  Google Scholar 

  38. Schneeweis DM, Schnapf JL. Photovoltage of rods and cones in the macaque retina. Science 1995;268:1053–6.

    Article  CAS  PubMed  Google Scholar 

  39. Nelson R. Cat cones have rod input: a comparison of the response properties of cones and horizontal cell bodies in the retina of the cat. J Comp Neurol. 1977;172:109–35.

    Article  CAS  PubMed  Google Scholar 

  40. Deans MR, Volgyi B, Goodenough DA, Bloomfield SA, Paul DL. Connexin36 is essential for transmission of rod-mediated visual signals in the mammalian retina. Neuron. 2002;36:703–12.

    Article  CAS  PubMed  Google Scholar 

  41. Lee EJ, Han JW, Kim HJ, Kim IB, Lee MY, Oh SJ, Chung JW, Chun MH. The immunocytochemical localization of connexin 36 at rod and cone gap junctions in the guinea pig retina. Eur J Neurosci. 2003; 18:2925–34.

    Article  PubMed  Google Scholar 

  42. Dunn FA, Rieke F. The impact of photoreceptor noise on retinal gain controls. Curr Opin Neurobiol. 2006;16:363–70.

    Article  CAS  PubMed  Google Scholar 

  43. Zhang J, Wu SM. Connexin35/36 gap junction proteins are expressed in photoreceptors of the tiger salamander retina. J Comp Neurol. 2004;470:1–12.

    Article  CAS  PubMed  Google Scholar 

  44. Zaghloul KA, Boahen K. Optic nerve signals in a neuromorphic chip I: outer and inner retina models. IEEE Trans Biomed Eng. 2004;51:657–66.

    Article  PubMed  Google Scholar 

  45. Pan F, Massey SC. Rod and cone input to horizontal cells in the rabbit retina. J Comp Neurol. 2007;500:815–31.

    Article  CAS  PubMed  Google Scholar 

  46. Mills SL, Massey SC. Distribution and coverage of A- and B-type horizontal cells stained with neurobiotin in the rabbit retina. Vis Neurosci. 1994;11:549–60.

    Article  CAS  PubMed  Google Scholar 

  47. Dacheux RF, Raviola E. Horizontal cells in the retina of the rabbit. J Neurosci. 1982;2:1486–93.

    CAS  PubMed  Google Scholar 

  48. Vaney DI. The coupling pattern of axon-bearing horizontal cells in the mammalian retina. Proc Biol Sci. 1993;252:93–101.

    Article  CAS  PubMed  Google Scholar 

  49. Verweij J, Hornstein EP, Schnapf JL. Surround antagonism in macaque cone photoreceptors. J Neurosci. 2003;23:10249–57.

    Google Scholar 

  50. Cueva JG, Haverkamp S, Reimer RJ, Edwards R, Wassle H, Brecha NC. Vesicular γ-aminobutyric acid transporter expression in amacrine and horizontal cells. J Comp Neurol. 2002;445:227–37.

    Article  CAS  PubMed  Google Scholar 

  51. Kamermans M, Fahrenfort I, Schultz K, Janssen-Bienhold U, Sjoerdsma T, Weiler R. Hemichannel-mediated inhibition in the outer retina. Science 2001;292: 1178–80.

    Article  CAS  PubMed  Google Scholar 

  52. Vessey JP, Lalonde MR, Mizan HA, Welch NC, Kelly ME, Barnes S. Carbenoxolone inhibition of voltage-dependent Ca channels and synaptic transmission in the retina. J Neurophysiol. 2004;92:1252–6.

    Article  CAS  PubMed  Google Scholar 

  53. Cadetti L, Thoreson WB. Feedback effects of horizontal cell membrane potential on cone calcium currents studied with simultaneous recordings. J Neurophysiol. 2006;95: 1992–5.

    Article  PubMed  Google Scholar 

  54. DeVries SH. Exocytosed protons feedback to suppress the Ca2+ current in mammalian cone photoreceptors. Neuron. 2001;32:1107–17.

    Article  CAS  PubMed  Google Scholar 

  55. Famiglietti EV Jr, Kolb H. A bistratified amacrine cell and synaptic cirucitry in the inner plexiform layer of the retina. Brain Res. 1975;84:293–300.

    Article  PubMed  Google Scholar 

  56. Hampson EC, Vaney DI, Weiler R. Dopaminergic modulation of gap junction permeability between amacrine cells in mammalian retina. J Neurosci. 1992;12:4911–22.

