Skip to main content

Part of the book series: Contemporary Neuroscience ((NEUROBIOL))

  • 1328 Accesses

Abstract

The architecture of the presynaptic release site is exquisitely designed to facilitate the regulated tethering, docking, and fusing of synaptic vesicles with the plasma membrane. With the identification of some of the building blocks, we are beginning to understand the morphologic and functional properties of the synapse. Presynaptic release sites consist of a plasma membrane, a cytomatrix, and dense projections. These three components are morphologically distinct, yet they are intimately connected with each other and the postsynaptic nerve terminal, ensuring the fidelity of synaptic vesicle tethering, docking and fusion, as well as signal detection. Although the morphology of active zones and the molecular composition vary among species, tissues and cells, the architectural design of the release sites is likely conserved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sherrington CS. The central nervous system. In: Foster M, ed. A textbook of physiology, 7th ed. London: Macmillan, 1897:929.

    Google Scholar 

  2. Fulton JF. Physiology of the nervous system. London: Oxford University Press, 1938.

    Google Scholar 

  3. Elliott TR. On the action of adrenalin. J Physiol (London) 1904;31:20P.

    Google Scholar 

  4. Loewi O. Ueber humorale uebertragbarkeit der Herznervenwirkung (II. Miteilung). Pflugers Arch Gesamte Physiol Menschen Tirer 1921;193:201–213.

    Article  Google Scholar 

  5. Dale HH. The action of certain esters and ethers of choline, and their relation to muscarine. J Pharmacol 1914;6:147–190.

    CAS  Google Scholar 

  6. Tsuji S. Rene Couteaux (1909–1999) and the morphological identification of synapses. Biol Cell 2006;98(8):503–509.

    Article  PubMed  Google Scholar 

  7. Couteaux R. Nouvelles observations sur la structure de la plaque motrice et interprétation des rapports myo-neuraux. C R Soc Biol 1944;138:976–979.

    Google Scholar 

  8. Couteaux R. Sur les gouttières synaptiques du muscle strié. C R Soc Biol 1946;140:270–273.

    Google Scholar 

  9. Couteaux R, Pecot-Dechavassine M. Synaptic vesicles and pouches at the level of “active zones” of the neuromuscular junction. C R Acad Sci Hebd Seances Acad Sci D 1970;271(25):2346–2349.

    CAS  PubMed  Google Scholar 

  10. Heuser JE, Reese TS. Evidence for recycling of synaptic vesicle membrane during transmitter release at the frog neuromuscular junction. J Cell Biol 1973;57(2):315–344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Landis DM, Hall AK, Weinstein LA, Reese TS. The organization of cytoplasm at the presyn-aptic active zone of a central nervous system synapse. Neuron 1988;1(3):201–209.

    Article  CAS  PubMed  Google Scholar 

  12. Matsui K, Jahr CE. Exocytosis unbound. Curr Opin Neurobiol 2006;16(3):305–311.

    Article  CAS  PubMed  Google Scholar 

  13. Parsegian VA. Approaches to the cell biology of neurons. Bethesda, MD: Society for Neuroscience, 1977.

    Google Scholar 

  14. Stanley EF. The calcium channel and the organization of the presynaptic transmitter release face. Trends Neurosci 1997;20(9):404–409.

    Article  CAS  PubMed  Google Scholar 

  15. Bennett MR, Farnell L, Gibson WG. The probability of quantal secretion near a single calcium channel of an active zone. Biophys J 2000;78(5):2201–2221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Atwood HL, Karunanithi S. Diversification of synaptic strength: presynaptic elements. Nat Rev Neurosci 2002;3(7):497–516.

    Article  CAS  PubMed  Google Scholar 

  17. Kawasaki F, Zou B, Xu X, Ordway RW. Active zone localization of presynaptic calcium channels encoded by the cacophony locus of Drosophila. J Neurosci 2004;24(1):282–285.

    Article  CAS  PubMed  Google Scholar 

  18. Robitaille R, Adler EM, Charlton MP. Strategic location of calcium channels at transmitter release sites of frog neuromuscular synapses. Neuron 1990;5(6):773–779.

