Skip to main content

Synaptotagmin: Transducing Ca2+-Binding to Vesicle Fusion

  • Chapter
Molecular Mechanisms of Neurotransmitter Release

Part of the book series: Contemporary Neuroscience ((NEUROBIOL))

Abstract

Synaptotagmins are a large family of transmembrane proteins consisting of at least 15 isoforms in mammals (1), and seven in Drosophila (2). Synaptotagmin 1 is the most conserved of the synaptotagmin isoforms (3) and is known to play a role in the synaptic vesicle cycle. Genetic studies in mice (4–10), Caenorhabditis elegans (11), and Drosophila (12–22) have shown that synaptotagmin 1 is required for efficient synaptic transmission. Although synaptic transmission persists in synaptotagmin knockouts (4,11,12), it is severely disrupted. Biochemical and genetic studies have implicated synaptotagmin function during several stages in the synaptic vesicle cycle, including (1) docking synaptic vesicles at release sites, (2) priming synaptic vesicles for quick release, (3) binding the Ca2+ required to trigger fusion, and (4) endocytosis of synaptic vesicles after fusion. This chapter reviews the evidence supporting each of these hypotheses, and discusses the molecular interactions that may underlie these abilities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Südhof TC. Synaptotagmins: why so many? J Biol Chem 2002;277(10):7629–7632.

    Article  PubMed  CAS  Google Scholar 

  2. Adolfsen B, Saraswati S, Yoshihara M, Littleton JT. Synaptotagmins are trafficked to distinct subcellular domains including the postsynaptic compartment. J Cell Biol 2004;166(2):249–260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dai H, Shin OH, Machius M, Tomchick DR, Südhof TC, Rizo J. Structural basis for the evolutionary inactivation of Ca2+ binding to synaptotagmin 4. Nat Struct Mol Biol 2004;11(9):844–849.

    Article  CAS  PubMed  Google Scholar 

  4. Geppert M, Goda Y, Hammer RE, et al. Synaptotagmin I: a major Ca2+ sensor for transmitter release at a central synapse. Cell 1994;79(4):717–727.

    Article  CAS  PubMed  Google Scholar 

  5. Nishiki T,Augustine GJ. Dual roles of the C2B domain of synaptotagmin I in synchronizing Ca2+-dependent neurotransmitter release. J Neurosci 2004;24(39):8542–8550.

    Article  CAS  PubMed  Google Scholar 

  6. Nishiki T,Augustine GJ. Synaptotagmin I synchronizes transmitter release in mouse hippoc-ampal neurons. J Neurosci 2004;24(27):6127–6132.

    Article  PubMed  Google Scholar 

  7. Stevens CF, Sullivan JM. The synaptotagmin C2A domain is part of the calcium sensor controlling fast synaptic transmission. Neuron 2003;39(2):299–308.

    Article  CAS  PubMed  Google Scholar 

  8. Fernández-Chacón R, Königstorfer A, Gerber SH, et al. Synaptotagmin I functions as a calcium regulator of release probability. Nature 2001;410(6824):41–49.

    Article  Google Scholar 

  9. Shin OH, Rhee JS, Tang J, Sugita S, Rosenmund C, Südhof TC. Sr2+ binding to the Ca2+ binding site of the synaptotagmin 1 C2B domain triggers fast exocytosis without stimulating SNARE interactions. Neuron 2003;37(1):99–108.

    Article  CAS  PubMed  Google Scholar 

  10. Voets T, Moser T, Lund PE, et al. Intracellular calcium dependence of large dense-core vesicle exocytosis in the absence of synaptotagmin I. Proc Natl Acad Sci U S A 200198 (20):11680–11685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nonet ML, Grundahl K, Meyer BJ, Rand JB. Synaptic function is impaired but not eliminated in C. elegans mutants lacking synaptotagmin. Cell 1993;73(7):1291–1305.

    Article  CAS  PubMed  Google Scholar 

  12. DiAntonio A,Parfitt KD,Schwarz TL. Synaptic transmission persists in synaptotagmin mutants of Drosophila. Cell 1993;73(7):1281–1290.

    Article  CAS  PubMed  Google Scholar 

  13. DiAntonio A, Schwarz TL. The effect on synaptic physiology of synaptotagmin mutations in Drosophila. Neuron 1994;12(4):909–920.

    Article  CAS  PubMed  Google Scholar 

  14. Littleton JT, Stern M, Schulze K, Perin M, Bellen HJ. Mutational analysis of Drosophila syn-aptotagmin demonstrates its essential role in Ca(2+)-activated neurotransmitter release. Cell 1993;74(6):1125–1134.

    Article  CAS  PubMed  Google Scholar 

  15. Littleton JT, Stern M, Perin M, Bellen HJ. Calcium dependence of neurotransmitter release and rate of spontaneous vesicle fusions are altered in Drosophila synaptotagmin mutants. Proc Natl Acad Sci U S A 1994;91(23):10888–10892.

