Skip to main content

Histone Deacetylase Inhibitors and Anticancer Activity

  • Chapter
  • 1074 Accesses

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. O'Dwyer ME, Mauro MJ, Druker BJ. STI571 as a targeted therapy for CML. Cancer Invest 2003, 21:429–438.

    PubMed  Google Scholar 

  2. Chakravarthy S, Park YJ, Chodaparambil J, et al. Structure and dynamic properties of nucleosome core particles. FEBS Lett 2005, 579:895–898.

    CAS  PubMed  Google Scholar 

  3. Strahl BD, Allis CD. The language of covalent histone modifications. Nature 2000, 403:41–45.

    CAS  PubMed  Google Scholar 

  4. Cress WD, Seto E. Histone deacetylases, transcriptional control, and cancer. J Cell Physiol 2000, 184:1–16.

    CAS  PubMed  Google Scholar 

  5. Peterson CL. Chromatin remodeling enzymes: taming the machines. Third in review series on chromatin dynamics. EMBO Rep 2002, 3:319–322.

    CAS  PubMed  Google Scholar 

  6. Khan AU, Krishnamurthy S. Histone modifications as key regulators of transcription. Front Biosci 2005, 10:866–872.

    CAS  PubMed  Google Scholar 

  7. Gray SG, Teh BT. Histone acetylation/deacetylation and cancer: an “open” and “shut” case? Curr Mol Med 2001, 1:401–429.

    CAS  PubMed  Google Scholar 

  8. De Ruijter AJ, Van Gennip AH, Caron HN, et al. Histone deacetylases: characterisation of the classical HDAC family. Biochem J 2003, 370:737–749.

    PubMed  Google Scholar 

  9. Gregory PD, Wagner K, Horz W. Histone acetylation and chromatin remodeling. Exp Cell Res 2001, 265:195–202.

    CAS  PubMed  Google Scholar 

  10. Peart MJ, Smyth GK, van Laar RK, et al. Identification and functional significance of genes regulated by structurally different histone deacetylase inhibitors. Proc Natl Acad Sci U S A 2005, 102:3697–3702.

    CAS  PubMed  Google Scholar 

  11. Gray SG, Ekstrom TJ. The human histone deacetylase family. Exp Cell Res 2001, 262:75–83.

    CAS  PubMed  Google Scholar 

  12. Roth SY, Denu JM, Allis CD. Histone acetyltransferases. Annu Rev Biochem 2001, 70:81–120.

    CAS  PubMed  Google Scholar 

  13. Blander G, Guarente L. The Sir2 family of protein deacetylases. Annu Rev Biochem 2004, 73:417–435.

    CAS  PubMed  Google Scholar 

  14. Yang XJ, Gregoire S. Class II histone deacetylases: from sequence to function, regulation, and clinical implication. Mol Cell Biol 2005, 25:2873–2884.

    CAS  PubMed  Google Scholar 

  15. Kao HY, Verdel A, Tsai CC, et al. Mechanism for nucleocytoplasmic shuttling of histone deacetylase 7. J Biol Chem 2001, 276:47496–47507.

    CAS  PubMed  Google Scholar 

  16. Drummond DC, Noble CO, Kirpotin DB, et al. Clinical development of histone deacetylase inhibitors as anticancer agents. Annu Rev Pharmacol Toxicol 2004, 45:495–528.

    Google Scholar 

  17. Newmark HL, Young CW. Butyrate and phenylacetate as differentiating agents: practical problems and opportunities. J Cell Biochem Suppl 1995, 22:247–253.

    CAS  PubMed  Google Scholar 

  18. Rosato RR, Wang Z, Gopalkrishnan RV, et al. Evidence of a functional role for the cyclin-dependent kinase-inhibitor p21WAF1/CIP1/MDA6 in promoting differentiation and preventing mitochondrial dysfunction and apoptosis induced by sodium butyrate in human myelomonocytic leukemia cells (U937). Int J Oncol 2001, 19:181–191.

    CAS  PubMed  Google Scholar 

  19. Weisberg E, Catley L, Kujawa J, et al. Histone deacetylase inhibitor NVP—LAQ824 has significant activity against myeloid leukemia cells in vitro and in vivo. Leukemia 2004, 18:1951–1963.

    CAS  PubMed  Google Scholar 

  20. Romanski A, Bacic B, Bug G, et al. Use of a novel histone deacetylase inhibitor to induce apoptosis in cell lines of acute lymphoblastic leukemia. Haematologica 2004, 89:419–426.

    CAS  PubMed  Google Scholar 

  21. Guo F, Sigua C, Tao J, et al. Cotreatment with histone deacetylase inhibitor LAQ824 enhances Apo-2L/tumor necrosis factor-related apoptosis inducing ligand-induced death inducing signaling complex activity and apoptosis of human acute leukemia cells. Cancer Res 2004, 64:2580–2589.

    CAS  PubMed  Google Scholar 

  22. George P, Bali P, Annavarapu S, et al. Combination of the histone deacetylase inhibitor LBH589 and the hsp90 inhibitor 17-AAG is highly active against human CML-BC cells and AML cells with activating mutation of FLT-3. Blood 2005, 105:1768–1776.

    CAS  PubMed  Google Scholar 

  23. Yoshida M, Kijima M, Akita M, et al. Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by trichostatin A. J Biol Chem 1990, 265:17174–17179.

    CAS  PubMed  Google Scholar 

  24. Finnin MS, Donigian JR, Cohen A, et al. Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors. Nature 1999, 401: 188–193.

    CAS  PubMed  Google Scholar 

  25. Marks PA, Miller T, Richon VM. Histone deacetylases. Curr Opin Pharmacol 2003, 3:344–351.

    CAS  PubMed  Google Scholar 

  26. Rosato RR, Grant S. Histone deacetylase inhibitors in clinical development. Expert Opin Investig Drugs 2004, 13:21–38.

    CAS  PubMed  Google Scholar 

  27. De Ruijter AJ, Kemp S, Kramer G, et al. The novel histone deacetylase inhibitor BL1521 inhibits proliferation and induces apoptosis in neuroblastoma cells. Biochem Pharmacol 2004, 68:1279–1288.

    PubMed  Google Scholar 

  28. Villar-Garea A, Esteller M. Histone deacetylase inhibitors: understanding a new wave of anticancer agents. Int J Cancer 2004, 112:171–178.