    Article  CAS  PubMed  Google Scholar 

  19. Zhang L, Volknandt W, Gundelfinger ED, Zimmermann H. A comparison of synaptic protein localization in hippocampal mossy fiber terminals and neurosecretory endings of the neurohypophysis using the cryo-immunogold technique. J Neurocytol 2000;29(1): 19–30.

    Article  CAS  PubMed  Google Scholar 

  20. Ellisman MH, Rash JE, Staehelin LA, Porter KR. Studies of excitable membranes. II. A comparison of specializations at neuromuscular junctions and nonjunctional sarcolemmas of mammalian fast and slow twitch muscle fibers. J Cell Biol 1976;68(3):752–774.

    Article  CAS  PubMed  Google Scholar 

  21. Heuser JE, Reese TS, Landis DM. Functional changes in frog neuromuscular junctions studied with freeze-fracture. J Neurocytol 1974;3(1):109–131.

    Article  CAS  PubMed  Google Scholar 

  22. Walrond JP, Reese TS. Structure of axon terminals and active zones at synapses on lizard twitch and tonic muscle fibers. J Neurosci 1985;5(5):1118–1131.

    CAS  PubMed  Google Scholar 

  23. Cohen MW, Jones OT, Angelides KJ. Distribution of Ca2+ channels on frog motor nerve terminals revealed by fluorescent omega-conotoxin. J Neurosci 1991;11(4):1032–1039.

    CAS  PubMed  Google Scholar 

  24. Pumplin DW, Reese TS, Llinas R. Are the presynaptic membrane particles the calcium channels? Proc Natl Acad Sci U S A 1981;78(11):7210–7213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Haydon PG, Henderson E, Stanley EF. Localization of individual calcium channels at the release face of a presynaptic nerve terminal. Neuron 1994;13(6):1275–1280.

    Article  CAS  PubMed  Google Scholar 

  26. Jahn R, Lang T, Sudhof TC. Membrane fusion. Cell 2003;112(4):519–533.

    Article  CAS  PubMed  Google Scholar 

  27. Rizo J. SNARE function revisited. Nat Struct Biol 2003;10(6):417–419.

    Article  CAS  PubMed  Google Scholar 

  28. Garcia EP, McPherson PS, Chilcote TJ, Takei K, De Camilli P. rbSec1A and B colocalize with syntaxin 1 and SNAP-25 throughout the axon, but are not in a stable complex with syntaxin. J Cell Biol 1995;129(1):105–120.

    Article  CAS  PubMed  Google Scholar 

  29. Hiesinger PR, Scholz M, Meinertzhagen IA, Fischbach KF, Obermayer K. Visualization of synaptic markers in the optic neuropils of Drosophila using a new constrained deconvolution method. J Comp Neurol 2001;429(2):277–288.

    Article  CAS  PubMed  Google Scholar 

  30. Schulze KL, Broadie K, Perin MS, Bellen HJ. Genetic and electrophysiological studies of Drosophila syntaxin-1A demonstrate its role in nonneuronal secretion and neurotransmission. Cell 1995;80(2):311–320.

    Article  CAS  PubMed  Google Scholar 

  31. Jarvis SE, Barr W, Feng ZP, Hamid J, Zamponi GW. Molecular determinants of syntaxin 1 modulation of N-type calcium channels. J Biol Chem 2002;277(46):44399–44407.

    Article  CAS  PubMed  Google Scholar 

  32. Taverna E, Saba E, Rowe J, Francolini M, Clementi F, Rosa P. Role of lipid microdomains in P/Q-type calcium channel (Cav2.1) clustering and function in presynaptic membranes. J Biol Chem 2004;279(7):5127–5134.

    Article  CAS  PubMed  Google Scholar 

  33. Catterall WA. Interactions of presynaptic Ca2+ channels and snare proteins in neurotransmitter release. Ann N Y Acad Sci 1999;868:144–159.

    Article  CAS  PubMed  Google Scholar 

  34. Martin-Moutot N, Charvin N, Leveque C, et al. Interaction of SNARE complexes with P/Q-type calcium channels in rat cerebellar synaptosomes. J Biol Chem 1996;271(12):6567–6570.