    Article  Google Scholar 

  16. Broadie K, Bellen HJ, DiAntonio A, Littleton JT, Schwarz TL. Absence of synaptotagmin disrupts excitation-secretion coupling during synaptic transmission. Proc Natl Acad Sci U S A 1994;91(22):10727–10731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Loewen CA, Mackler JM, Reist NE. Drosophila synaptotagmin I null mutants survive to early adulthood. Genesis 2001;31(1):30–36.

    Article  CAS  PubMed  Google Scholar 

  18. Mackler JM, Drummond JA, Loewen CA, Robinson IM, Reist NE. The C2B Ca2+-binding motif of synaptotagmin is required for synaptic transmission in vivo. Nature 2002;418(6895):340–344.

    Article  CAS  PubMed  Google Scholar 

  19. Mackler JM, Reist NE. Mutations in the second C2 domain of synaptotagmin disrupt synaptic transmission at Drosophilaneuromuscular junctions. J Comp Neurol 2001;436(1):4–16.

    Article  CAS  PubMed  Google Scholar 

  20. Yoshihara M, Littleton JT. Synaptotagmin I functions as a calcium sensor to synchronize neurotransmitter release. Neuron 2002;36(5):897–908.

    Article  CAS  PubMed  Google Scholar 

  21. Littleton JT, Barnard RJ, Titus SA, Slind J, Chapman ER, Ganetzky B. SNARE-complex disassembly by NSF follows synaptic-vesicle fusion. Proc Natl Acad Sci U S A 2001;98 (21):12233–12238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Robinson IM, Ranjan R, Schwarz TL. Synaptotagmins I and IV promote transmitter release independently of Ca(2+) binding in the C(2)A domain. Nature 2002;418(6895):336–340.

    Article  CAS  PubMed  Google Scholar 

  23. Del Castillo J, Katz B. Local activity at a depolarized nerve-muscle junction. J Physiol 1954;128:396–411.

    Article  Google Scholar 

  24. Matthew WD, Tsavaler L, Reichardt LF. Identification of a synaptic vesicle-specific membrane protein with a wide distribution in neuronal and neurosecretory tissue. J Cell Biol 1981;91(1):257–269.

    Article  CAS  PubMed  Google Scholar 

  25. Chapman ER, Jahn R. Calcium-dependent interaction of the cytoplasmic region of synapto-tagmin with membranes. Autonomous function of a single C2–homologous domain. J Biol Chem 1994;269(8):5735–5741.

    CAS  PubMed  Google Scholar 

  26. Takamori S, Holt M, Stenius K, et al. Molecular anatomy of a trafficking organelle. Cell 2006;127(4):831–846.

    Article  CAS  PubMed  Google Scholar 

  27. Perin MS, Brose N, Jahn R, Südhof TC. Domain structure of synaptotagmin (p65). J Biol Chem 1991;266(1):623–629.

    CAS  PubMed  Google Scholar 

  28. Sutton RB, Davletov BA, Berghuis AM, Südhof TC, Sprang SR. Structure of the first C2 domain of synaptotagmin I: a novel Ca2+/phospholipid-binding fold. Cell 1995;80 (6):929–938.

    Article  CAS  PubMed  Google Scholar 

  29. Sutton RB, Ernst JA, Brunger AT. Crystal structure of the cytosolic C2A-C2B domains of synaptotagmin III. Implications for Ca(+2)-independent snare complex interaction. J Cell Biol 1999;147(3):589–598.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ubach J, Zhang X, Shao X, Südhof TC, Rizo J. Ca2+ binding to synaptotagmin: how many Ca2+ ions bind to the tip of a C2–domain? EMBO J 1998;17(14):3921–3930.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fernandez I, Araç D, Ubach J, et al. Three-dimensional structure of the synaptotagmin 1 C2B-domain: synaptotagmin 1 as a phospholipid binding machine. Neuron 2001;32(6): 1057–1069.

    Article  CAS  PubMed  Google Scholar 

  32. Shao X, Davletov BA, Sutton RB, Südhof TC, Rizo J. Bipartite Ca2+-binding motif in C2 domains of synaptotagmin and protein kinase C. Science 1996;273(5272):248–251.

    Article  CAS  PubMed  Google Scholar 

  33. Rickman C, Archer DA, Meunier FA, et al. Synaptotagmin interaction with the syntaxin/ SNAP-25 dimer is mediated by an evolutionarily conserved motif and is sensitive to inositol hexakisphosphate. J Biol Chem 2004;279(13):12574–12579.

    Article  CAS  PubMed  Google Scholar 

  34. Goda Y, Stevens CF. Two components of transmitter release at a central synapse. Proc Natl Acad Sci U S A 1994;91(26):12942–12946.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Barrett EF, Stevens CF. The kinetics of transmitter release at the frog neuromuscular junction. J Physiol 1972;227(3):691–708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Meiri U, Rahamimoff R. Activation of transmitter release by strontium and calcium ions at the neuromuscular junction. J Physiol 1971;215(3):709–726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Miledi R, Orkand P. Effect of a “fast” nerve on “slow” muscle fibres in the frog. Nature 1966;209(5024):717–718.