    CAS  PubMed  Google Scholar 

  29. Grant S, Easley C, Kirkpatrick P. Vorinostat. Nat Rev Drug Discov 2007, 6:21–22.

    CAS  PubMed  Google Scholar 

  30. Garcia-Manero G, Issa JP, Cortes J, et al. Phase I study of oral suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor, in patients (pts) with advanced leukemias or myelodysplastic syndromes (MDS). J Clin Oncol 2004, 22(14S):3027.

    Google Scholar 

  31. Candido EP, Reeves R, Davie JR. Sodium butyrate inhibits histone deacetylation in cultured cells. Cell 1978, 14:105–113.

    CAS  PubMed  Google Scholar 

  32. Cousens LS, Gallwitz D, Alberts BM. Different accessibilities in chromatin to histone acetylase. J Biol Chem 1979, 254:1716–1723.

    CAS  PubMed  Google Scholar 

  33. Kruh J. Effects of sodium butyrate, a new pharmacological agent, on cells in culture. Mol Cell Biochem 1982, 42:65–82.

    CAS  PubMed  Google Scholar 

  34. Nudelman A, Gnizi E, Katz Y, et al. Prodrugs of butyric acid. Novel derivatives possessing increased aqueous solubility and potential for treating cancer and blood diseases. Eur J Med Chem 2001, 36: 63–74.

    CAS  PubMed  Google Scholar 

  35. Nudelman A, Rephaeli A. Novel mutual prodrug of retinoic and butyric acids with enhanced anticancer activity. J Med Chem 2000, 43:2962–2966.

    CAS  PubMed  Google Scholar 

  36. Reid T, Valone F, Lipera W, et al. Phase II trial of the histone deacetylase inhibitor pivaloyloxymethyl butyrate (Pivanex, AN-9) in advanced non-small cell lung cancer. Lung Cancer 2004, 45:381–386.

    PubMed  Google Scholar 

  37. Witt O, Schweigerer L, Driever PH, et al. Valproic acid treatment of glioblastoma multiforme in a child. Pediatr Blood Cancer 2004, 43:181.

    PubMed  Google Scholar 

  38. Kelly WK, O'Connor OA, Marks PA. Histone deacetylase inhibitors: from target to clinical trials. Expert Opin Investig Drugs 2002, 11:1695–1713.

    CAS  PubMed  Google Scholar 

  39. Prakash S, Foster BJ, Meyer M, et al. Chronic oral administration of CI-994: a phase 1 study. Invest New Drugs 2001, 19:1–11.

    CAS  PubMed  Google Scholar 

  40. Rosato RR, Almenara JA, Grant S. The histone deacetylase inhibitor MS-275 promotes differentiation or apoptosis in human leukemia cells through a process regulated by generation of reactive oxygen species and induction of p21CIP1/WAF1 1. Cancer Res 2003, 63:3637–3645.

    CAS  PubMed  Google Scholar 

  41. LoRusso PM, Demchik L, Foster B, et al. Preclinical antitumor activity of CI-994. Invest New Drugs 1996, 14:349–356.

    CAS  PubMed  Google Scholar 

  42. Graziano MJ, Spoon TA, Cockrell EA, et al. Induction of apoptosis in rat peripheral blood lymphocytes by the anticancer drug CI-994 (Acetyldinaline)(*). J Biomed Biotechnol 2001, 1:52–61.

    CAS  PubMed  Google Scholar 

  43. Undevia SD, Kindler HL, Janisch L, et al. A phase I study of the oral combination of CI-994, a putative histone deacetylase inhibitor, and capecitabine. Ann Oncol 2004, 15:1705–1711.

    CAS  PubMed  Google Scholar 

  44. Nemunaitis JJ, Orr D, Eager R, et al. Phase I study of oral CI-994 in combination with gemcitabine in treatment of patients with advanced cancer. Cancer J 2003, 9:58–66.

    CAS  PubMed  Google Scholar 

  45. Camphausen K, Scott T, Sproull M, et al. Enhancement of xenograft tumor radiosensitivity by the histone deacetylase inhibitor MS-275 and correlation with histone hyperacetylation. Clin Cancer Res 2004, 10:6066–6071.

    CAS  PubMed  Google Scholar 

  46. Marks PA, Rifkind RA, Richon VM, et al. Histone deacetylases and cancer: causes and therapies. Nat Rev Cancer 2001, 1:194–202.

    CAS  PubMed  Google Scholar 

  47. Wang C, Fu M, Mani S, et al. Histone acetylation and the cell-cycle in cancer. Front Biosci 2001, 6:D610–D629.

    CAS  PubMed  Google Scholar 

  48. Acharya MR, Figg WD. Histone deacetylase inhibitor enhances the anti-leukemic activity of an established nucleoside analogue. Cancer Biol Ther 2004, 3:719–720.

    CAS  PubMed  Google Scholar 

  49. Jose B, Oniki Y, Kato T, et al. Novel histone deacetylase inhibitors: cyclic tetrapeptide with trifluoromethyl and pentafluoroethyl ketones. Bioorg Med Chem Lett 2004, 14:5343–5346.

    CAS  PubMed  Google Scholar 

  50. Nishino N, Yoshikawa D, Watanabe LA, et al. Synthesis and histone deacetylase inhibitory activity of cyclic tetrapeptides containing a retrohydroxamate as zinc ligand. Bioorg Med Chem Lett 2004, 14:2427–2431.

    CAS  PubMed  Google Scholar 

  51. Nishino N, Jose B, Okamura S, et al. Cyclic tetrapeptides bearing a sulfhydryl group potently inhibit histone deacetylases. Org Lett 2003, 5:5079–5082.

    CAS  PubMed  Google Scholar 

  52. Kwon HJ, Owa T, Hassig CA, et al. Depudecin induces morphological reversion of transformed fibroblasts via the inhibition of histone deacetylase. Proc Natl Acad Sci U S A 1998, 95:3356–3361.

    CAS  PubMed  Google Scholar 

  53. Gelmon K, Tolcher A, Carducci M, et al. Phase I trials of the oral histone deacetylase (HDAC) inhibitor MGCD0103 given either daily of 3x weekly for 14 days every 3 weeks in patients (pts) with advanced solid tumors. J Clin Oncol 2005 ASCO Annual Meeting Proceedings 2005, 23[16S].