    Article  CAS  PubMed  Google Scholar 

  35. Lang T, Bruns D, Wenzel D, et al. SNAREs are concentrated in cholesterol-dependent clusters that define docking and fusion sites for exocytosis. EMBO J 2001;20(9):2202–2213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shapiro L, Colman DR. The diversity of cadherins and implications for a synaptic adhesive code in the CNS. Neuron 1999;23(3):427–430.

    Article  CAS  PubMed  Google Scholar 

  37. Yagi T, Takeichi M. Cadherin superfamily genes: functions, genomic organization, and neurologic diversity. Genes Dev 2000;14(10):1169–1180.

    CAS  PubMed  Google Scholar 

  38. Frank M, Kemler R. Protocadherins. Curr Opin Cell Biol 2002;14(5):557–562.

    Article  CAS  PubMed  Google Scholar 

  39. Mizoguchi A, Nakanishi H, Kimura K, et al. Nectin: an adhesion molecule involved in formation of synapses. J Cell Biol 2002;156(3):555–565.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Takai Y, Shimizu K, Ohtsuka T. The roles of cadherins and nectins in interneuronal synapse formation. Curr Opin Neurobiol 2003;13(5):520–526.

    Article  CAS  PubMed  Google Scholar 

  41. Rougon G, Hobert O. New insights into the diversity and function of neuronal immunoglobu-lin superfamily molecules. Annu Rev Neurosci 2003;26:207–238.

    Article  CAS  PubMed  Google Scholar 

  42. Davis GW, Schuster CM, Goodman CS. Genetic analysis of the mechanisms controlling target selection: target-derived Fasciclin II regulates the pattern of synapse formation. Neuron 1997;19(3):561–573.

    Article  CAS  PubMed  Google Scholar 

  43. Mayford M, Barzilai A, Keller F, Schacher S, Kandel ER. Modulation of an NCAM-related adhesion molecule with long-term synaptic plasticity in Aplysia. Science 1992;256(5057):638–644.

    Article  CAS  PubMed  Google Scholar 

  44. Schmucker D, Clemens JC, Shu H, et al. Drosophila Dscam is an axon guidance receptor exhibiting extraordinary molecular diversity. Cell 2000;101(6):671–684.

    Article  CAS  PubMed  Google Scholar 

  45. Hsueh YP, Sheng M. Regulated expression and subcellular localization of syndecan heparan sulfate proteoglycans and the syndecan-binding protein CASK/LIN-2 during rat brain development. J Neurosci 1999;19(17):7415–7425.

    CAS  PubMed  Google Scholar 

  46. Walsh FS, Doherty P. Neural cell adhesion molecules of the immunoglobulin superfamily: role in axon growth and guidance. Annu Rev Cell Dev Biol 1997;13:425–456.

    Article  CAS  PubMed  Google Scholar 

  47. Chavis P, Westbrook G. Integrins mediate functional pre- and postsynaptic maturation at a hippocampal synapse. Nature 2001;411(6835):317–321.

    Article  CAS  PubMed  Google Scholar 

  48. Missler M, Sudhof TC. Neurexins: three genes and 1001 products. Trends Genet 1998;14(1):20–26.

    Article  CAS  PubMed  Google Scholar 

  49. Yamagata M, Sanes JR, Weiner JA. Synaptic adhesion molecules. Curr Opin Cell Biol 2003;15(5):621–632.

    Article  CAS  PubMed  Google Scholar 

  50. Yamagata M, Weiner JA, Sanes JR. Sidekicks: synaptic adhesion molecules that promote lamina-specific connectivity in the retina. Cell 2002;110(5):649–660.

    Article  CAS  PubMed  Google Scholar 

  51. Gottardi CJ, Gumbiner BM. Adhesion signaling: how beta-catenin interacts with its partners. Curr Biol 2001;11(19):R792–794.