    Article  CAS  PubMed  Google Scholar 

  38. Atluri PP, Regehr WG. Delayed release of neurotransmitter from cerebellar granule cells. J Neurosci 1998;18(20):8214–8227.

    CAS  PubMed  Google Scholar 

  39. Maximov A, Südhof TC. Autonomous function of synaptotagmin 1 in triggering synchronous release independent of asynchronous release. Neuron 2005;48(4):547–554.

    Article  CAS  PubMed  Google Scholar 

  40. Tang J, Maximov A, Shin OH, Dai H, Rizo J, Südhof TC. A complexin/synaptotagmin 1 switch controls fast synaptic vesicle exocytosis. Cell 2006;126(6):1175–1187.

    Article  CAS  PubMed  Google Scholar 

  41. Ubach J, Lao Y, Fernandez I, Araç D, Südhof TC, Rizo J. The C2B domain of synaptotagmin I is a Ca2+-binding module. Biochemistry 2001;40(20):5854–5860.

    Article  CAS  PubMed  Google Scholar 

  42. Marek KW, Davis GW. Transgenically encoded protein photoinactivation (FlAsH-FALI): acute inactivation of synaptotagmin I. Neuron 2002;36(5):805–813.

    Article  CAS  PubMed  Google Scholar 

  43. Pang ZP, Sun J, Rizo J, Maximov A, Südhof TC. Genetic analysis of synaptotagmin 2 in spontaneous and Ca2+-triggered neurotransmitter release. EMBO J 2006;25(10):2039–2050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Popov S V, Poo MM. Synaptotagmin: a calcium-sensitive inhibitor of exocytosis? Cell 1993;73(7):1247–1249.

    Article  CAS  PubMed  Google Scholar 

  45. Fernández-Chacón R, Shin OH, Königstorfer A, et al. Structure/function analysis of Ca2+ binding to the C2A domain of synaptotagmin 1. J Neurosci 2002;22(19):8438–8446.

    Google Scholar 

  46. Pang ZP, Shin OH, Meyer AC, Rosenmund C, Südhof TC. A gain-of-function mutation in synaptotagmin-1 reveals a critical role of Ca2+-dependent soluble N-ethylmaleimide- sensitive factor attachment protein receptor complex binding in synaptic exocytosis. J Neurosci 2006;26(48):12556–12565.

    Article  CAS  PubMed  Google Scholar 

  47. Shao X, Fernandez I, Südhof TC, Rizo J. Solution structures of the Ca2+-free and Ca2+-bound C2A domain of synaptotagmin I: does Ca2+ induce a conformational change? Biochemistry 1998;37(46):16106–16115.

    Article  CAS  PubMed  Google Scholar 

  48. Shao X, Li C, Fernandez I, Zhang X, Südhof TC, Rizo J. Synaptotagmin-syntaxin interaction: the C2 domain as a Ca2+-dependent electrostatic switch. Neuron 1997;18(1):133–142.

    Article  CAS  PubMed  Google Scholar 

  49. Zhang X, Rizo J, Südhof TC. Mechanism of phospholipid binding by the C2A-domain of synaptotagmin I. Biochemistry 1998;37(36):12395–123403.

    Article  CAS  PubMed  Google Scholar 

  50. Brose N, Petrenko AG, Südhof TC, Jahn R. Synaptotagmin: a calcium sensor on the synaptic vesicle surface. Science 1992;256(5059):1021–1025.

    Article  CAS  PubMed  Google Scholar 

  51. Rizo J, Südhof TC. C2-domains, structure and function of a universal Ca2+-binding domain. J Biol Chem 1998;273(26):15879–15882.

    Article  CAS  PubMed  Google Scholar 

  52. Earles CA, Bai J, Wang P, Chapman ER. The tandem C2 domains of synaptotagmin contain redundant Ca2+ binding sites that cooperate to engage t-SNAREs and trigger exocytosis. J Cell Biol 2001;154(6):1117–1123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Li C, Davletov BA, Südhof TC. Distinct Ca2+ and Sr2+ binding properties of synaptotag-mins. Definition of candidate Ca2+ sensors for the fast and slow components of neurotransmitter release. J Biol Chem 1995;270(42):24898–24902.

    CAS  PubMed  Google Scholar 

  54. Davletov BA, Südhof TC. A single C2 domain from synaptotagmin I is sufficient for high affinity Ca2+/phospholipid binding. J Biol Chem 1993;268(35):26386–26390.

    CAS  PubMed  Google Scholar 

  55. Chapman ER, Davis AF. Direct interaction of a Ca2+-binding loop of synaptotagmin with lipid bilayers. J Biol Chem 1998;273(22):13995–14001.