    CAS  PubMed  Google Scholar 

  57. Mills SL, Massey SC. Differential properties of two gap junctional pathways made by AII amacrine cells. Nature. 1995;377:734–7.

    Article  CAS  PubMed  Google Scholar 

  58. Veruki ML, Hartveit E. AII (Rod) amacrine cells form a network of electrically-coupled interneurons in the mammalian retina. Neuron. 2002;33:935–46.

    Article  CAS  PubMed  Google Scholar 

  59. Veruki ML, Hartveit E. Electrical synapses mediate signal transmission in the rod pathway of the mammalian retina. J Neurosci. 2002;22:10558–66.

    Google Scholar 

  60. Vardi N, Smith RG. The AII amacrine network: coupling can increase correlated activity. Vision Res. 1996;36:3743–57.

    Article  CAS  PubMed  Google Scholar 

  61. Smith RG, Vardi N. Simulation of the AII amacrine cell of mammalian retina: functional consequences of electrical coupling and regenerative membrane properties. Vis Neurosci. 1995;12:851–60.

    Article  CAS  PubMed  Google Scholar 

  62. Massey SC, Mills SL. Antibody to calretinin stains AII amacrine cells in the rabbit retina: double-label and confocal analyses. J Comp Neurol. 1999;411:3–18.

    Article  CAS  PubMed  Google Scholar 

  63. Urschel S, Höher T, Schubert T, Alev C, Söhl G, Wörsdörfer P, Asahara T, Dermietzel R, Weiler R, Willecke K. Protein kinase A-mediated phosphorylation of connexin36 in mouse retina results in decreased gap junctional communication between AII amacrine cells. J Biol Chem. 2006;281:33163–71.

    Google Scholar 

  64. Xin D, Bloomfield SA. Comparison of the responses of AII amacrine cells in the dark- and light-adapted rabbit retina. Vis Neurosci. 1999;16:653–65.

    Article  CAS  PubMed  Google Scholar 

  65. Wassle H, Grunert U, Chun MH, Boycott BB. The rod pathway of the macaque monkey retina: identification of AII-amacrine cells with antibodies against calretinin. J Comp Neurol. 1995;361:537–51.

    Article  CAS  PubMed  Google Scholar 

  66. Mills SL, Massey SC. A series of biotinylated tracers distinguishes three types of gap junction in retina. J Neurosci. 2000;20:8629–36.

    CAS  PubMed  Google Scholar 

  67. Vaney DI, Nelson JC, Pow DV. Neurotransmitter coupling through gap junctions in the retina. J Neurosci. 1998;18:10594–602.

    Google Scholar 

  68. Maxeiner S, Dedek K, Janssen-Bienhold U, Ammermuller J, Brune H, Kirsch T, Pieper M, Degen J, Kruger O, Willecke K, Weiler R. Deletion of connexin45 in mouse retinal neurons disrupts the rod/cone signaling pathway between AII amacrine and ON cone bipolar cells and leads to impaired visual transmission. J Neurosci. 2005;25:566–76.

    Article  CAS  PubMed  Google Scholar 

  69. Han Y, Massey SC. Electrical synapses in retinal ON cone bipolar cells: subtype-specific expression of connexins. Proc Natl Acad Sci USA. 2005;102:13313–8.

    Google Scholar 

  70. Trexler EB, Li W, Mills SL, Massey SC. Coupling from AII amacrine cells to ON cone bipolar cells is bidirectional. J Comp Neurol. 2001;437:408–22.

    Article  CAS  PubMed  Google Scholar 

  71. Trexler EB, Li W, Massey SC. Simultaneous contribution of two rod pathways to AII amacrine and cone bipolar cell light responses. J Neurophysiol. 2005;93:1476–85.

    Article  PubMed  Google Scholar 

  72. Pang JJ, Abd-El-Barr MM, Gao F, Bramblett DE, Paul DL, Wu SM. Relative contributions of rod and cone bipolar cell inputs to AII amacrine cell light responses in the mouse retina. J Physiol. 2007;580:397–410.

    Article  CAS  PubMed  Google Scholar 

  73. Deans MR, Volgyi B, Goodenough DA, Bloomfield SA, Paul DL. Connexin36 is essential for transmission of rod-mediated visual signals in the mammalian retina. Neuron 2002;36:703–12.