    Article  CAS  PubMed  Google Scholar 

  52. Sheng M, Sala C. PDZ domains and the organization of supramolecular complexes. Annu Rev Neurosci 2001;24:1–29.

    Article  CAS  PubMed  Google Scholar 

  53. Packard M, Mathew D, Budnik V. FASt remodeling of synapses in Drosophila. Curr Opin Neurobiol 2003;13(5):527–534.

    Article  CAS  PubMed  Google Scholar 

  54. Scheiffele P. Cell-cell signaling during synapse formation in the CNS. Annu Rev Neurosci 2003;26:485–508.

    Article  CAS  PubMed  Google Scholar 

  55. Ferreira A, Paganoni S. The formation of synapses in the central nervous system. Mol Neurobiol 2002;26(1):69–79.

    Article  CAS  PubMed  Google Scholar 

  56. Bloom FE, Aghajanian GK. Fine structural and cytochemical analysis of the staining of syn-aptic junctions with phosphotungstic acid. J Ultrastruct Res 1968;22(5):361–375.

    Article  CAS  PubMed  Google Scholar 

  57. Pfenninger K, Akert K, Moor H, Sandri C. The fine structure of freeze-fractured presynaptic membranes. J Neurocytol 1972;1(2):129–149.

    Article  CAS  PubMed  Google Scholar 

  58. Harlow ML, Ress D, Stoschek A, Marshall RM, McMahan UJ. The architecture of active zone material at the frog’s neuromuscular junction. Nature 2001;409(6819):479–484.

    Article  CAS  PubMed  Google Scholar 

  59. Phillips GR, Huang JK, Wang Y, et al. The presynaptic particle web: ultrastructure, composition, dissolution, and reconstitution. Neuron 2001;32(1):63–77.

    Article  CAS  PubMed  Google Scholar 

  60. Burns ME, Augustine GJ. Synaptic structure and function: dynamic organization yields architectural precision. Cell 1995;83(2):187–194.

    Article  CAS  PubMed  Google Scholar 

  61. Hirokawa N, Sobue K, Kanda K, Harada A, Yorifuji H. The cytoskeletal architecture of the presynaptic terminal and molecular structure of synapsin 1. J Cell Biol 1989;108(1):111–126.

    Article  CAS  PubMed  Google Scholar 

  62. Kistner U, Wenzel BM, Veh RW, et al. SAP90, a rat presynaptic protein related to the product of the Drosophila tumor suppressor gene dlg-A. J Biol Chem 1993;268(7):4580–4583.

    CAS  PubMed  Google Scholar 

  63. Muller BM, Kistner U, Veh RW, et al. Molecular characterization and spatial distribution of SAP97, a novel presynaptic protein homologous to SAP90 and the Drosophila discs-large tumor suppressor protein. J Neurosci 1995;15(3 Pt 2):2354–2366.

    CAS  PubMed  Google Scholar 

  64. Hata Y, Butz S, Sudhof TC. CASK: a novel dlg/PSD95 homolog with an N-terminal calmodu-lin-dependent protein kinase domain identified by interaction with neurexins. J Neurosci 1996;16(8):2488–2494.

    CAS  PubMed  Google Scholar 

  65. Koulen P, Fletcher EL, Craven SE, Bredt DS, Wassle H. Immunocytochemical localization of the postsynaptic density protein PSD-95 in the mammalian retina. J Neurosci 1998;18(23):10136–10149.

    CAS  PubMed  Google Scholar 

  66. Fanning AS, Anderson JM. PDZ domains: fundamental building blocks in the organization of protein complexes at the plasma membrane. J Clin Invest 1999;103(6):767–772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Garner CC, Nash J, Huganir RL. PDZ domains in synapse assembly and signalling. Trends Cell Biol 2000;10(7):274–280.

    Article  CAS  PubMed  Google Scholar 

  68. O’Brien RJ, Lau LF, Huganir RL. Molecular mechanisms of glutamate receptor clustering at excitatory synapses. Curr Opin Neurobiol 1998;8(3):364–369.

    Article  PubMed  Google Scholar 

  69. Butz S, Okamoto M, Sudhof TC. A tripartite protein complex with the potential to couple synaptic vesicle exocytosis to cell adhesion in brain. Cell 1998;94(6):773–782.

    Article  CAS  PubMed  Google Scholar 

  70. Hsueh YP, Yang FC, Kharazia V, et al. Direct interaction of CASK/LIN-2 and syndecan heparan sulfate proteoglycan and their overlapping distribution in neuronal synapses. J Cell Biol 1998;142(1):139–151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Maximov A, Sudhof TC, Bezprozvanny I. Association of neuronal calcium channels with modular adaptor proteins. J Biol Chem 1999;274(35):24453–24456.