    Google Scholar 

  54. Garcia-Manero G, Minden MD, Estrov Z, et al. Clinical activity and safety of the histone deacetylase inhibitor MGCD0103: results of a phase I study in patients with leukemia or myelodysplastic syndromes (MDS). J Clin Oncol 2006, 24(18S):6500.

    Google Scholar 

  55. Melnick A, Licht JD. Histone deacetylases as therapeutic targets in hematologic malignancies. Curr Opin Hematol 2002, 9:322–332.

    PubMed  Google Scholar 

  56. Wade PA. Transcriptional control at regulatory checkpoints by histone deacetylases: molecular connections between cancer and chromatin. Hum Mol Genet 2001, 10:693–698.

    CAS  PubMed  Google Scholar 

  57. Jenuwein T, Allis CD. Translating the histone code. Science 2001, 293:1074–1080.

    CAS  PubMed  Google Scholar 

  58. Egger G, Liang G, Aparicio A, et al. Epigenetics in human disease and prospects for epigenetic therapy. Nature 2004, 429:457–463.

    CAS  PubMed  Google Scholar 

  59. Van Lint C, Emiliani S, Verdin E. The expression of a small fraction of cellular genes is changed in response to histone hyperacetylation. Gene Expr 1996, 5:245–253.

    PubMed  Google Scholar 

  60. Lee H, Lee S, Baek M, et al. Expression profile analysis of trichostatin A in human gastric cancer cells. Biotech Lett 2002, 24:377–381.

    Google Scholar 

  61. Butler LM, Zhou X, Xu WS, et al. The histone deacetylase inhibitor SAHA arrests cancer cell growth, up-regulates thioredoxin-binding protein-2, and down-regulates thioredoxin. Proc Natl Acad Sci U S A 2002, 99:11700–11705.

    CAS  PubMed  Google Scholar 

  62. Glaser KB, Staver MJ, Waring JF, et al. Gene expression profiling of multiple histone deacetylase (HDAC) inhibitors: defining a common gene set produced by HDAC inhibition in T24 and MDA carcinoma cell lines. Mol Cancer Ther 2003, 2:151–163.

    CAS  PubMed  Google Scholar 

  63. Li H, Wu X. Histone deacetylase inhibitor, Trichostatin A, activates p21WAF1/CIP1 expression through down-regulation of c-myc and release of the repression of c-myc from the promoter in human cervical cancer cells. Biochem Biophys Res Commun 2004, 324:860–867.

    CAS  PubMed  Google Scholar 

  64. Qian DZ, Wang X, Kachhap SK, et al. The histone deacetylase inhibitor NVP-LAQ824 inhibits angiogenesis and has a greater antitumor effect in combination with the vascular endothelial growth factor receptor tyrosine kinase inhibitor PTK787/ ZK222584. Cancer Res 2004, 64:6626–6634.

    CAS  PubMed  Google Scholar 

  65. Marks PA, Richon VM, Miller T, et al. Histone deacetylase inhibitors. Adv Cancer Res 2004, 91:137–168.

    CAS  PubMed  Google Scholar 

  66. Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer. Nat Rev Genet 2002, 3:415–428.

    CAS  PubMed  Google Scholar 

  67. Johnstone RW, Licht JD. Histone deacetylase inhibitors in cancer therapy: is transcription the primary target? Cancer Cell 2003, 4:13–18.

    CAS  PubMed  Google Scholar 

  68. Esteller M, Cordon-Cardo C, Corn PG, et al. p14ARF silencing by promoter hypermethylation mediates abnormal intracellular localization of MDM2. Cancer Res 2001, 61:2816–2821.

    CAS  PubMed  Google Scholar 

  69. Cameron EE, Bachman KE, Myohanen S, et al. Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat Genet 1999, 21:103–107.

    CAS  PubMed  Google Scholar 

  70. Zhu WG, Otterson GA. The interaction of histone deacetylase inhibitors and DNA methyltransferase inhibitors in the treatment of human cancer cells. Curr Med Chem Anti -Canc Agents 2003, 3:187–199.

    CAS  Google Scholar 

  71. Aparicio A, Weber JS. Review of the clinical experience with 5-azacytidine and 5-aza-2′-deoxycytidine in solid tumors. Curr Opin Investig Drugs 2002, 3:627–633.

    CAS  PubMed  Google Scholar 

  72. Gore SD, Baylin S, Sugar E, et al. Combined DNA methyltransferase and histone deacetylase inhibition in the treatment of myeloid neoplasms. Cancer Res 2006, 66:6361–6369.

    CAS  PubMed  Google Scholar 

  73. Insinga A, Pelicci PG, Inucci S. Leukemia-associated fusion proteins. Multiple mechanisms of action to drive cell transformation. Cell Cycle 2005, 4:67–69.

    CAS  PubMed  Google Scholar 

  74. He LZ, Tolentino T, Grayson P, et al. Histone deacetylase inhibitors induce remission in transgenic models of therapy-resistant acute promyelocytic leukemia. J Clin Invest 2001, 108:1321–1330.

    CAS  PubMed  Google Scholar 

  75. Jing Y, Xia L, Waxman S. Targeted removal of PML-RARalpha protein is required prior to inhibition of histone deacetylase for overcoming all-trans retinoic acid differentiation resistance in acute promyelocytic leukemia. Blood 2002, 100:1008–1013.

    CAS  PubMed  Google Scholar 

  76. Zhou DC, Kim SH, Ding W, et al. Frequent mutations in the ligand—binding domain of PML-RARalpha after multiple relapses of acute promyelocytic leukemia: analysis for functional relationship to response to all-trans retinoic acid and histone deacetylase inhibitors in vitro and in vivo. Blood 2002, 99:1356–1363.

    CAS  PubMed  Google Scholar 

  77. Behrend L, Henderson G, Zwacka RM. Reactive oxygen species in oncogenic transformation. Biochem Soc Trans 2003, 31:1441–1444.

    CAS  PubMed  Google Scholar 

  78. Irani K, Xia Y, Zweier JL, et al. Mitogenic signaling mediated by oxidants in Ras-transformed fibroblasts. Science 1997, 275:1649–1652.