    Article  CAS  PubMed  Google Scholar 

  56. Chae YK, Abildgaard F, Chapman ER, Markley JL. Lipid binding ridge on loops 2 and 3 of the C2A domain of synaptotagmin I as revealed by NMR spectroscopy. J Biol Chem 1998;273 (40):25659–25663.

    Article  CAS  PubMed  Google Scholar 

  57. Davis AF, Bai J, Fasshauer D, Wolowick MJ, Lewis JL, Chapman ER. Kinetics of synapto-tagmin responses to Ca2+ and assembly with the core SNARE complex onto membranes. Neuron 1999;24(2):363–376.

    Article  CAS  PubMed  Google Scholar 

  58. Bai J, Earles CA, Lewis JL, Chapman ER. Membrane-embedded synaptotagmin penetrates cis or trans target membranes and clusters via a novel mechanism. J Biol Chem 2000;275(33):25427–25435.

    Article  CAS  PubMed  Google Scholar 

  59. Bai J, Wang P, Chapman ER. C2A activates a cryptic Ca(2+)-triggered membrane penetration activity within the C2B domain of synaptotagmin I. Proc Natl Acad Sci U S A 2002;99(3): 1665–1670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Schiavo G, Gu QM, Prestwich GD, Söllner TH, Rothman JE. Calcium-dependent switching of the specificity of phosphoinositide binding to synaptotagmin. Proc Natl Acad Sci U S A 1996;93(23):13327–13332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bai J, Tucker WC, Chapman ER. PIP2 increases the speed of response of synaptotagmin and steers its membrane-penetration activity toward the plasma membrane. Nat Struct Mol Biol 2004;11(1):36–44.

    Article  CAS  PubMed  Google Scholar 

  62. Paddock BE, Reist NE. Ca2+-dependent, phospholipid-binding residues of synaptotagmin are critical for excitation-secretion coupling. Submitted.

    Google Scholar 

  63. Wang P, Wang CT, Bai J, Jackson MB, Chapman ER. Mutations in the effector binding loops in the C2A and C2B domains of synaptotagmin I disrupt exocytosis in a nonadditive manner. J Biol Chem 2003;278(47):47030–47037.

    Article  CAS  PubMed  Google Scholar 

  64. Li L, Shin OH, Rhee JS, et al. Phosphatidylinositol phosphates as co-activators of Ca2+ binding to C2 domains of synaptotagmin 1. J Biol Chem 2006;281(23):15845–15852.

    Article  CAS  PubMed  Google Scholar 

  65. Gerber SH, Rizo J, Südhof TC. Role of electrostatic and hydrophobic interactions in Ca2+)-dependent phospholipid binding by the C(2)A-domain from synaptotagmin I. Diabetes 2002;51:S12–18.

    Article  CAS  PubMed  Google Scholar 

  66. Hui E, Bai J, Chapman ER. Ca2+-triggered simultaneous membrane penetration of the tandem C2–domains of synaptotagmin I. Biophys J 2006;91(5):1767–1777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Herrick DZ, Sterbling S, Rasch KA, Hinderliter A, Cafiso DS. Position of synaptotagmin I at the membrane interface: cooperative interactions of tandem C2 domains. Biochemistry 2006;45(32):9668–9674.

    Article  CAS  PubMed  Google Scholar 

  68. Rufener E, Frazier AA, Wieser CM, Hinderliter A, Cafiso DS. Membrane-bound orientation and position of the synaptotagmin C2B domain determined by site-directed spin labeling. Biochemistry 2005;44(1):18–28.

    Article  CAS  PubMed  Google Scholar 

  69. Rhee JS, Li LY, Shin OH, et al. Augmenting neurotransmitter release by enhancing the apparent Ca2+ affinity of synaptotagmin 1. Proc Natl Acad Sci U S A 2005;102(51): 18664–18669.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Weber T, Zemelman BV, McNew JA, et al. SNAREpins: minimal machinery for membrane fusion. Cell 1998;92(6):759–772.

    Article  CAS  PubMed  Google Scholar 

  71. Melia TJ, You D, Tareste DC, Rothman JE. Lipidic antagonists to SNARE-mediated fusion. J Biol Chem 2006;281(40):29597–29605.

    Article  CAS  PubMed  Google Scholar 

  72. Chen Y, Xu Y, Zhang F, Shin YK. Constitutive versus regulated SNARE assembly: a structural basis. EMBO J 2004;23(4):681–689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Tucker WC, Weber T, Chapman ER. Reconstitution of Ca2+-regulated membrane fusion by synaptotagmin and SNAREs. Science 2004;304(5669):435–438.

    Article  CAS  PubMed  Google Scholar 

  74. Bhalla A, Tucker WC, Chapman ER. Synaptotagmin isoforms couple distinct ranges of Ca2+, Ba2+, and Sr2+ concentration to SNARE-mediated membrane fusion. Mol Biol Cell 2005;16(10):4755–4764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Mahal LK, Sequeira SM, Gureasko JM, Sèollner TH. Calcium-independent stimulation of membrane fusion and SNAREpin formation by synaptotagmin I. J Cell Biol 2002;158(2):273–282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Loewen CA, Lee SM, Shin YK, Reist NE. C2B polylysine motif of synaptotagmin facilitates a Ca2+-independent stage of synaptic vesicle priming in vivo. Mol Biol Cell 2006;17(12):5211–5226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Martens S, Kozlov MM, McMahon HT. How synaptotagmin promotes membrane fusion. Science (New York, NY) 2007;316(5828):1205–1208.