    Article  CAS  PubMed  Google Scholar 

  72. Dieck S, Sanmart-Vila L, Langnaese K, et al. Bassoon, a novel zinc-finger CAG/glutamine-repeat protein selectively localized at the active zone of presynaptic nerve terminals. J Cell Biol 1998;142(2):499–509.

    Article  PubMed Central  Google Scholar 

  73. Fenster SD, Chung WJ, Zhai R, et al. Piccolo, a presynaptic zinc finger protein structurally related to bassoon. Neuron 2000;25(1):203–214.

    Article  CAS  PubMed  Google Scholar 

  74. Wang X, Kibschull M, Laue MM, Lichte B, Petrasch-Parwez E, Kilimann MW. Aczonin, a 550–kD putative scaffolding protein of presynaptic active zones, shares homology regions with rim and bassoon and binds profilin. J Cell Biol 1999;147(1):151–162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wang Y, Liu X, Biederer T, Sudhof TC. A family of RIM-binding proteins regulated by alternative splicing: implications for the genesis of synaptic active zones. Proc Natl Acad Sci U S A 2002;99(22):14464–14469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wang Y, Okamoto M, Schmitz F, Hofmann K, Sudhof TC. Rim is a putative Rab3 effector in regulating synaptic-vesicle fusion. Nature 1997;388(6642):593–598.

    Article  CAS  PubMed  Google Scholar 

  77. Brose N, Hofmann K, Hata Y, Sudhof TC. Mammalian homologues of Caenorhabditis ele-gans unc-13 gene define novel family of C2–domain proteins. J Biol Chem 1995;270(42): 25273–25280.

    Article  CAS  PubMed  Google Scholar 

  78. Dresbach T, Qualmann B, Kessels MM, Garner CC, Gundelfinger ED. The presynaptic cytomatrix of brain synapses. Cell Mol Life Sci 2001;58(1):94–116.

    Article  CAS  PubMed  Google Scholar 

  79. Rosenmund C, Rettig J, Brose N. Molecular mechanisms of active zone function. Curr Opin Neurobiol 2003;13(5):509–519.

    Article  CAS  PubMed  Google Scholar 

  80. Takao-Rikitsu E, Mochida S, Inoue E, et al. Physical and functional interaction of the active zone proteins, CAST, RIM1, and Bassoon, in neurotransmitter release. J Cell Biol 2004;164(2):301–311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Lagnado L. Ribbon synapses. Curr Biol 2003;13(16):R631.

    Article  CAS  PubMed  Google Scholar 

  82. Lenzi D, von Gersdorff H. Structure suggests function: the case for synaptic ribbons as exo-cytotic nanomachines. Bioessays 2001;23(9):831–840.

    Article  CAS  PubMed  Google Scholar 

  83. von Gersdorff H. Synaptic ribbons: versatile signal transducers. Neuron 2001;29(1):7–10.

    Article  Google Scholar 

  84. Hallam SJ, Goncharov A, McEwen J, Baran R, Jin Y. SYD-1, a presynaptic protein with PDZ, C2 and rhoGAP-like domains, specifies axon identity in C. elegans. Nat Neurosci 2002;5(11):1137–1146.

    Article  CAS  PubMed  Google Scholar 

  85. Meinertzhagen IA. Ultrastructure and quantification of synapses in the insect nervous system. J Neurosci Methods 1996;69(1):59–73.

    Article  CAS  PubMed  Google Scholar 

  86. Yasuyama K, Meinertzhagen IA, Schurmann FW. Synaptic organization of the mushroom body calyx in Drosophila melanogaster. J Comp Neurol 2002;445(3):211–226.

    Article  PubMed  Google Scholar 

  87. Govind CK, Meiss DE. Quantitative comparison of low- and high-output neuromuscular synapses from a motoneuron of the lobster (Homarus americanus). Cell Tissue Res 1979;198(3):455–463.

    Article  CAS  PubMed  Google Scholar 

  88. Garner CC, Kindler S, Gundelfinger ED. Molecular determinants of presynaptic active zones. Curr Opin Neurobiol 2000;10(3):321–327.