    CAS  PubMed  Google Scholar 

  79. Chung YM, Bae YS, Lee SY. Molecular ordering of ROS production, mitochondrial changes, and caspase activation during sodium salicylate-induced apoptosis. Free Radic Biol Med 2003, 34:434–442.

    CAS  PubMed  Google Scholar 

  80. Curtin JF, Donovan M, Cotter TG. Regulation and measurement of oxidative stress in apoptosis. J Immunol Meth 2002, 265:49–72.

    CAS  Google Scholar 

  81. Chen QM, Bartholomew JC, Campisi J, et al. Molecular analysis of H2O2-induced senescentlike growth arrest in normal human fibroblasts: p53 and Rb control G1 arrest but not cell replication. Biochem J 1998, 332(Pt 1):43–50.

    CAS  PubMed  Google Scholar 

  82. Moreira JM, Scheipers P, Sorensen P. The histone deacetylase inhibitor Trichostatin A modulates CD4+ T cell responses. BMC Cancer 2003, 3:30–47.

    PubMed  Google Scholar 

  83. Ruefli AA, Ausserlechner MJ, Bernhard D, et al. The histone deacetylase inhibitor and chemotherapeutic agent suberoylanilide hydroxamic acid (SAHA) induces a cell-death pathway characterized by cleavage of Bid and production of reactive oxygen species. Proc Natl Acad Sci U S A 2001, 98:10833–10838.

    CAS  PubMed  Google Scholar 

  84. Louis M, Rosato RR, Brault L, et al. The histone deacetylase inhibitor sodium butyrate induces breast cancer cell apoptosis through diverse cytotoxic actions including glutathione depletion and oxidative stress. Int J Oncol 2004, 25:1701–1711.

    CAS  PubMed  Google Scholar 

  85. Yu C, Subler M, Rahmani M, et al. Induction of apoptosis in BCR/ABL+ cells by histone deacetylase inhibitors involves reciprocal effects on the RAF/ MEK/ERK and JNK pathways. Cancer Biol Ther 2003, 2:544–551.

    CAS  PubMed  Google Scholar 

  86. Rosato RR, Maggio SC, Almenara JA, et al. The histone deacetylase inhibitor LAQ-824 induces human leukemia cell death through a process involving XIAP down-regulation, oxidative injury, and the acid sphingomyelinase-dependent generation of ceramide. Mol Pharmacol 2006, 69:216–225.

    CAS  PubMed  Google Scholar 

  87. Lucas DM, Davis ME, Parthun MR, et al. The histone deacetylase inhibitor MS-275 induces caspase-dependent apoptosis in B-cell chronic lymphocytic leukemia cells. Leukemia 2004, 18:1207–1214.

    CAS  PubMed  Google Scholar 

  88. Fernandez-Checa JC. Redox regulation and signaling lipids in mitochondrial apoptosis. Biochem Biophys Res Commun 2003, 304:471–479.

    CAS  PubMed  Google Scholar 

  89. Powis G, Montfort WR. Properties and biological activities of thioredoxins. Annu Rev Pharmacol Toxicol 2001, 41:261–295.

    CAS  PubMed  Google Scholar 

  90. Fernandez-Checa JC, Kaplowitz N, Garcia-Ruiz C, et al. GSH transport in mitochondria: defense against TNF-induced oxidative stress and alcoholinduced defect. Am J Physiol 1997, 273:G7–G17.

    CAS  PubMed  Google Scholar 

  91. Louis M, Rosato RR, Battaglia E, et al. Modulation of sensitivity to doxorubicin by the histone deacetylase inhibitor sodium butyrate in breast cancer cells. Int J Oncol 2005, 26:1569–1574.

    CAS  PubMed  Google Scholar 

  92. Ungerstedt JS, Sowa Y, Xu WS, et al. Role of thioredoxin in the response of normal and transformed cells to histone deacetylase inhibitors. Proc Natl Acad Sci U S A 2005, 102:673–678.

    CAS  PubMed  Google Scholar 

  93. Marks PA. Thioredoxin in cancer—role of histone deacetylase inhibitors. Semin Cancer Biol 2006, 16:436–443.

    CAS  PubMed  Google Scholar 

  94. Xu W, Ngo L, Perez G, et al. Intrinsic apoptotic and thioredoxin pathways in human prostate cancer cell response to histone deacetylase inhibitor. Proc Natl Acad Sci U S A 2006, 103:15540–15545.

    CAS  PubMed  Google Scholar 

  95. Arner ES, Holmgren A. Physiological functions of thioredoxin and thioredoxin reductase. Eur J Biochem 2000, 267:6102–6109.

    CAS  PubMed  Google Scholar 

  96. Kwon SH, Ahn SH, Kim YK, et al. Apicidin, a histone deacetylase inhibitor, induces apoptosis and Fas/Fas ligand expression in human acute promyelocytic leukemia cells. J Biol Chem 2002, 277:2073–2080.

    CAS  PubMed  Google Scholar 

  97. Glick RD, Swendeman SL, Coffey DC, et al. Hybrid polar histone deacetylase inhibitor induces apoptosis and CD95/CD95 ligand expression in human neuroblastoma. Cancer Res 1999, 59:4392–4399.

    CAS  PubMed  Google Scholar 

  98. Kim YH, Park JW, Lee JY, et al. Sodium butyrate sensitizes TRAIL-mediated apoptosis by induction of transcription from the DR5 gene promoter through Sp1 sites in colon cancer cells. Carcinogenesis 2004, 25:1813–1820.

    PubMed  Google Scholar 

  99. Watanabe K, Okamoto K, Yonehara S. Sensitization of osteosarcoma cells to death receptor-mediated apoptosis by HDAC inhibitors through downregulation of cellular FLIP. Cell Death Diff 2005, 12:10–18.

    CAS  Google Scholar 

  100. Nakata S, Yoshida T, Horinaka M, et al. Histone deacetylase inhibitors upregulate death receptor 5/TRAIL-R2 and sensitize apoptosis induced by TRAIL/APO2-L in human malignant tumor cells. Oncogene 2004, 23:6261–6271.

    CAS  PubMed  Google Scholar 

  101. Insinga A, Monestiroli S, Ronzoni S, et al. Inhibitors of histone deacetylases induce tumor-selective apoptosis through activation of the death receptor pathway. Nat Med 2005, 11:71–76.