    Article  CAS  PubMed  Google Scholar 

  78. Paddock BE, Reist NE. Unpublished observations.

    Google Scholar 

  79. Mackler JM, Reist NE. Unpublished observations.

    Google Scholar 

  80. Cevc G, Richardsen H. Lipid vesicles and membrane fusion. Adv Drug Deliv Rev 1999;38:207–232.

    Article  CAS  PubMed  Google Scholar 

  81. Jahn R, Lang T, Südhof TC. Membrane fusion. Cell 2003;112(4):519–533.

    Article  CAS  PubMed  Google Scholar 

  82. Schiavo G, Stenbeck G, Rothman JE, Sèollner TH. Binding of the synaptic vesicle v-SNARE, synaptotagmin, to the plasma membrane t-SNARE, SNAP-25, can explain docked vesicles at neurotoxin-treated synapses. Proc Natl Acad Sci U S A 1997;94(3):997–1001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Li C, Ullrich B, Zhang JZ, Anderson RG, Brose N, Südhof TC. Ca(2+)-dependent and -independent activities of neural and non-neural synaptotagmins. Nature 1995;375(6532):594–599.

    Article  CAS  PubMed  Google Scholar 

  84. Chapman ER, Hanson PI, An S, Jahn R. Ca2+ regulates the interaction between synaptotag-min and syntaxin 1. J Biol Chem 1995;270(40):23667–23671.

    Article  CAS  PubMed  Google Scholar 

  85. Bai J, Wang CT, Richards DA, Jackson MB, Chapman ER. Fusion pore dynamics are regulated by synaptotagmin*t-SNARE interactions. Neuron 2004;41(6):929–942.

    Article  CAS  PubMed  Google Scholar 

  86. Kee Y, Scheller RH. Localization of synaptotagmin-binding domains on syntaxin. J Neurosci 1996;16(6):1975–1981.

    CAS  PubMed  Google Scholar 

  87. Bennett MK, Calakos N, Scheller RH. Syntaxin: a synaptic protein implicated in docking of syn-aptic vesicles at presynaptic active zones. Science (New York, NY) 1992;257(5067):255–259.

    Article  CAS  PubMed  Google Scholar 

  88. Gerona RR, Larsen EC, Kowalchyk JA, Martin TF. The C terminus of SNAP25 is essential for Ca(2+)-dependent binding of synaptotagmin to SNARE complexes. J Biol Chem 2000;275(9):6328–6336.

    Article  CAS  PubMed  Google Scholar 

  89. Zhang X, Kim-Miller MJ, Fukuda M, Kowalchyk JA, Martin TF. Ca2+-dependent synapto-tagmin binding to SNAP-25 is essential for Ca2+-triggered exocytosis. Neuron 2002;34(4):599–611.

    Article  CAS  PubMed  Google Scholar 

  90. Rickman C, Davletov B. Mechanism of calcium-independent synaptotagmin binding to target SNAREs. J Biol Chem 2003;278(8):5501–5504.

    Article  CAS  PubMed  Google Scholar 

  91. Tucker WC, Edwardson JM, Bai J, Kim HJ, Martin TF, Chapman ER. Identification of syn-aptotagmin effectors via acute inhibition of secretion from cracked PC12 cells. J Cell Biol 2003;162(2):199–209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Bowen ME, Weninger K, Ernst J, Chu S, Brunger AT. Single-molecule studies of synaptotag-min and complexin binding to the SNARE complex. Biophys J 2005;89(1):690–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Dai H, Shen N, Araç D, Rizo J. A quaternary SNARE-synaptotagmin-Ca2+-phospholipid complex in neurotransmitter release. J Mol Biol 2007;367(3):848–863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Littleton JT, Bai J, Vyas B, et al. synaptotagmin mutants reveal essential functions for the C2B domain in Ca2+-triggered fusion and recycling of synaptic vesicles in vivo. J Neurosci 2001;21(5):1421–1433.

    CAS  PubMed  Google Scholar 

  95. Breidenbach MA, Brunger AT. New insights into clostridial neurotoxin-SNARE interactions. Trends Mol Med 2005;11(8):377–381.

    Article  CAS  PubMed  Google Scholar 

  96. Sakaba T, Stein A, Jahn R, Neher E. Distinct kinetic changes in neurotransmitter release after SNARE protein cleavage. Science (New York, NY) 2005;309(5733):491–494.