    Article  CAS  PubMed  Google Scholar 

  89. Muresan V, Lyass A, Schnapp BJ. The kinesin motor KIF3A is a component of the presyn-aptic ribbon in vertebrate photoreceptors. J Neurosci 1999;19(3):1027–1037.

    CAS  PubMed  Google Scholar 

  90. Hilfiker S, Pieribone VA, Czernik AJ, Kao HT, Augustine GJ, Greengard P. Synapsins as regulators of neurotransmitter release. Philos Trans R Soc Lond B Biol Sci 1999;354(1381):269–279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Brandstatter JH, Fletcher EL, Garner CC, Gundelfinger ED, Wassle H. Differential expression of the presynaptic cytomatrix protein bassoon among ribbon synapses in the mammalian retina. Eur J Neurosci 1999;11(10):3683–3693.

    Article  CAS  PubMed  Google Scholar 

  92. Dick O, tom Dieck S, Altrock WD, et al. The presynaptic active zone protein bassoon is essential for photoreceptor ribbon synapse formation in the retina. Neuron 2003;37(5):775–786.

    Article  CAS  PubMed  Google Scholar 

  93. Kittel RJ, Wichmann C, Rasse TM, et al. Bruchpilot promotes active zone assembly, Ca2+ channel clustering, and vesicle release. Science 2006;312(5776):1051–1054.

    Article  CAS  PubMed  Google Scholar 

  94. Lenzi D, Crum J, Ellisman MH, Roberts WM. Depolarization redistributes synaptic membrane and creates a gradient of vesicles on the synaptic body at a ribbon synapse. Neuron 2002;36(4):649–659.

    Article  CAS  PubMed  Google Scholar 

  95. Lenzi D, Runyeon JW, Crum J, Ellisman MH, Roberts WM. Synaptic vesicle populations in saccular hair cells reconstructed by electron tomography. J Neurosci 1999;19(1):119–132.

    CAS  PubMed  Google Scholar 

  96. Matthews G. Synaptic mechanisms of bipolar cell terminals. Vision Res 1999;39(15): 2469–2476.

    Article  CAS  PubMed  Google Scholar 

  97. Govind CK, Quigley PA, Pearce J. Synaptic differentiation between two phasic motoneurons to a crayfish fast muscle. Invert Neurosci 2001;4(2):77–84.

    CAS  PubMed  Google Scholar 

  98. Ahmari SE, Buchanan J, Smith SJ. Assembly of presynaptic active zones from cytoplasmic transport packets. Nat Neurosci 2000;3(5):445–451.

    Article  CAS  PubMed  Google Scholar 

  99. Friedman HV, Bresler T, Garner CC, Ziv NE. Assembly of new individual excitatory synapses: time course and temporal order of synaptic molecule recruitment. Neuron 2000;27(1):57–69.

    Article  CAS  PubMed  Google Scholar 

  100. Dresbach T, Torres V, Wittenmayer N, et al. Assembly of active zone precursor vesicles: obligatory trafficking of presynaptic cytomatrix proteins Bassoon and Piccolo via a trans-Golgi compartment. J Biol Chem 2006;281(9):6038–6047.

    Article  CAS  PubMed  Google Scholar 

  101. Zhai RG, Vardinon-Friedman H, Cases-Langhoff C, et al. Assembling the presynaptic active zone: a characterization of an active one precursor vesicle. Neuron 2001;29(1): 131–143.

    Article  CAS  PubMed  Google Scholar 

  102. Shapira M, Zhai RG, Dresbach T, et al. Unitary assembly of presynaptic active zones from Piccolo-Bassoon transport vesicles. Neuron 2003;38(2):237–252.

    Article  CAS  PubMed  Google Scholar 

  103. Patel MR, Lehrman EK, Poon V Y, et al. Hierarchical assembly of presynaptic components in defined C. elegans synapses. Nat Neurosci 2006;9(12):1488–1498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Zhen M, Jin Y. The liprin protein SYD-2 regulates the differentiation of presynaptic termini in C. elegans. Nature 1999;401(6751):371–375.