    CAS  PubMed  Google Scholar 

  102. Nebbioso A, Clarke N, Voltz E, et al. Tumor-selective action of HDAC inhibitors involves TRAIL induction in acute myeloid leukemia cells. Nat Med 2005, 11:77–84.

    CAS  PubMed  Google Scholar 

  103. Daehn IS, Varelias A, Rayner TE. Sodium butyrate induced keratinocyte apoptosis. Apoptosis 2006, 11:1379–1390.

    CAS  PubMed  Google Scholar 

  104. Emanuele S, Lauricella M, Carlisi D, et al. SAHA induces apoptosis in hepatoma cells and synergistically interacts with the proteasome inhibitor Bortezomib. Apoptosis 2007.

    Google Scholar 

  105. Kim HR, Kim EJ, Yang SH, et al. Trichostatin A induces apoptosis in lung cancer cells via simultaneous activation of the death receptor-mediated and mitochondrial pathway? Exp Mol Med 2006, 38:616–624.

    CAS  PubMed  Google Scholar 

  106. Inoue S, MacFarlane M, Harper N, et al. Histone deacetylase inhibitors potentiate TNF-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in lymphoid malignancies. Cell Death Differ 2004, 11(Suppl 2):S193–S206.

    CAS  PubMed  Google Scholar 

  107. Chopin V, Slomianny C, Hondermarck H, et al. Synergistic induction of apoptosis in breast cancer cells by cotreatment with butyrate and TNF-alpha, TRAIL, or anti-Fas agonist antibody involves enhancement of death receptors' signaling and requires P21(waf1). Exp Cell Res 2004, 298: 560–573.

    CAS  PubMed  Google Scholar 

  108. Rosato RR, Almenara JA, Dai Y, et al. Simultaneous activation of the intrinsic and extrinsic pathways by histone deacetylase (HDAC) inhibitors and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) synergistically induces mitochondrial damage and apoptosis in human leukemia cells. Mol Cancer Ther 2003, 2:1273–1284.

    CAS  PubMed  Google Scholar 

  109. Sirulnik A, Melnick A, Zelent A, et al. Molecular pathogenesis of acute promyelocytic leukaemia and APL variants. Best Pract Res Clin Haematol 2003, 16:387–408.

    CAS  PubMed  Google Scholar 

  110. Melnick A, Carlile GW, McConnell MJ, et al. AML-1/ETO fusion protein is a dominant negative inhibitor of transcriptional repression by the promyelocytic leukemia zinc finger protein. Blood 2000, 96:3939–3947.

    CAS  PubMed  Google Scholar 

  111. Dai Y, Rahmani M, Grant S. An Intact NF-kap-paB Pathway is required for histone deacetylase inhibitor-induced G1 arrest and maturation in U937 human myeloid leukemia cells. Cell Cycle 2003, 2:467–472.

    CAS  PubMed  Google Scholar 

  112. Mayo MW, Denlinger CE, Broad RM, et al. Ineffectiveness of histone deacetylase inhibitors to induce apoptosis involves the transcriptional activation of NF-kappa B through the Akt pathway. J Biol Chem 2003, 278:18980–18989.

    CAS  PubMed  Google Scholar 

  113. Catley L, Weisberg E, Tai YT, et al. NVP-LAQ824 is a potent novel histone deacetylase inhibitor with significant activity against multiple myeloma. Blood 2003, 102:2615–2622.

    CAS  PubMed  Google Scholar 

  114. Rundall BK, Denlinger CE, Jones DR. Combined histone deacetylase and NF-kappaB inhibition sensitizes non-small cell lung cancer to cell death. Surgery 2004, 136:416–425.

    PubMed  Google Scholar 

  115. Chen LF, Greene WC. Shaping the nuclear action of NF-kappaB. Nat Rev Mol Cell Biol 2004, 5:392–401.

    CAS  PubMed  Google Scholar 

  116. Ghosh S, Karin M. Missing pieces in the NF-kappaB puzzle. Cell 2002, 109 Suppl:S81–S96.

    CAS  PubMed  Google Scholar 

  117. Karin M, Lin A. NF-kappaB at the crossroads of life and death. Nat Immunol 2002, 3:221–227.

    CAS  PubMed  Google Scholar 

  118. Lezoualc'h F, Sagara Y, Holsboer F, et al. High constitutive NF-kappaB activity mediates resistance to oxidative stress in neuronal cells. J Neurosci 1998, 18:3224–3232.

    PubMed  Google Scholar 

  119. Storz P, Toker A. Protein kinase D mediates a stress-induced NF-kappaB activation and survival pathway. EMBO J 2003, 22:109–120.

    CAS  PubMed  Google Scholar 

  120. Quivy V, Van Lint C. Regulation at multiple levels of NF-kappaB-mediated transactivation by protein acetylation. Biochem Pharmacol 2004, 68: 1221–1229.

    CAS  PubMed  Google Scholar 

  121. Orlowski RZ, Baldwin AS, Jr. NF-kappaB as a therapeutic target in cancer. Trends Mol Med 2002, 8:385–389.

    CAS  PubMed  Google Scholar 

  122. French LE, Tschopp J. The TRAIL to selective tumor death. Nat Med 1999, 5:146–147.

    CAS  PubMed  Google Scholar 

  123. Baldwin AS. Control of oncogenesis and cancer therapy resistance by the transcription factor NF-kappaB. J Clin Invest 2001, 107:241–246.

    CAS  PubMed  Google Scholar 

  124. Stehlik C, de Martin R, Kumabashiri I, et al. Nuclear factor (NF)-kappaB-regulated X-chromosome-linked iap gene expression protects endothelial cells from tumor necrosis factor alpha-induced apoptosis. J Exp Med 1998, 188:211–216.

    CAS  PubMed  Google Scholar 

  125. Grumont RJ, Rourke IJ, Gerondakis S. Rel-dependent induction of A1 transcription is required to protect B cells from antigen receptor ligation-induced apoptosis. Genes Dev 1999, 13:400–411.

    CAS  PubMed  Google Scholar 

  126. Zong WX, Edelstein LC, Chen C, et al. The prosurvival Bcl-2 homolog Bfl-1/A1 is a direct transcriptional target of NF-kappaB that blocks TNFalpha-induced apoptosis. Genes Dev 1999, 13:382–387.