    Article  CAS  PubMed  Google Scholar 

  97. Capogna M, McKinney RA, O’Connor V, Gähwiler BH, Thompson SM. Ca2+ or Sr2+ partially rescues synaptic transmission in hippocampal cultures treated with botulinum toxin A and C, but not tetanus toxin. J Neurosci 1997;17(19):7190–7202.

    CAS  PubMed  Google Scholar 

  98. Lawrence GW, Foran P, Dolly JO. Distinct exocytotic responses of intact and permeabilised chromaffin cells after cleavage of the 25–kDa synaptosomal-associated protein (SNAP-25) or synaptobrevin by botulinum toxin A or B. Eur J Biochem/FEBS 1996;236(3):877–886.

    Article  CAS  Google Scholar 

  99. Washbourne P, Thompson PM, Carta M, et al. Genetic ablation of the t-SNARE SNAP-25 distinguishes mechanisms of neuroexocytosis. Nature Neurosci 2002;5(1):19–26.

    Article  CAS  PubMed  Google Scholar 

  100. Schoch S, Deák F, Königstorfer A, et al. SNARE function analyzed in synaptobrevin/VAMP knockout mice. Science (New York, NY) 2001;294(5544):1117–1122.

    Article  CAS  PubMed  Google Scholar 

  101. Deitcher DL, Ueda A, Stewart BA, Burgess RW, Kidokoro Y, Schwarz TL. Distinct requirements for evoked and spontaneous release of neurotransmitter are revealed by mutations in the Drosophila gene neuronal-synaptobrevin. J Neurosci 1998;18(6):2028–2039.

    CAS  PubMed  Google Scholar 

  102. Broadie K, Prokop A, Bellen HJ, O’Kane CJ, Schulze KL, Sweeney ST. Syntaxin and syn-aptobrevin function downstream of vesicle docking in Drosophila. Neuron 1995;15(3):663–673.

    Article  CAS  PubMed  Google Scholar 

  103. Yoshihara M, Ueda A, Zhang D, Deitcher DL, Schwarz TL, Kidokoro Y. Selective effects of neuronal-synaptobrevin mutations on transmitter release evoked by sustained versus transient Ca2+ increases and by cAMP. J Neurosci 1999;19(7):2432–2441.

    CAS  PubMed  Google Scholar 

  104. Sørensen JB, Matti U, Wei SH, et al. The SNARE protein SNAP-25 is linked to fast calcium triggering of exocytosis. Proc Natl Acad Sci U S A 2002;99(3):1627–1632.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Chen X, Tang J, Südhof TC, Rizo J. Are neuronal SNARE proteins Ca2+ sensors? J Mol Biol 2005;347(1):145–158.

    Article  CAS  PubMed  Google Scholar 

  106. Chen YA, Scales SJ, Patel SM, Doung YC, Scheller RH. SNARE complex formation is triggered by Ca2+ and drives membrane fusion. Cell 1999;97(2):165–174.

    Article  CAS  PubMed  Google Scholar 

  107. Desai RC, Vyas B, Earles CA, et al. The C2B domain of synaptotagmin is a Ca(2+)-sens-ing module essential for exocytosis. J Cell Biol 2000;150(5):1125–1136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Bhalla A, Chicka MC, Tucker WC, Chapman ER. Ca(2+)-synaptotagmin directly regulates t-SNARE function during reconstituted membrane fusion. Nat Struct Mol Biol 2006;13(4):323–330.

    Article  CAS  PubMed  Google Scholar 

  109. Chieregatti E, Chicka MC, Chapman ER, Baldini G. SNAP-23 functions in docking/fusion of granules at low Ca2+. Mol Biol Cell 2004;15(4):1918–1930.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Chieregatti E, Witkin JW, Baldini G. SNAP-25 and synaptotagmin 1 function in Ca2+-depend-ent reversible docking of granules to the plasma membrane. Traffic 2002;3(7):496–511.

    Article  CAS  PubMed  Google Scholar 

  111. Ishizuka T, Saisu H, Odani S, Abe T. Synaphin: a protein associated with the docking/fusion complex in presynaptic terminals. Biochem Biophys Res Commun 1995;213(3):1107–1114.

    Article  CAS  PubMed  Google Scholar 

  112. McMahon HT, Missler M, Li C, Südhof TC. Complexins: cytosolic proteins that regulate SNAP receptor function. Cell 1995;83(1):111–119.

    Article  CAS  PubMed  Google Scholar 

  113. Pabst S, Margittai M, Vainius D, Langen R, Jahn R, Fasshauer D. Rapid and selective binding to the synaptic SNARE complex suggests a modulatory role of complexins in neuroexocyto-sis. J Biol Chem 2002;277(10):7838–7848.

    Article  CAS  PubMed  Google Scholar 

  114. Pabst S, Hazzard JW, Antonin W, et al. Selective interaction of complexin with the neuronal SNARE complex. Determination of the binding regions. J Biol Chem 2000;275(26):19808–19818.

    CAS  PubMed  Google Scholar 

  115. Chen X, Tomchick DR, Kovrigin E, et al. Three-dimensional structure of the complexin/ SNARE complex. Neuron 2002;33(3):397–409.