    CAS  PubMed  Google Scholar 

  105. Serra-Pages C, Medley QG, Tang M, Hart A, Streuli M. Liprins, a family of LAR transmembrane protein-tyrosine phosphatase-interacting proteins. J Biol Chem 1998;273(25):15611–15620.

    Article  CAS  PubMed  Google Scholar 

  106. Kaufmann N, DeProto J, Ranjan R, Wan H, Van Vactor D. Drosophila liprin-alpha and the receptor phosphatase Dlar control synapse morphogenesis. Neuron 2002;34(1):27–38.

    Article  CAS  PubMed  Google Scholar 

  107. Aberle H, Haghighi AP, Fetter RD, McCabe BD, Magalhaes TR, Goodman CS. wishful thinking encodes a BMP type II receptor that regulates synaptic growth in Drosophila. Neuron 2002;33(4):545–558.

    Article  CAS  PubMed  Google Scholar 

  108. Marques G, Bao H, Haerry TE, et al. The Drosophila BMP type II receptor Wishful Thinking regulates neuromuscular synapse morphology and function. Neuron 2002;33(4):529–543.

    Article  CAS  PubMed  Google Scholar 

  109. Brandstatter JH, Meinertzhagen IA. The rapid assembly of synaptic sites in photoreceptor terminals of the fly’s optic lobe recovering from cold shock. Proc Natl Acad Sci U S A 1995;92(7):2677–2681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Rybak J, Meinertzhagen IA. The effects of light reversals on photoreceptor synaptogenesis in the fly Musca domestica. Eur J Neurosci 1997;9(2):319–333.

    Article  CAS  PubMed  Google Scholar 

  111. Wojtowicz JM, Marin L, Atwood HL. Activity-induced changes in synaptic release sites at the crayfish neuromuscular junction. J Neurosci 1994;14(6):3688–3703.

    CAS  PubMed  Google Scholar 

  112. Harris KM, Fiala JC, Ostroff L. Structural changes at dendritic spine synapses during longterm potentiation. Philos Trans R Soc Lond B Biol Sci 2003;358(1432):745–748.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Weeks AC, Ivanco TL, Leboutillier JC, Racine RJ, Petit TL. Sequential changes in the syn-aptic structural profile following long-term potentiation in the rat dentate gyrus. II. Induction/ early maintenance phase. Synapse 2000;36(4):286–296.

    Article  CAS  PubMed  Google Scholar 

  114. Reiff DF, Thiel PR, Schuster CM. Differential regulation of active zone density during longterm strengthening of Drosophila neuromuscular junctions. J Neurosci 2002;22(21): 9399–9409.

    CAS  PubMed  Google Scholar 

  115. Meinertzhagen IA, Govind CK, Stewart BA, Carter JM, Atwood HL. Regulated spacing of synapses and presynaptic active zones at larval neuromuscular junctions in different genotypes of the flies Drosophila and Sarcophaga. J Comp Neurol 1998;393(4):482–492.

    Article  CAS  PubMed  Google Scholar 

  116. Dickman DK, Lu Z, Meinertzhagen IA, Schwarz TL. Altered synaptic development and active zone spacing in endocytosis mutants. Curr Biol 2006;16(6):591–598.

    Article  CAS  PubMed  Google Scholar 

  117. Ceccarelli B, Fesce R, Grohovaz F, Haimann C. The effect of potassium on exocytosis of transmitter at the frog neuromuscular junction. J Physiol 1988;401:163–183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Zenisek D, Davila V, Wan L, Almers W. Imaging calcium entry sites and ribbon structures in two presynaptic cells. J Neurosci 2003;23(7):2538–2548.

    CAS  PubMed  Google Scholar 

  119. Zenisek D, Steyer JA, Almers W. Transport, capture and exocytosis of single synaptic vesicles at active zones. Nature 2000;406(6798):849–854.

    Article  CAS  PubMed  Google Scholar 

  120. Sudhof TC. The synaptic vesicle cycle. Annu Rev Neurosci 2004;27:509–47.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Grace Zhai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Zhai, R.G. (2008). The Architecture of the Presynaptic Release Site. In: Wang, ZW. (eds) Molecular Mechanisms of Neurotransmitter Release. Contemporary Neuroscience. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59745-481-0_1

Download citation

Publish with us

Policies and ethics