    CAS  PubMed  Google Scholar 

  127. Kreuz S, Siegmund D, Scheurich P, et al. NF-kappaB inducers upregulate cFLIP, a cycloheximide-sensitive inhibitor of death receptor signaling. Mol Cell Biol 2001, 21:3964–3973.

    CAS  PubMed  Google Scholar 

  128. Catz SD, Johnson JL. Transcriptional regulation of bcl-2 by nuclear factor kappa B and its significance in prostate cancer. Oncogene 2001, 20:7342–7351.

    CAS  PubMed  Google Scholar 

  129. Suzuki M, Shinohara F, Sato K, et al. Interleukin-1beta converting enzyme subfamily inhibitors prevent induction of CD86 molecules by butyrate through a CREB-dependent mechanism in HL60 cells. Immunology 2003, 108:375–383.

    CAS  PubMed  Google Scholar 

  130. Gao N, Dai Y, Rahmani M, et al. Contribution of disruption of the nuclear factor-kappaB pathway to induction of apoptosis in human leukemia cells by histone deacetylase inhibitors and flavopiridol. Mol Pharmacol 2004, 66:956–963.

    CAS  PubMed  Google Scholar 

  131. Rosato RR, Almenara JA, Cartee L, et al. The cyclin-dependent kinase inhibitor flavopiridol disrupts sodium butyrate-induced p21WAF1/CIP1 expression and maturation while reciprocally potentiating apoptosis in human leukemia cells. Mol Cancer Ther 2002, 1:253–266.

    CAS  PubMed  Google Scholar 

  132. Almenara J, Rosato R, Grant S. Synergistic induction of mitochondrial damage and apoptosis in human leukemia cells by flavopiridol and the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA). Leukemia 2002, 16:1331–1343.

    CAS  PubMed  Google Scholar 

  133. De AW Jr, Mueller-Dieckmann HJ, Schulze-Gahmen U, et al. Structural basis for specificity and potency of a flavonoid inhibitor of human CDK2, a cell cycle kinase. Proc Natl Acad Sci U S A 1996, 93:2735–2740.

    Google Scholar 

  134. Chao SH, Fujinaga K, Marion JE, et al. Flavopiridol inhibits P-TEFb and blocks HIV-1 replication. J Biol Chem 2000, 275:28345–28348.

    CAS  PubMed  Google Scholar 

  135. Chao SH, Price DH. Flavopiridol inactivates P-TEFb and blocks most RNA polymerase II transcription in vivo. J Biol Chem 2001, 276:31793–31799.

    CAS  PubMed  Google Scholar 

  136. Takada Y, Aggarwal BB. Flavopiridol inhibits NF-kappaB activation induced by various carcinogens and inflammatory agents through inhibition of IkappaBalpha kinase and p65 phosphorylation: abrogation of cyclin D1, cyclooxygenase-2, and matrix metalloprotease-9. J Biol Chem 2004, 279:4750–4759.

    CAS  PubMed  Google Scholar 

  137. Savickiene J, Treigyte G, Pivoriunas A, et al. Sp1 and NF-{kappa}B transcription factor activity in the regulation of the p21 and FasL promoters during promyelocytic leukemia cell monocytic differentiation and its associated apoptosis. Ann N Y Acad Sci 2004, 1030:569–577.

    CAS  PubMed  Google Scholar 

  138. Tang G, Minemoto Y, Dibling B, et al. Inhibition of JNK activation through NF-kappaB target genes. Nature 2001, 414:313–317.

    CAS  PubMed  Google Scholar 

  139. Rosato RR, Almenara JA, Kolla SS, et al. Mechanism and functional role of XIAP and Mcl-1 down-regulation in flavopiridol/vorinostat antileukemic interactions. Mol Cancer Ther 2007, 6:692–702.

    CAS  PubMed  Google Scholar 

  140. Denlinger CE, Keller MD, Mayo MW, et al. Combined proteasome and histone deacetylase inhibition in non-small cell lung cancer. J Thorac Cardiovasc Surg 2004, 127:1078–1086.

    CAS  PubMed  Google Scholar 

  141. Yu C, Rahmani M, Conrad D, et al. The proteasome inhibitor bortezomib interacts synergistically with histone deacetylase inhibitors to induce apoptosis in Bcr/Abl+ cells sensitive and resistant to STI571. Blood 2003, 102:3765–3774.

    CAS  PubMed  Google Scholar 

  142. Pei XY, Dai Y, Grant S. Synergistic induction of oxidative injury and apoptosis in human multiple myeloma cells by the proteasome inhibitor bortezomib and histone deacetylase inhibitors. Clin Cancer Res 2004, 10:3839–3852.

    CAS  PubMed  Google Scholar 

  143. Ogretmen B, Hannun YA. Biologically active sphingolipids in cancer pathogenesis and treatment. Nat Rev Cancer 2004, 4:604–616.

    CAS  PubMed  Google Scholar 

  144. Bektas M, Spiegel S. Glycosphingolipids and cell death. Glycoconj J 2004, 20:39–47.

    CAS  PubMed  Google Scholar 

  145. Payne SG, Milstien S, Spiegel S. Sphingosine-1-phosphate: dual messenger functions. FEBS Lett 2002, 531:54–57.

    CAS  PubMed  Google Scholar 

  146. Stunff HL, Milstien S, Spiegel S. Generation and metabolism of bioactive sphingosine-1-phosphate. J Cell Biochem 2004, 92:882–899.

    PubMed  Google Scholar 

  147. Ding WX, Yin XM. Dissection of the multiple mechanisms of TNF-alpha-induced apoptosis in liver injury. J Cell Mol Med 2004, 8:445–454.

    CAS  PubMed  Google Scholar 

  148. Bose R, Verheij M, Haimovitz-Friedman A, et al. Ceramide synthase mediates daunorubicin-induced apoptosis: an alternative mechanism for generating death signals. Cell 1995, 82:405–414.

    CAS  PubMed  Google Scholar 

  149. Perry DK, Carton J, Shah AK, et al. Serine palmitoyltransferase regulates de novo ceramide generation during etoposide-induced apoptosis. J Biol Chem 2000, 275:9078–9084.

    CAS  PubMed  Google Scholar 

  150. Chauvier D, Morjani H, Manfait M. Ceramide involvement in homocamptothecin- and camptothecin-induced cytotoxicity and apoptosis in colon HT29 cells. Int J Oncol 2002, 20:855–863.