    Article  CAS  PubMed  Google Scholar 

  116. Hu K, Carroll J, Rickman C, Davletov B. Action of complexin on SNARE complex. J Biol Chem 2002;277(44):41652–41656.

    Article  CAS  PubMed  Google Scholar 

  117. Itakura M, Misawa H, Sekiguchi M, Takahashi S, Takahashi M. Transfection analysis of functional roles of complexin I and II in the exocytosis of two different types of secretory vesicles. Biochem Biophys Res Commun 1999;265(3):691–696.

    Article  CAS  PubMed  Google Scholar 

  118. Archer DA, Graham ME, Burgoyne RD. Complexin regulates the closure of the fusion pore during regulated vesicle exocytosis. J Biol Chem 2002;277(21):18249–18252.

    Article  CAS  PubMed  Google Scholar 

  119. Schaub JR, Lu X, Doneske B, Shin YK, McNew JA. Hemifusion arrest by complexin is relieved by Ca2+-synaptotagmin I. Nat Struct Mol Biol 2006;13(8):748–750.

    Article  CAS  PubMed  Google Scholar 

  120. Giraudo CG, Eng WS, Melia TJ, Rothman JE. A clamping mechanism involved in SNARE-dependent exocytosis. Science (New York, NY) 2006;313(5787):676–680.

    Article  CAS  PubMed  Google Scholar 

  121. Reim K, Mansour M, Varoqueaux F, et al. Complexins regulate a late step in Ca2+-dependent neurotransmitter release. Cell 2001;104(1):71–81.

    Article  CAS  PubMed  Google Scholar 

  122. Borden CR, Stevens CF, Sullivan JM, Zhu Y. Synaptotagmin mutants Y311N and K326/327A alter the calcium dependence of neurotransmission. Mol Cell Neurosci 2005;29(3):462–470.

    Article  CAS  PubMed  Google Scholar 

  123. Mace KE, Reist NE. Unpublished observations.

    Google Scholar 

  124. Lu X, Xu Y, Zhang F, Shin YK. Synaptotagmin I and Ca(2+) promote half fusion more than full fusion in SNARE-mediated bilayer fusion. FEBS Lett 2006;580(9):2238–2246.

    Article  CAS  PubMed  Google Scholar 

  125. Reist NE, Buchanan J, Li J, DiAntonio A, Buxton EM, Schwarz TL. Morphologically docked synaptic vesicles are reduced in synaptotagmin mutants of Drosophila. J Neurosci 1998;18(19):7662–7673.

    CAS  PubMed  Google Scholar 

  126. Loewen CA, Royer SM, Reist NE. Drosophila synaptotagmin I null mutants show severe alterations in vesicle populations but calcium-binding motif mutants do not. J Comp Neurol 2006;496(1):1–12.

    Article  CAS  PubMed  Google Scholar 

  127. Holz RW, Hlubek MD, Sorensen SD, et al. A pleckstrin homology domain specific for phos-phatidylinositol 4, 5–bisphosphate (PtdIns-4,5–P2) and fused to green fluorescent protein identifies plasma membrane PtdIns-4,5–P2 as being important in exocytosis. J Biol Chem 2000;275(23):17878–17885.

    Article  CAS  PubMed  Google Scholar 

  128. Micheva KD, Holz RW, Smith SJ. Regulation of presynaptic phosphatidylinositol 4,5– biphosphate by neuronal activity. J Cell Biol 2001;154(2):355–368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Fukuda M, Moreira JE, Liu V, Sugimori M, Mikoshiba K, Llinás RR. Role of the conserved WHXL motif in the C terminus of synaptotagmin in synaptic vesicle docking. Proc Natl Acad Sci U S A 2000;97(26):14715–14719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Martin TF. Tuning exocytosis for speed: fast and slow modes. Biochim Biophys Acta 2003;1641(2–3):157–165.

    Article  CAS  PubMed  Google Scholar 

  131. Jorgensen EM, Hartwieg E, Schuske K, Nonet ML, Jin Y, Horvitz HR. Defective recycling of synaptic vesicles in synaptotagmin mutants of Caenorhabditis elegans. Nature 1995;378(6553):196–199.

    Article  CAS  PubMed  Google Scholar 

  132. von Poser C, Zhang JZ, Mineo C, et al. Synaptotagmin regulation of coated pit assembly. J Biol Chem 2000;275(40):30916–30924.

    Article  CAS  PubMed  Google Scholar 

  133. Jarousse N, Kelly RB. The AP2 binding site of synaptotagmin 1 is not an internalization signal but a regulator of endocytosis. J Cell Biol 2001;154(4):857–866.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Jarousse N, Wilson JD, Arac D, Rizo J, Kelly RB. Endocytosis of synaptotagmin 1 is mediated by a novel, tryptophan-containing motif. Traffic (Copenhagen, Denmark) 2003;4(7):468–478.