    Article  CAS  PubMed  Google Scholar 

  74. Chow RL, Volgyi B, Szilard RK, Ng D, McKerlie C, Bloomfield SA, Birch DG, McInnes RR. Control of late off-center cone bipolar cell differentiation and visual signaling by the homeobox gene Vsx1. Proc Natl Acad Sci USA. 2004;101:1754–9.

    Article  CAS  PubMed  Google Scholar 

  75. Hu EH, Bloomfield SA. Gap junctional coupling underlies the short-latency spike synchrony of retinal α ganglion cells. J Neurosci. 2003;23:6768–77.

    CAS  PubMed  Google Scholar 

  76. Schubert T, Maxeiner S, Kruger O, Willecke K, Weiler R. Connexin45 mediates gap junctional coupling of bistratified ganglion cells in the mouse retina. J Comp Neurol. 2005;490:29–39.

    Article  CAS  PubMed  Google Scholar 

  77. Marc RE, Jones BW. Molecular phenotyping of retinal ganglion cells. J Neurosci. 2002;22:413–27.

    CAS  PubMed  Google Scholar 

  78. DeVries SH. Correlated firing in rabbit retinal ganglion cells. J Neurophysiol. 1999;81:908–20.

    CAS  PubMed  Google Scholar 

  79. Meister M. Multineuronal codes in retinal signaling. Proc Natl Acad Sci USA. 1996;93:609–14.

    Article  CAS  PubMed  Google Scholar 

  80. Usrey WM, Reppas JB, Reid RC. Paired-spike interactions and synaptic efficacy of retinal inputs to the thalamus. Nature. 1998;395:384–7.

    Article  CAS  PubMed  Google Scholar 

  81. Ackert JM, Wu SH, Lee JC, Abrams J, Hu EH, Perlman I, Bloomfield SA. Light-induced changes in spike synchronization between coupled ON direction selective ganglion cells in the mammalian retina. J Neurosci. 2006;26:4206–15.

    Article  CAS  PubMed  Google Scholar 

  82. Kofuji P, Newman EA. Potassium buffering in the central nervous system. Neuroscience. 2004;129:1045–56.

    Article  CAS  PubMed  Google Scholar 

  83. Mobbs P, Brew H, Attwell D. A quantitative analysis of glial cell coupling in the retina of the axolotl (Ambystoma mexicanum). Brain Res. 1988;460:235–45.

    Article  CAS  PubMed  Google Scholar 

  84. Ceelen PW, Lockridge A, Newman EA. Electrical coupling between glial cells in the rat retina. Glia. 2001;35:1–13.

    Article  CAS  PubMed  Google Scholar 

  85. Zahs KR, Newman EA. Asymmetric gap junctional coupling between glial cells in the rat retina. Glia. 1997;20:10–22.

    Article  CAS  PubMed  Google Scholar 

  86. Zahs KR, Kofuji P, Meier C, Dermietzel R. Connexin immunoreactivity in glial cells of the rat retina. J Comp Neurol. 2003;455:531–46.

    Article  PubMed  Google Scholar 

  87. Zahs KR, Ceelen PW. Gap junctional coupling and connexin immunoreactivity in rabbit retinal glia. Vis Neurosci. 2006;23:1–10.

    Article  PubMed  Google Scholar 

  88. Wu DM, Minami M, Kawamura H, Puro DG. Electrotonic transmission within pericyte-containing retinal microvessels. Microcirculation. 2006;13:353–63.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Eye Institute (NEI) grants EY 06515 (to SCM) and EY 10608 (Vision Core Grant). Additional support was provided by an unrestricted grant from Research to Prevent Blindness to the Department of Ophthalmology and Visual Science. SCM is the Elizabeth Morford Professor of Ophthalmology and Visual Science. Thanks to past and present members of the Massey lab who contributed time and figures, including Feng Pan, Jennifer O’Brien (Fig. 19.3), In-Beom Kim, Wei Li, and Brady Trexler (Fig. 19.4). Thanks to Steve Mills and John O’Brien for many thoughtful discussions. The author regrets that much high-quality work in this area could not be included or referenced due to space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen C. Massey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Massey, S.C. (2009). Connexins in the Mammalian Retina. In: Harris, A.L., Locke, D. (eds) Connexins. Humana Press. https://doi.org/10.1007/978-1-59745-489-6_19

Download citation

Publish with us

Policies and ethics