    CAS  PubMed  Google Scholar 

  151. Biswal SS, Datta K, Acquaah-Mensah GK, et al. Changes in ceramide and sphingomyelin following fludarabine treatment of human chronic B-cell leukemia cells. Toxicology 2000, 154:45–53.

    CAS  PubMed  Google Scholar 

  152. Kurita-Ochiai T, Amano S, Fukushima K, et al. Cellular events involved in butyric acid-induced T cell apoptosis. J Immunol 2003, 171:3576–3584.

    CAS  PubMed  Google Scholar 

  153. Rahmani M, Reese E, Dai Y, et al. Coadministration of histone deacetylase inhibitors and perifosine synergistically induces apoptosis in human leukemia cells through Akt and ERK1/2 inactivation and the generation of ceramide and reactive oxygen species. Cancer Res 2005, 65:2422–2432.

    CAS  PubMed  Google Scholar 

  154. Eickhoff B, Ruller S, Laue T, et al. Trichostatin A modulates expression of p21waf1/cip1, Bcl-xL, ID1, ID2, ID3, CRAB2, GATA-2, hsp86 and TFIID/TAFII31 mRNA in human lung adenocarcinoma cells. Biol Chem 2000, 381:107–112.

    CAS  PubMed  Google Scholar 

  155. Eickhoff B, Germeroth L, Stahl C, et al. Trichostatin A-mediated regulation of gene expression and protein kinase activities: reprogramming tumor cells for ribotoxic stress-induced apoptosis. Biol Chem 2000, 381:1127–1132.

    CAS  PubMed  Google Scholar 

  156. Sreedhar AS, Csermely P. Heat shock proteins in the regulation of apoptosis: new strategies in tumor therapy: a comprehensive review. Pharmacol Ther 2004, 101:227–257.

    CAS  PubMed  Google Scholar 

  157. Blagosklonny MV. Hsp-90-associated oncoproteins: multiple targets of geldanamycin and its analogs. Leukemia 2002, 16:455–462.

    CAS  PubMed  Google Scholar 

  158. Kimura E, Enns RE, Alcaraz JE, et al. Correlation of the survival of ovarian cancer patients with mRNA expression of the 60-kD heat-shock protein HSP-60. J Clin Oncol 1993, 11:891–898.

    CAS  PubMed  Google Scholar 

  159. Ciocca DR, Clark GM, Tandon AK, et al. Heat shock protein hsp70 in patients with axillary lymph node-negative breast cancer: prognostic implications. J Natl Cancer Inst 1993, 85:570–574.

    CAS  PubMed  Google Scholar 

  160. Santarosa M, Favaro D, Quaia M, et al. Expression of heat shock protein 72 in renal cell carcinoma: possible role and prognostic implications in cancer patients. Eur J Cancer 1997, 33:873–877.

    CAS  PubMed  Google Scholar 

  161. Takayama S, Reed JC, Homma S. Heat-shock proteins as regulators of apoptosis. Oncogene 2003, 22:9041–9047.

    CAS  PubMed  Google Scholar 

  162. Bagatell R, Whitesell L. Altered Hsp90 function in cancer: a unique therapeutic opportunity. Mol Cancer Ther 2004, 3:1021–1030.

    CAS  PubMed  Google Scholar 

  163. Creagh EM, Sheehan D, Cotter TG. Heat shock proteins—modulators of apoptosis in tumour cells. Leukemia 2000, 14:1161–1173.

    CAS  PubMed  Google Scholar 

  164. Beliakoff J, Whitesell L. Hsp90: an emerging target for breast cancer therapy. Anticancer Drugs 2004, 15:651–662.

    CAS  PubMed  Google Scholar 

  165. Yu X, Guo ZS, Marcu MG, et al. Modulation of p53, ErbB1, ErbB2, and Raf-1 expression in lung cancer cells by depsipeptide FR901228. J Natl Cancer Inst 2002, 94:504–513.

    CAS  PubMed  Google Scholar 

  166. Neckers L, Schulte TW, Mimnaugh E. Geldanamycin as a potential anti-cancer agent: its molecular target and biochemical activity. Invest New Drugs 1999, 17:361–373.

    CAS  PubMed  Google Scholar 

  167. Citri A, Alroy I, Lavi S, et al. Drug-induced ubiquitylation and degradation of ErbB receptor tyrosine kinases: implications for cancer therapy. EMBO J 2002, 21:2407–2417.

    CAS  PubMed  Google Scholar 

  168. Fuino L, Bali P, Wittmann S, et al. Histone deacetylase inhibitor LAQ824 down-regulates Her-2 and sensitizes human breast cancer cells to trastuzumab, taxotere, gemcitabine, and epothilone B. Mol Cancer Ther 2003, 2:971–984.

    CAS  PubMed  Google Scholar 

  169. Nimmanapalli R, Fuino L, Bali P, et al. Histone deacetylase inhibitor LAQ824 both lowers expression and promotes proteasomal degradation of Bcr-Abl and induces apoptosis of imatinib mesylate-sensitive or -refractory chronic myelogenous leukemia-blast crisis cells. Cancer Res 2003, 63:5126–5135.

    CAS  PubMed  Google Scholar 

  170. Rahmani M, Yu C, Dai Y, et al. Co-administration of the heat shock protein 90 antagonist 17-AAG with SAHA or sodium butyrate synergistically induces apoptosis in human leukemia cells. Cancer Res 2003, 63:8420–8427.

    CAS  PubMed  Google Scholar 

  171. Rahmani M, Reese E, Dai Y, et al. Co-treatment with SAHA and 17-AAG synergistically induces apoptosis in Bcr-Abl+ cells sensitive and resistant to STI-571 in association with down-regulation of Bcr-Abl, abrogation of STAT5 activity, and Bax conformational change. Mol Pharmacol 2005, 67:1166–1176.

    CAS  PubMed  Google Scholar 

  172. Phase I pharmacokinetic (PK) and pharmacodynamic (PD) study of LBH589A: a novel histone deacetylase inhibitor. 04, 2004.

    Google Scholar 

  173. Hideshima T, Bradner JE, Wong J, et al. Smallmolecule inhibition of proteasome and aggresome function induces synergistic antitumor activity in multiple myeloma. Proc Natl Acad Sci U S A 2005, 102:8567–8572.