    Article  CAS  PubMed  Google Scholar 

  135. Llinás RR, Sugimori M, Moran KA, Moreira JE, Fukuda M. Vesicular reuptake inhibition by a synaptotagmin I C2B domain antibody at the squid giant synapse. Proc Natl Acad Sci U S A 2004;101(51):17855–17860.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Poskanzer KE, Marek KW, Sweeney ST, Davis GW. Synaptotagmin I is necessary for compensatory synaptic vesicle endocytosis in vivo. Nature 2003;426(6966):559–563.

    Article  CAS  PubMed  Google Scholar 

  137. Nicholson-Tomishima K, Ryan TA. Kinetic efficiency of endocytosis at mammalian CNS synapses requires synaptotagmin I. Proc Natl Acad Sci U S A 2004;101(47): 16648–16652.

    Article  CAS  Google Scholar 

  138. Takei K, Haucke V. Clathrin-mediated endocytosis: membrane factors pull the trigger. Trends Cell Biol 2001;11(9):385–391.

    Article  CAS  PubMed  Google Scholar 

  139. Zhang JZ, Davletov BA, Südhof TC, Anderson RG. Synaptotagmin I is a high affinity receptor for clathrin AP-2: implications for membrane recycling. Cell 1994;78(5):751–760.

    Article  CAS  PubMed  Google Scholar 

  140. Chapman ER, Desai RC, Davis AF, Tornehl CK. Delineation of the oligomerization, AP-2 binding, and synprint binding region of the C2B domain of synaptotagmin. J Biol Chem 1998;273(49):32966–32972.

    Article  CAS  PubMed  Google Scholar 

  141. Haucke V, De Camilli P. AP-2 recruitment to synaptotagmin stimulated by tyrosine-based endocytic motifs. Science 1999;285(5431):1268–1271.

    Article  CAS  PubMed  Google Scholar 

  142. Haucke V, Wenk MR, Chapman ER, Farsad K, De Camilli P. Dual interaction of synaptotag-min with mu2– and alpha-adaptin facilitates clathrin-coated pit nucleation. EMBO J 2000;19(22):6011–6019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Grass I, Thiel S, Höning S, Haucke V. Recognition of a basic AP-2 binding motif within the C2B domain of synaptotagmin is dependent on multimerization. J Biol Chem 2004;279(52):54872–54880.

    Article  CAS  PubMed  Google Scholar 

  144. Poskanzer KE, Fetter RD, Davis GW. Discrete residues in the c(2)b domain of synaptotagmin I independently specify endocytic rate and synaptic vesicle size. Neuron 2006;50(1):49–62.

    Article  CAS  PubMed  Google Scholar 

  145. Dodge FA Jr, Rahamimoff R. Co-operative action of calcium ions in transmitter release at the neuromuscular junction. J Physiol 1967;193(2):419–432.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Schneggenburger R, Neher E. Presynaptic calcium and control of vesicle fusion. Curr Opin Neurobiol 2005;15(3):266–274.

    Article  CAS  PubMed  Google Scholar 

  147. Bollmann JH, Sakmann B, Borst JG. Calcium sensitivity of glutamate release in a calyx-type terminal. Science 2000;289(5481):953–957.

    Article  CAS  PubMed  Google Scholar 

  148. Schneggenburger R, Neher E. Intracellular calcium dependence of transmitter release rates at a fast central synapse. Nature 2000;406(6798):889–893.

    Article  CAS  PubMed  Google Scholar 

  149. Stewart BA, Mohtashami M, Trimble WS, Boulianne GL. SNARE proteins contribute to calcium cooperativity of synaptic transmission. Proc Natl Acad Sci U S A 2000;97(25):13955–13960.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Heidelberger R, Heinemann C, Neher E, Matthews G. Calcium dependence of the rate of exocytosis in a synaptic terminal. Nature 1994;371(6497):513–515.

    Article  CAS  PubMed  Google Scholar 

  151. Tamura T, Hou J, Reist NE, Kidokoro Y. Nerve-evoked synchronous release and high K+ -induced quantal events are regulated separately by synaptotagmin I at Drosophila neuromus-cular junctions. J Neurophysiol 2007;97(1):540–549.

    Article  CAS  PubMed  Google Scholar 

  152. Rickman C, Hu K, Carroll J, Davletov B. Self-assembly of SNARE fusion proteins into star-shaped oligomers. Biochem J 2005;388(Pt):75–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Hu K, Davletov B. SNAREs and control of synaptic release probabilities. FASEB J 2003;17(2):130–135.

    Article  CAS  PubMed  Google Scholar 

  154. DeLano WL. The PyMOL molecular graphics system. http://wwwpymolorg, 2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noreen Reist .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Loewen, C., Reist, N. (2008). Synaptotagmin: Transducing Ca2+-Binding to Vesicle Fusion. In: Wang, ZW. (eds) Molecular Mechanisms of Neurotransmitter Release. Contemporary Neuroscience. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59745-481-0_6

Download citation

Publish with us

Policies and ethics