    CAS  PubMed  Google Scholar 

  174. Zhang Y, Adachi M, Zou H, et al. Histone deacetylase inhibitors enhance phosphorylation of histone H2AX after ionizing radiation. Int J Radiat Oncol Biol Phys 2006, 65:859–866.

    CAS  PubMed  Google Scholar 

  175. Munshi A, Kurland JF, Nishikawa T, et al. Histone deacetylase inhibitors radiosensitize human melanoma cells by suppressing DNA repair activity. Clin Cancer Res 2005, 11:4912–4922.

    CAS  PubMed  Google Scholar 

  176. Munshi A, Tanaka T, Hobbs ML, et al. Vorinostat, a histone deacetylase inhibitor, enhances the response of human tumor cells to ionizing radiation through prolongation of gamma-H2AX foci. Mol Cancer Ther 2006, 5:1967–1974.

    CAS  PubMed  Google Scholar 

  177. Gaymes TJ, Padua RA, Pla M, et al. Histone deacetylase inhibitors (HDI) cause DNA damage in leukemia cells: a mechanism for leukemia-specific HDI-dependent apoptosis? Mol Cancer Res 2006, 4:563–573.

    CAS  PubMed  Google Scholar 

  178. Qiu L, Burgess A, Fairlie DP, et al. Histone deacetylase inhibitors trigger a G2 checkpoint in normal cells that is defective in tumor cells. Mol Biol Cell 2000, 11:2069–2083.

    CAS  PubMed  Google Scholar 

  179. Burgess AJ, Pavey S, Warrener R, et al. Up-regulation of p21(WAF1/CIP1) by histone deacetylase inhibitors reduces their cytotoxicity. Mol Pharmacol 2001, 60:828–837.

    CAS  PubMed  Google Scholar 

  180. Elledge SJ. Cell cycle checkpoints: preventing an identity crisis. Science 1996, 274:1664–1672.

    CAS  PubMed  Google Scholar 

  181. Warrener R, Beamish H, Burgess A, et al. Tumor cell-selective cytotoxicity by targeting cell cycle checkpoints. FASEB J 2003, 17:1550–1552.

    CAS  PubMed  Google Scholar 

  182. Richon VM, Sandhoff TW, Rifkind RA, et al. Histone deacetylase inhibitor selectively induces p21WAF1 expression and gene-associated histone acetylation. Proc Natl Acad Sci U S A 2000, 97:10014–10019.

    CAS  PubMed  Google Scholar 

  183. Burgess A, Ruefli A, Beamish H, et al. Histone deacetylase inhibitors specifically kill nonproliferating tumour cells. Oncogene 2004, 23:6693–6701.

    CAS  PubMed  Google Scholar 

  184. DeGregori J. The genetics of the E2F family of transcription factors: shared functions and unique roles. Biochim Biophys Acta 2002, 1602:131–150.

    CAS  PubMed  Google Scholar 

  185. Ginsberg D. E2F1 pathways to apoptosis. FEBS Lett 2002, 529:122–125.

    CAS  PubMed  Google Scholar 

  186. Sherr CJ, McCormick F. The RB and p53 pathways in cancer. Cancer Cell 2002, 2:103–112.

    CAS  PubMed  Google Scholar 

  187. Matsumura I, Tanaka H, Kanakura Y. E2F1 and c-Myc in cell growth and death. Cell Cycle 2003, 2:333–338.

    CAS  PubMed  Google Scholar 

  188. Hershko T, Ginsberg D. Up-regulation of Bcl-2 homology 3 (BH3)-only proteins by E2F1 mediates apoptosis. J Biol Chem 2004, 279:8627–8634.

    CAS  PubMed  Google Scholar 

  189. Zhao Y, Tan J, Zhuang L, et al. Inhibitors of histone deacetylases target the Rb-E2F1 pathway for apoptosis induction through activation of proapoptotic protein Bim. Proc Natl Acad Sci U S A 2005, 102:16090–16095.

    CAS  PubMed  Google Scholar 

  190. Tan J, Zhuang L, Jiang X, et al. Apoptosis signalregulating kinase 1 is a direct target of E2F1 and contributes to histone deacetylase inhibitor-induced apoptosis through positive feedback regulation of E2F1 apoptotic activity. J Biol Chem 2006, 281:10508–10515.

    CAS  PubMed  Google Scholar 

  191. Rosato RR, Almenara JA, Yu C, et al. Evidence of a functional role for p21WAF1/CIP1 down-regulation in synergistic antileukemic interactions between the histone deacetylase inhibitor sodium butyrate and flavopiridol. Mol Pharmacol 2004, 65:571–581.

    CAS  PubMed  Google Scholar 

  192. Dai Y, Rahmani M, Dent P, et al. Blockade of histone deacetylase inhibitor-induced RelA/p65 acetylation and NF-kappaB activation potentiates apoptosis in leukemia cells through a process mediated by oxidative damage, XIAP downregulation, and c-Jun N-terminal kinase 1 activation. Mol Cell Biol 2005, 25:5429–5444.

    CAS  PubMed  Google Scholar 

  193. Duan J, Friedman J, Nottingham L, et al. Nuclear factor-kappaB p65 small interfering RNA or proteasome inhibitor bortezomib sensitizes head and neck squamous cell carcinomas to classic histone deacetylase inhibitors and novel histone deacetylase inhibitor PXD101. Mol Cancer Ther 2007, 6:37–50.

    CAS  PubMed  Google Scholar 

  194. Bai J, Demirjian A, Sui J, et al. Histone deacetylase inhibitor trichostatin A and proteasome inhibitor PS-341 synergistically induce apoptosis in pancreatic cancer cells. Biochem Biophys Res Commun 2006, 348:1245–1253.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by awards CA63753, CA61774, and CA93738 from the NIH, DAMD-17-03-1-0209 from the Department of Defense, The V Foundation, and award 6059-06 from the Leukemia and Lymphoma Society of America.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Rosato, R.R., Grant, S. (2008). Histone Deacetylase Inhibitors and Anticancer Activity. In: Bonavida, B. (eds) Sensitization of Cancer Cells for Chemo/Immuno/Radio-therapy. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-59745-474-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-474-2_8

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-934115-29-9

  • Online ISBN: 978-1-59745-474-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics